
Centralized Cooperative Directional Spectrum
Sensing for Cognitive Radio Networks

Woongsoo Na, Jongha Yoon, Sungrae Cho, David Griffith, and Nada Golmie

Abstract—Most previous spectrum sensing techniques use
omni-directional antennas. Unlike omni-directional antennas, the
use of directional antennas for spectrum sensing is a promising
technique that can realize fine-grained sensing for the primary
user (PU) with a longer sensing range. In this paper, we
propose a centralized cooperative directional sensing technique
for cognitive radio networks. We assume that one secondary
coordinator called the fusion center (FC), gathers sensing results
from secondary nodes. Using the reported information, the FC
optimizes the sensing period, sensing power, and sensing beams
per secondary node. For optimization, we use a modified gradient
descent method with numerical methods to solve the nonlinear
optimization problem. The simulation results show that our
directional spectrum sensing technique is well suited for the
existing cognitive radio environment. The optimal scheme shows
proposed here better performance in all simulation factors than
the non-optimized scheme.

Index Terms—directional sensing, cognitive radio, spectrum
sensing, optimization, and gradient decent

I. INTRODUCTION

O NE of the core technologies used in cognitive radios is
spectrum sensing to identify the availability of the spec-

trum for improving utilization. In cognitive radio networks
(CRNs), secondary users (SUs) perform spectrum sensing to
detect chunks of unused spectrum licensed to primary users
(PUs) [7]. After detection, they deploy a secondary CRN in
the available spectrum. Sensing may be performed regularly
or occasionally to verify if the channel is vacant and/or to
verify that the channel quality is acceptable. If one of these
conditions is violated, the CR node decides either to change
its configuration (e.g., transmission power) to decrease the
interference level and compensate for the channel effects, or to
switch to a new vacant channel. However, SUs do not always
provide perfect sensing results, i.e., an SU may determine that
the sensed spectrum is occupied by a PU when the spectrum
is actually free (false alarm) or that the spectrum is free
when a PU is actually present in the sensed channel (miss
detection). Many factors such as multipath fading, shadowing,
and the receiver uncertainty problem1 may result in the above
problems1 may result in the above problems [4]. In order
to overcome these problems, SUs can cooperate and share
their sensing results with other SUs (cooperative sensing). The
spatially collected sensing results help determine whether the
detected spectrum is actually vacant [4].

Cooperative sensing techniques for CRNs have been for
many years. These techniques are classified into two cate-
gories: (1) centralized and (2) distributed [4]. In centralized
techniques [5], [11], [13], [34], [36], [40], [44], there is a
fusion center (FC) collects the sensing information from SUs.
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1The receiver uncertainty problem occurs if an SU is located outside of the
primary transmitter (PT) range so that the SU cannot detect the PU’s signal.
Once the PT transmits to the primary receiver (PR), the transmission of the
SU interferes with the reception at the PR.

After gathering the sensing information, the FC computes the
sensing schedule for a channel of each SU and disseminates a
sensing task to the SUs. In the distributed approach [8], [10],
[14], [19], [27], [32], [37], [42], [45], the SUs share sensing
information among themselves and determine sensing param-
eters based on collected neighboring sensing information.

Most previous cooperative spectrum sensing techniques
have used omni-directional antennas. The SUs that use an
omni-directional antenna cannot determine the sensed PUs
exact location. If SUs sense the locations of PUs, they can
efficiently utilize the geographic information of the spectrum.
Some localization schemes such as the direction of arrival,
triangulation or other similar methods used in omnidirectional
antennas exchange to message of PU detection among SNs.
As a result, it causes harmful interference to the PU. To
detect the PUs location more accurately and without harmful
interference, a directional antenna can be used for spectrum
sensing. Compared with the omni-directional counterpart, the
directional technique which needs more radio units has several
benefits such as a longer sensing range over the same amount
of energy, lower energy consumption with the same sensing
range, and fine-grained sensing [6], [18], [24]. In this paper,
we propose a directional sensing technique for cognitive radio
networks. If we use a directional antenna for spectrum sensing,
sensing overhead (sensing time, sensing energy, etc.) can be
reduced, and more precise sensing is possible since directional
antennas can identify the orientation of the PU. Moreover,
the purpose of directional sensing is to identify fine-grained
spectrum holes to improve spatial reuse. The rest of this
paper is organized as follows. In Section II, relevant spec-
trum sensing techniques are discussed. Section III describes
the basic assumptions for our proposed scheme. Section IV
presents the proposed centralized directional spectrum sensing
technique. In Section V, we describe the optimization of
sensing parameters using the nonlinear optimization technique.
The performance of our scheme is evaluated and analyzed in
Section VI. Finally, we draw conclusions and suggest future
directions in Section VII.

