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Abstract—Recently, the concept of Green AI is expanding its
applicability to various academic and industrial fields including
surveillance with energy efficiency, maximum reliability, manag-
ing traffic flows in smart cities. In particular, it is highly expected
that the sustainable 3D cube surveillance is applied to theme
park environment with Green AI perspective appropriately. In
this paper, we design a sustainable 3D cube framework for
surveillance and pedestrian monitoring toward Green AI-enabled
theme park environment using mobile robots and smart UAVs.
Then, a main research problem is formally defined. To resolve the
problem, three different approaches are proposed with 3D zone-
based and energy-efficient rearrangement strategies. Moreover,
the performance of the proposed schemes is evaluated based
on experiment outcomes which are obtained from expansive
simulations with various scenarios.

Index Terms—Green AI, mobile robot, UAVs, 3D cube

I. INTRODUCTION

TODAY, the mobile robot field is one of the rapid expan-
sion areas for the various purposes in smart cities. Thanks

to Mobile robot’s recent advancement and promising applica-
bility, it is highly expected that that mobile robots are able
to support humans’ works and hard tasks in numerous fields
regarding to AI (Artificial Intelligence), machine learning tech-
nologies covering IoT (Internet of Things), surveillance, urban
mobility, planetary exploration, patrols, distributed systems,
emergency rescue operations, reconnaissance, and industrial
automation, personal service, extreme environment, transporta-
tion, big data, medical care, etc [1], [2], [3], [4], [5]. And,
application utilization, sensor information, cognitive ability is
processed properly by high-quality robot software recently.

Also, as another admirable system component in smart
cities, UAVs (Unmanned Aerial Vehicles) are widely utilized
for numerous applications. So, UAVs can achive military mis-
sions, rapid movements to specific areas that are difficult for
humans to access directly, disaster detection, crime prevention,
traffic monitoring, target tracking, virtual emotion surveillance,
intelligent transportation system, etc [6], [7], [8], [9]. And,
it has been used for geographical data and is also used in

agriculture. UAV sales are on the rise thanks to low prices
and numerous fields of use. Basically, UAVs can record not
only 2D (2-Dimension) space but also large-scale topography
in a 3D (3-Dimension) environment. If these mobile robots and
UAVs are worked in cooperation, it is highly anticipated that
they can support a more complex environment with high accu-
racy and a wider range than individual applicability. Therefore,
it is indispensable to deliberate on mobile robots and UAVs
together in order to complete the requested missions, tasks in
a wide range of environments successfully.

On the other hand, many researchers studied how to
construct barriers in 2D space and how to locate several
types of barrier members. Barriers include movable devices
or static components to achieve various objectives cover-
ing surveillance, monitoring specific districts, virtual emotion
surveillance, [10], [11]. Such a 2D barrier plays an important
role in games, self-driving cars, and indoor location tracking
systems on the plane depending on how to generate those
2D barriers to fit with the pursuing goals and the given
requirements such as maximum lifetime of barriers, minimum
number of barrier members, maximum detection accuracy,
minimum movement of mobile components, obstacle-aware
constructions, etc. However, there is a limit if various factors
such as the size and shape of the object in 2D environment are
not considered. For previous studies in 2D space, the volume
occupied by nodes and communication ranges was generally
negligible, and the depth of the given area was not covered for
2D barriers construction so that the existing solutions of 2D
barriers can not apply the critical tasks in 3D space as well as
not transform into relevant research problems directly. Unlike
a 2D plane where the barrier covers from one side to the other,
it is necessary to consider a broad range of 3D environment.
Generally, when compared to 2D space, 3D environment is
more difficult to design and to create energy-efficient 3D
surveillance framework because 3D space originally causes
diverse features, constraints, factors to be considered strictly.
It follows that 3D-based surveillance and barrier essentially
requires more complex mathematical models and algorithms
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with improved performance of computational complexity, stor-
age space complexity, calculation time, etc. Hence, it is vital
to consider how to design 3D cube surveillance system with
sustainable construction or persistent management.