II. RELATED WORK
Spectrum sensing in practice is often compromised by mul-

tipath fading, shadowing, and receiver uncertainty issues [4].
To mitigate the impact of these issues, cooperative spectrum
sensing has been shown to be an effective method to improve
detection performance by exploiting spatial diversity. The main
idea of cooperative sensing is to enhance sensing performance
by exploiting the spatial diversity in the observations of
spatially located CR users [4]. Through cooperation, CR users
can share sensing information in order to make a combined
decision, which is more accurate compared to individual
decisions [12].

To facilitate the analysis of cooperative sensing, we classify
cooperative spectrum sensing into two approaches based on
how cooperating CR users share the sensing data in the
network: centralized [5], [11], [13], [34], [36], [40], [44] and
distributed [8], [10], [14], [19], [27], [32], [37], [42], [45].

In centralized cooperative sensing, a coordinator node called
a fusion center (FC) collects the local sensing information
from secondary nodes (SNs). After collecting this informa-
tion, the FC calculates optimized sensing parameters, such
as the optimum number of SUs for local sensing, sensing
delay, or decision threshold. In [13], the authors proposed
a reinforcement learning-based cooperative sensing (RLCS)
method to reduce detection overheads and improve detection



performance under correlated shadowing. In their scheme, the
secondary node acting as the FC interacts with its cooperating
neighbors and observes the PU’s activity. Furthermore, the FC
determines sensing results from its neighbors and learns the
behaviors of secondary nodes and PUs. Based on learning
information, the FC finds the optimal set of cooperating
neighbors with the minimum control traffic and minimizes
the overall sensing delay. In [34], the authors proposed a
centralized cooperative spectrum sensing technique based on
sensing delay and spectrum utilization. They proposed a new
metric that describes the sensing performance in terms of
sensing delay and spectrum utilization. Based on local sensing
results, an FC calculates the optimal number of secondary
nodes and local sensing time that can maximize the metric.
In [40], the authors considered the optimal combined rule
in a centralized cooperative sensing scheme. For a given
false alarm probability, they determined the optimal decision
threshold that can maximize the expected transmission time
while minimizing the interference with PUs.

Unlike the centralized cooperative sensing approaches, dis-
tributed cooperative sensing does not rely on an FC for
the cooperative decision. In distributed cooperative sensing,
each secondary node individually performs local sensing and
shares sensing results with other secondary nodes. Based
on the shared information, they determine the presence or
absence of PUs and efficient sensing parameters. This dis-
tributed scheme may require several iterations to reach a
unanimous cooperative decision. In [19], the authors proposed
a distributed sensing algorithm based on evolutionary/coalition
games. In their scheme, each secondary node decides whether
to participate in sepctrum sensing or do nothing to save its
own energy. Each secondary node selects its action based
on its utility history and chooses the strategy that yield the
highest utility. Further, secondary nodes sense the channel that
carries the most amount of information in order to reduce
the uncertainty of the channel status. In [9], the authors
proposed an adaptive sensing period optimization scheme for
cognitive radio networks based on a genetic algorithm. They
aimed to maximize spectrum opportunities as well as minimize
the sensing overhead for secondary nodes. In their scheme,
the genetic algorithm was used to update the sensing period
during each sensing operation. In [14], the authors proposed
a cooperative sensing technique based on a greedy heuristic
algorithm. In order to reduce the energy consumption for
sensing, they attempted to optimize the sensing schedule.
In their scheme, each secondary node broadcasts its sensing
schedule. If another secondary node receives this information,
it determines an optimal sensing schedule by using a greedy
heuristic algorithm to reduce the time complexity.

The aforementioned mechanisms attempt to find optimal
sensing parameters in a centralized or distributed manner.
However, they cannot account for the PU’s direction since
all secondary nodes perform spectrum sensing with an omni-
directional antenna. If each secondary node performs spectrum
sensing using a directional antenna, it can increase the accu-
racy of the PU location (fine-grained sensing) with a reduced
amount of energy for sensing. By exploiting cooperative
sensing, the location information of PUs can be shared among
secondary nodes to significantly reduce sensing overhead.
There have been a number of studies on directional cognitive
radio networks [20], [21], [23], [25], [30], [33], [43] that focus
on communication among secondary nodes [20], [30], [33];
the reduction of PU localization error [23], [43] or the design
of the directional antenna for cognitive radio networks [21],
[25]. However, these types of studies are not applicable to our
scenario since we are targeting a spectrum sensing technique
with optimized sensing parameters.

Owing to the merits of directional sensing, in the present
study, we exploit a directional antenna to sense the spec-
trum for secondary nodes. Using a directional antenna, we
maximize the detection probability while reducing energy
consumption for spectrum sensing. Moreover, our scheme can
determine optimal sensing parameters, including the sensing
period, sensing power, and sensing beams.