AI-enabled methods and technologies covering machine
learning and deep learning are expanding tremendously to a
large scale fields, applicable systems and research branches
including semantic communication, autonomous vehicles, tac-
tile internet, IoT system, 5G and 6G communications, theme
park environments, amuse attraction analysis, etc. Particularly,
the important concepts of Red AI and Green AI were proposed
recently by [12]. The Red AI mainly focuses on improvements
of implementation accuracy, executable task speed, minimal
delay, maximum achievement with a consideration of mas-
sive training data set, number of floating-point operations,
computational costs and so on. On the other hand, Green AI
pursues to how to satisfy on environment features, social costs,
economic factors, eco-friendly issue by estimating carbon
emission, electricity, training time efficiency, inference energy
efficiency, etc. Furthermore, the issues and topics of energy-
efficient green computing, sustainable system, crowdsensing,
environmental science, renewable energy sources have at-
tracted much interests of researchers [13], [14], [15]. Accord-
ingly, we should conduct a promising research of Green AI-
assisted theme part environment for sustainable surveillance.

Based on the above observations and motivations, the pri-
mary contributions and technical contents of this paper are
summarized as follows.

• Firstly, we design a sustainable 3D cube framework for
surveillance and pedestrian monitoring for Green AI-
enabled theme park environment with a collaboration of
mobile robots and smart UAVs. The proposed system sup-
ports energy-efficient management, secure service, sus-
tainable surveillance to users. Also, the system overview,
settings, assumptions and key terms are specified in
detail.

• Then, the research problem of minimizing uncovered vol-
ume by a combination of mobile robots and smart UAVs
in sustainable 3D cube space is formally represented.

• To solve the defined problem, three different schemes
are proposed supported by essential strategy with divided
zones of 3D cube space so that the sustainable 3D
cube surveillance with energy-efficiency and detection
accuracy is accomplished.

• Furthermore, the devised schemes are performed through
extensive simulations with practical scenarios and various
settings and their performances and measurements are
evaluated based on numerical outcomes with detailed
discussions and demonstrations.

The basic organization of this paper is as follows. Section
II describes the sustainable 3D cube framework for surveil-
lance and pedestrian monitoring in Green AI-enabled theme
park environment including system settings, assumptions, key
terms, problem definition with ILP formulations. Then, in
Section III, three different algorithms are presented in detail.
Also, in Section IV, the performance analysis of the developed
methods is conducted through numerical results which are

Fig. 1. A brief example of sustainable surveillance and pedestrian monitoring
in Green AI-enabled theme park environment.

obtained from expansive experiments. Consequently, the paper
is concluded in Section V.

II. PROPOSED FRAMEWORK

In this section, we specify the proposed framework of
3D cube surveillance and pedestrian monitoring framework
including system settings, design features, assumptions, whole
overview, notations, essential terms, problem definition.

A. System Settings, Design Features and Assumptions

First, for system conditions, when there is a given 3D zone
and there is another zone divided into three cubes, the area that
the communication range could not cover is minimized. The
first condition is to make all component communications the
same. By making them all the same, the calculation process
becomes easier, and the consideration is reduced. It should also
be adjusted so that this communication range is not larger than
the given area. And the total number of system components
should be limited. This is because this method cannot be said
to be efficient if the simulation results are good using a lot of
components without restrictions. Finally, a limit is set on the
movement distance of the component.

In summary, the following system settings, design features
and assumptions are applied to the proposed environment.

• The proposed framework covers cube as the given 3D
area for theme park applications and attractions.

• The proposed system components are consist of mobile
robots for the ground side and smart UAVs for the aerial
side in cube environment.

• For the given 3D theme park space, each divided plate
has equal size when the dividing strategy is implemented.

• The communication range of each component is set to be
the equal.

• While the moving trajectories of mobile robots are ground
sides of cube, the preferred trajectories of smart UAVs are
aerial sides to complete the given tasks.
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(a) Verifying random locations of initial mobile
components

(b) Applying periphery domination strategy into
2D plane

(c) Executing periphery domination strategy
into 3D environment

Fig. 2. Algorithm 1: Periphery-Domination-Preference: The initial status and execution strategy.