III. BASIC ASSUMPTIONS
A. Antenna Model

PUs are assumed to be equipped with an omni directional
array based on multiple quasi-omni directional antennas and
they communicate omni-directionally [22]2. We assume that
each secondary node including the FC is equipped with a
directional antenna, and the antenna is based on a switched
beam system with M beam patterns. The secondary node
has a single transceiver for the associated directional antenna
sector. Furthermore, the PU signal can be detected on the
side lobes and thus secondary nodes may cause inaccuracy
in determining the direction of the PU. To take this into
consideration, we introduce the probability of miss detection
and false alarm. Sectors can be used to realize an omni-
directional reception function by receiving information from
all sectors simultaneously or they can be individually switched
for a specific direction. An antenna controller is assumed and
to keep track of the direction from which the maximum signal
power is received. It then informs the higher layers about the
sector of the received signal. Switching within the antenna
controller can be achieved by using very fast analog CMOS
multiplexers/demultiplexers, which have a transition time less
than 217 ns and less than the signal propagation delay [2].
Therefore, the short inter-frame space (SIFS) defined in the
802.11 standard is long enough for an antenna to be switched
between transmitting and receiving modes.

B. Primary User Detection
For primary user detection, several schemes, including

matched filter, feature detection, and energy detection, gen-
erally have been used [3]. In our scheme, we assume that sec-
ondary users exploit an energy detection scheme to minimize
hardware cost. However, this does not imply that our scheme
excludes the use of any other detection scheme for the PU.
In energy detection, the ith secondary node SNi senses the
presence/absence of PUs based on the energy of the received
signal. The received signal is squared and integrated over
the observation interval. Finally, the output of the integrator
divided by noise power (SNR) is compared with a certain
threshold (or PU detection sensitivity) to decide if a PU
is present. In other words, if the SNR is higher than the
PU detection sensitivity, SNi decides that a primary user is
present [3]. Without loss of generality, an energy detection
scheme can generate a miss detection since it is susceptible
to uncertainty in noise power. In our scheme, we introduce
a PU detection margin Ri, which is defined by the SNR
at which a secondary node should alert the primary signal.
Therefore, Ri is set to be less than the PU detection sensitivity
to accommodate the miss detection probability. For the above
reason, we use Ri instead of the PU detection sensitivity in
our scheme. Moreover, in the directional sensing scheme, the
secondary user can detect the PU signal from more than 2
directions. In this case, the secondary user determines the
direction that receives the largest SNR level.

C. Data and Control Channels
In the proposed scheme, we assume that the spectrum of

interest is divided into K data channels that are licensed
to PUs. To communicate using a data channel, we assume
SNi performs channel sensing during its sensing time for
one of K channels to identify any spectrum hole. Let Ci
(Ci ∈ {0, 1, · · · ,K − 1}) represent the channel index to be
sensed for SNi.

In the proposed scheme, we also assume an underlay
control channel that uses the entire frequency band (i.e., K
channels). The implementation of the underlay control channel
for cognitive radio networks has been validated by [38] 3.

With the underlay control channel, secondary nodes can
report their sensing results to the FC. The sensing results

2We assumed that the proposed technique operates in the mmWave band.
3In [38], the underlay control channel is implemented assuming an omni-

directional antenna. In our scheme, this is valid since it is possible to operate
in the omnidirectional mode by using all the beams of the switched beam
antenna.



Fig. 1. Example for clustering based on the number of beams of the FC
(SN1–SN3, SN4–SN5, SN6–SN7, and SN8–SN9 are deployed in clusters 0,
1, 2, and 3, respectively).

include the presence (or absence) of a PU in the channel
(Ci) and the direction of the sensed PU. Additionally, the
FC can disseminate a command, including optimized sensing
parameters, through the underlay channel. However, to remain
invisible to the PUs, the transmit power of the underlay
channel should be at a level comparable to the noise.

D. Cluster-based Sensing
In the proposed scheme, FC forms multiple clusters, where

each cluster corresponds to an FC beam direction, as shown
in Fig. 1. The rationale behind the cluster being formed by
the FC’s beam direction is that some secondary nodes are not
located in the FC transmission range, such as SN2, SN3, SN5,
SN7, and SN9 in Fig. 1, and can have connections from the
FC through multi-hop links. Sensing tasks can be assigned to
each cluster to achieve diversity.

The spectrum sensing function may necessitate quiet periods
in the neighborhood of the secondary nodes. If a secondary
node SNi transmits while another secondary node SNj per-
forms spectrum sensing over the same channel, SNj decides
that at least one PU is present in the channel. This causes a
false alarm in SNj . To provide an appropriate quiet period, we
assume that all secondary nodes in the same cluster sense the
same channel (e.g., Ci) at the same time for the same amount
of time (sensing time denoted by ts).4 For this reason, nodes
are synchronized by the FC.