B. System Overview

Now, we display the whole overview of sustainable 3D cube
surveillance and pedestrian monitoring system in Green AI-
enabled theme park environment. Basically, there are various
attractions, admission entrances, crowd of users, pedestrians
and staffs, a millions of smart devices in amusement or theme
park regions. To provide energy-efficient management, secure
service, sustainable surveillance to users, the proposed system
pursues the applicability of Green AI supported by mobile
robots in the ground side and smart UAVS in aerial or upper
side in the given 3D cube theme park space. It follows that
the proposed framework seeks various critical system tasks
including screening or security checks, accident warnings to
users, attraction status checks, disaster managements, emer-
gent item delivery, criminal prevention, pedestrian tracking
by the perspective of sustainable Green AI-assisted 3D cube
theme park environment.

Fig. 1 depicts a brief application example of sustainable
surveillance and pedestrian monitoring in Green AI-enabled
theme park environment. As it can be shown in Fig. 1, the
system components including mobile robots, smart UAVs and
smart devices are able to support the secure surveillance
and pedestrian monitoring with Green AI-assisted eco-friendly
service in theme park environment.

C. Key Terms and Problem Definition

The key terms and critical definitions for the proposed
sustainable 3D cube theme park system are represented as
follows.

Definition 2.1 (Green AI-enabled theme park space): The
Green AI-enabled theme park space, called as GreenAIThe-
mePark, pursues to provide the environmental, eco-friendly,
energy-efficient services, optimal social managements and
secure attractions supported by various types of system com-
ponents covering mobile robots, smart UAVs, autonomous sys-
tems, IoT devices with a consideration of estimating electricity
usage, carbon emissions, time efficiency and other possible
eco-friendly factors.

Definition 2.2 (Sustainable 3D cube surveillance): Suppose
that there exist the targeted cube-shaped space, the group of
mobile components including the set of mobile robots, the set
of smart UAVs. The sustainable 3D cube surveillance, called
as Sustain3DSurv, is to supply the continuous detection of
penetrations and requested objects with sustainable, energy-
efficient management appropriately in 3D cube space.

Also, the main research problem is specified as follows.

Definition 2.3 (Sustainable 3D cube surveillance remnant
minimization volume problem): It is a given that a set of
mobile robots, a set of smart UAVS with homogeneous ranges
have been located randomly in cube-shaped theme park space
initially. The sustainable 3D cube surveillance remnant volume
minimization problem, referred as Min3DSurvRem, is to min-
imize the remnant undetectable volume such that the limited
movement distance of mobile robots and UAVs are satisfied
and the required minimum number of Sustain3DSurv is created
completely.

III. PROPOSED SCHEMES

In this section, we describe three different algorithms which
are proposed to reduce the amount of undetectable space
volume in 3D cube. A description of the execution procedures
for all algorithms is presented in detail.

A. Algorithm 1: Periphery-Domination-Preference

Firstly, we specify the first algorithm, referred as Periphery-
Domination-Preference. Its basic strategies, procedures and
execution steps are presented as follows.

• Identify 3D cube Green AI-enabled theme park space.
• Accept a set of mobile components including mobile

robots and smart UAVs with their detection range as well
as verify randomly scattered locations of within Green
AI-enabled theme park space.

• Set a set of mobile components as the potential candidate
set for sustainable movement.

• Divide 3D cube space into three planes vertically or
horizontally.
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(a) Identifying random positions of initial mo-
bile components

(b) Applying minimal overlap strategy orderly
into 2D plane

(c) Expanding minimal overlap strategy into 3D
space

Fig. 3. Algorithm 2: Minimum-Overlap-Configuration: The initial state and operation strategy.

• The following sub-steps are implemented until the re-
quested number of Sustain3DSurv is equipped with 3D
cube space.

– Move available components from potential candidate
set into periphery of the divided plane with move-
ment limit as many as possible.

– Check if Sustain3DSurv is created at every plane. If
so, stop current iteration.

• Estimate the remnant volume ψ which is not detected by
the formed Sustain3DSurv.

• Return ψ as final outcome.
Fig. 2 shows the initial status and execution strategy of

Algorithm 1: Periphery-Domination-Preference. Fig. 2(a) de-
picts the identification of initial mobile components locations
for mobile robots and smart UAVs. Fig. 2(b) stands for the
execution status of applying periphery domination preference
strategy into the divided 2D plane. And, Fig. 2(c) presents
the implementation status of 3D cube by the available mobile
components through periphery domination preference strategy.

B. Algorithm 2: Minimum-Overlap-Configuration

Secondly, we explain the second algorithm, called as
Minimum-Overlap-Configuration. Its basic idea is to con-
figure mobile components with a consideration of minimal
overlapped detection ranges or minimal wasted room when
Sustain3DSurv are built in 3D cube Green AI-enabled theme
park space. Then, its strategies, procedures and operations
steps are provided below.

• Check 3D cube Green AI-enabled theme park space.
• Recognize a set of mobile components, its detection range

and initial positions in 3D cube space.
• Initialize a set of mobile component as the potential

candidate set for sustainable movement.
• Split 3D cube space into three planes perpendicularly or

horizontally.
• The following sub-procedures are performed until the

required level of Sustain3DSurv is installed in 3D cube
space.

– Draw virtual squares in order for each plane where
the length of square fits with the detection range with
minimal overlap and its center position is included
in the set of potential position.

– Move available mobile components in the potential
candidate set to the centers of virtual squares with
movement limit in order.

– Confirm if Sustain3DSurv is constructed at every
plane. If so, go out current iteration.

• Calculate the remnant volume ψ that is not covered by
the found Sustain3DSurv.

• Return ψ as final result.
Fig. 3(a) expresses the initial state and operations steps

of Algorithm 2: Minimum-Overlap-Configuration. Fig. 3(b)
depicts the status after the minimal overlap strategy is im-
plemented with 2D plane view. Also, Fig. 3(c) displays the
executed status of minimal duplicated space with 3D expanded
view, which are supported by the definite movements of mobile
components at every plane.

C. Algorithm 3: Combined-Sustainable-Adjustment

Lastly, we propose the third algorithm, referred as
Combined-Sustainable-Adjustment whose essential strategy is
the combined implementation of Algorithm 1 and Algorithm 2.
It follows that the devised Combined-Sustainable-Adjustment
utilizes the sustainable adjustment strategy through differential
executions with the adjustment of usage ratio according to
divided planes in 3D cube Green AI-enabled theme park space.
Then, its procedures and operations steps are explained as
follows.

Fig. 4(a) manifests the status of slicing 3D cube to three
different planes with unique identification number where the
second plane is positioned at center side of 3D cube for Al-
gorithm 3: Combined-Sustainable-Adjustment. Fig. 4(b) shows
the the first half execution status of Algorithm 3. It follows that
the first plane and the third plane are operated by Algorithm 1.
Also, the second plane is implemented by Algorithm 2. On the
other hand, Fig. 4(c) presents the second half implementation
status of Algorithm 3 with the reverse order. That is, the first
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(a) Slicing 3D cube to three different
planes unique identification number in
Algorithm 3

(b) The first half execution status of Algorithm 3. The first, third planes applied by Algorithm 1 and the second
plane operated by Algorithm 2

(c) The second half fulfillment status of Algorithm 3. The first, third planes implemented by Algorithm 2 and
the second zone managed by Algorithm 1.

Fig. 4. Slicing 3D cube and the first half, the second half applicable status of Algorithm 3.

plane and the third plane are applied by Algorithm 2 and the
second plane is practiced by Algorithm 1.

• Verify 3D cube Green AI-assisted theme park space.
• Acknowledge a set of mobile components with the sens-

ing range r and check their initial locations in 3D cube
Green AI-assisted theme park space.

• Set the potential candidate set for sustainable movement.
• Slice 3D cube area into three planes perpendicularly or

horizontally as well as confirm each plane with unique
identification where the second plane is located at center
side of cube.

• The following sub-steps are implemented until the first
potential remnant volume is earned.

– Call Algorithm 1 and execute it for the first plane
and the third plane.

– Call Algorithm 2 and perform it for the second plane.
– Estimate the potential remnant volume and set it as

the first value.
• The following sub-steps are operated until the second

potential remnant volume is obtained.
– Call Algorithm 2 and carry out it for the first plane

and the third plane.
– Call Algorithm 1 and fulfill it for the second plane.
– Calculate the potential remnant volume and update

it as the second value.
• Compare the first potential remnant volume with the

second potential remnant volume and update the smaller
one as ψ.

• Return ψ as final outcome.

IV. EXPERIMENTAL EVALUATIONS

In this section, the developed Algorithm 1: Periphery-
Domination-Preference, Algorithm 2: Minimum-Overlap-
Configuration and Algorithm 3: Combined-Sustainable-
Adjustment are demonstrated relying on the earned results
through expansive simulations with various settings, param-
eters and scenarios including several number of mobile com-
ponents, different 3D cube theme park spaces, communica-
tion or detection ranges, interval for random detection radii,
the requested number of Sustain3DSurv, etc. It is noted for
simulation execution environment that the size of 3D cube as
theme park space are utilized as 100 (width) by 100 (depth)
by 100 (height) meter, 150 by 150 by 150 meter, 200 by 200
by 200 meter, 200 by 200 by 200 meter, respectively. And, the
total number of mobile components including mobile robots
and smart UAVs is ranging from 100 through 250. Also, the
interval of random detection radii by mobile components are
used between 30 and 45. Furthermore, it is specified that every
numerical acquisitions of the remnant or uncoverable volume
of ψ as the final objective value must be the average value of
1000 different simulation environment settings and parameters.
Entirely, our simulations for sustainable 3D cube framework
for surveillance and pedestrian monitoring for Green AI-
enabled theme park are composed of four different groups
where each group has own critical features, requirements and
parameters.
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(a) The number of mobile components
= 100 in 100× 100× 100 cube

(b) The number of mobile components
= 150 in 100× 100× 100 cube

(c) The number of mobile components
= 200 in 100× 100× 100 cube

(d) The number of mobile components
= 250 in 100× 100× 100 cube

(e) The number of mobile components
= 100 in 150× 150× 150 cube

(f) The number of mobile components
= 150 in 150× 150× 150 cube

(g) The number of mobile components
= 200 in 150× 150× 150 cube

(h) The number of mobile components
= 250 in 150× 150× 150 cube

Fig. 5. Remnant volume of ψ by various number of system members n and communication ranges in 100×100×100, 150×150×150 cube environment.

About the first experiment setting, we execute three different
algorithms, Algorithm 1: Periphery-Domination-Preference,
Algorithm 2: Minimum-Overlap-Configuration and Algorithm
3: Combined-Sustainable-Adjustment with different number of
mobile components in Green AI-enabled theme park size of
100 × 100 × 100 as shown in Fig. 5. We confirm that for
the first group of experiments, the performance result graph
is composed of two axis. It follows that X-coordinate axis
expresses the homogeneous communication or detection range
of mobile components and Y-coordinate axis stands for the
remnant uncoverable or undetectable volume ψ. Also, on the
performance graph in group 1, Algorithm 1 is marked with cir-
cle marker with solid line, Algorithm 2 is displayed with star
marker with solid line as well as Algorithm 3 is represented
with square marker with solid line, respectively. Fig. 5(a) and
Fig. 5(b) demonstrate the outcome of those devised algorithms
if the total number of mobile components is 100 and 150
within 100× 100× 100 theme park space. Also, as it can be
seen in Fig. 5(c) and Fig. 5(d), they verify the obtained results
when the settings and parameters with n = 200 and n = 250 are
applied to 100×100×100 3D space. Then, as seen in Fig. 5, we
are able to demonstrate that not only the remnant undetectable
volume ψ is decreasing for all algorithms basically as the
communication range is increasing but also the performance of
Algorithm 3: Combined-Sustainable-Adjustment outperforms
other algorithms clearly.

For the second simulation scenario, three different schemes
are performed with the total number of mobile components
= 100 according to various Green AI-assisted theme park
space sizes as it can be seen in Fig. 5. Fig. 5(e) and
Fig. 5(f) verify the result of three different methods for
Algorithm 1: Periphery-Domination-Preference, Algorithm 2:
Minimum-Overlap-Configuration and Algorithm 3: Combined-
Sustainable-Adjustment when 100×100×100 and 150×150×

150 are given as Green AI-enabled theme park size. And, Fig.
5(g) and Fig. 5(h) show the outcomes if 200× 200× 200 and
250 × 250 × 250 are put into the simulation settings. As it
can be checked in in Fig. 5, we can confirm that the remnant
undetectable volume ψ decreases for every scheme as a whole
as the communication range increases and the performance of
Algorithm 3: Combined-Sustainable-Adjustment is better than
others.

As the third group of experiment scenario, it is noted that the
performance result graph is displayed with three axis where X-
coordinate depicts the homogeneous minimum communication
or detection range of mobile components and Y-coordinate
describes the remnant uncoverable or undetectable volume ψ
that is objective result to resolve the Min3DSurvRem problem.
In addition, Algorithm number is shown in Z-coordinate. As
it is shown in Fig. 6, the random intervals of communication
range are set as 30, 35, 40, 35 in this scenario. It follows
that Fig. 6(a) and Fig. 6(b) demonstrate the performance of
three algorithms with the random interval of detection range
= 30, 35. Furthermore, Fig. 6(c) and Fig. 6(d) validate the
effectiveness of three algorithms relying on the input of 40,
45 as the random interval of communication radius. Largely,
we could affirm that Algorithm 3: Combined-Sustainable-
Adjustment has the best result when compared with other
schemes.

Finally, as the fourth experiment setting, three different
methods of Algorithm 1: Periphery-Domination-Preference,
Algorithm 2: Minimum-Overlap-Configuration and Algorithm
3: Combined-Sustainable-Adjustment are achieved depending
on various requested minimum number of Sustain3DSurv as
seen in Fig. 6. It is also noted that the fourth experiment
setting deliberates on Green AI-assisted theme park space
of 100 × 100 × 100 when n = 100 is given. Fig. 6(e) and
Fig. 6(f) certify the performance of three algorithms with
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(a) Interval of random communication
range r = 30 in 100×100×100 cube

(b) Interval of random communication
range r = 35 in 100×100×100 cube

(c) Interval of random communication
range r = 40 in 100×100×100 cube

(d) Interval of random communication
range r = 45 in 100×100×100 cube

(e) Required Sustain3DSurv = 10 in
100× 100× 100 cube

(f) Required Sustain3DSurv = 11 in
100× 100× 100 cube

(g) Required Sustain3DSurv = 12 in
100× 100× 100 cube

(h) Required Sustain3DSurv = 13 in
100× 100× 100 cube

Fig. 6. Remnant volume of ψ by various interval of random communication ranges and various required surveillance with n = 100 in 100× 100× 100 cube
space.

the requested minimum number of Sustain3DSurv = 10, 11.
Similarly, Fig. 6(g) and Fig. 6(h) stands for the outcome
of proposed algorithms given with the requested minimum
number of Sustain3DSurv = 12, 13. Based on the experiment
outcomes by Fig. 6, we confirm that as a whole, the remnant
undetectable volume ψ is decreasing as the communication
range is increasing for every algorithm. Besides, we ascer-
tain that Algorithm 3: Combined-Sustainable-Adjustment out-
performs Algorithm 1: Periphery-Domination-Preference and
Algorithm 2: Minimum-Overlap-Configuration for all applied
cases consequently.

V. CONCLUSION

In this paper, we introduce the sustainable 3D cube platform
to achieve surveillance and pedestrian monitoring with a
collaboration of mobile robots and smart UAVs in Green
AI-enabled theme park environment which is converted into
3D cube space. After system overview, settings, basic def-
initions are presented, the research problem of minimizing
undetectable volume by mobile components is formally de-
fined. To resolve the problem, three different algorithms are
developed and their performances are evaluated based on the
demonstrated numerical outcomes through expansive simula-
tions with various settings and scenarios. As future works, we
plan to expand applicable environments including Green AI-
assisted smart buildings with underground spaces in regard to
autonomous systems. As future issues, we plan to extend the
sustainable 3D surveillance to various circumstances including
mountainous terrain, underground spaces, decentralized bene-
ficial systems, low-altitude networking.
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