FC maintains an SNR table and a connectivity matrix for
each cluster. The SNR table stores the detected SNR values
of PUs for each channel and node. Therefore, the SNR table
forms a three-dimensional matrix in terms of SNi’s, beam
indices, and channel indices. The connectivity matrix shows
how all secondary nodes are connected to each other in a
cluster. To establish the connectivity matrix, each secondary
node maintains a local connectivity matrix, which obtains the
beam indices at which neighboring nodes are located (referred
to as connectivity information) by overhearing data frames
during the transmission phase. Then, they are transmitted to
the FC, which can create the connectivity matrix.

If a secondary node is located far from the FC, we assume
that the connectivity information and SNR values of the node
are conveyed over multi-hop links. The FC then determines
the global spectrum status.

Secondary nodes update their connectivity information
when their neighbor nodes transmit connectivity information
as well as the SNR value. The FC also updates the SNR

4ts is the minimum sensing time to detect any PU using the energy detection
scheme.

Fig. 2. Benefits of a directional cooperative sensing scheme.

table and connectivity matrix when it receives connectivity
information.

IV. COOPERATIVE DIRECTIONAL SENSING
A. Benefits of Cooperative Directional Sensing

As mentioned above, most previous spectrum sensing tech-
niques cannot find the orientation (or direction) of the sensed
PU since they use an omni-directional antenna. However, the
directional sensing technique determines the beam index at
which the sensed PU is located, and thus fine-grained sensing
is possible. Moreover, the directional technique has a longer
sensing range for the same amount of energy and lower energy
consumption for the same sensing range [2].

To facilitate the understanding of how directional coopera-
tive sensing has benefits over its non-cooperative counterpart,
we show an example in Fig. 2. Since secondary nodes do not
coordinate (or share) sensing tasks in non-cooperative direc-
tional sensing, some areas may be unnecessarily sensed by
multiple secondary nodes at the same time (energy wastage).
For instance, SN1, SN2, and SN3 in Fig. 2 (a) sense the
same area in non-cooperative directional sensing. However,
secondary nodes in cooperative directional sensing can avoid
the above problem since secondary nodes coordinate sensing
tasks. In the cooperative counterpart, the FC allocates the
sensing tasks of SNis in such a manner that they sense non-
overlapping areas to cover a wider sensing range, thereby
reducing the energy consumption, as shown in Fig. 2 (b).
Therefore, cooperative sensing can reduce energy consump-
tion and produce faster sensing results compared with non-
cooperative sensing.

In summary, the cooperative directional sensing technique
has the followings benefits: (1) it enables fine-grained sensing
for PUs to realize high location accuracy, (2) it realizes more
efficient (in terms of energy and latency) cooperative spectrum
sensing among secondary nodes, and (3) it has a longer sensing
range for the same energy budget.

B. Proposed Direction Sensing Scheme
In this section, we introduce our proposed cooperative

directional sensing technique. In the proposed scheme, each
secondary node SNi except the FC senses a specific spectrum
(sensing channel Ci) using its sensing beam Bi and power
(sensing range Ri) in its sensing period Ti

5. These sensing
parameters (Ci, Bi, Ri, and Ti) for secondary nodes are
assigned by the FC using the optimization scheme described
in Section V.

Algorithm 1 shows the pseudo code of a non-FC node for
our proposed cooperative sensing scheme. Let Ti, Ri, Ci,
and Bi denote the length of the sensing period, PU detec-
tion margin, and set of sensing beams for SNi, respectively.
Furthermore, Lr and ts denote the length of the report phase
and sensing time, respectively. We assume that a secondary

5In Ti, SNi performs only one sensing action.



(a) Cluster 0 is in the sensing phase, and cluster 1 is in the transmission
phase.

(b) Cluster 0 is in the report phase, and cluster 1 is in the sensing phase.

(c) Cluster 0 is in the transmission phase, and cluster 1 is in the report phase. (d) Cluster 0 is in the next sensing phase, and cluster 1 is in the transmission
phase.

Fig. 3. Example of the proposed directional cooperative sensing.

node has three types of phases: sensing phase, report phase,
and transmission phase6 7. In each phase, the secondary node
performs the corresponding actions for each phase with time
t.

When 0 ≤ t ≤ ts, SNi is in the sensing phase (line 12).
In the sensing phase, the secondary node performs spectrum
sensing during sensing time ts. SNi observes channel Ci with
PU detection margin Ri and a set of sensing beams Bi (line
13). γji (Ci) is the SNR of PU(s) measured at the jth beam of
SNi with channel Ci. If the signal power received by SNi is
greater than Ri, SNi determines that at least one PU is present
(line 14). Then, SNi finds the beam index (direction of the PU)
at which the PU is located (line 15).

When ts ≤ t ≤ ts+Lr (line 17), SNi is in the report phase.
SNi transmits a report frame to the FC containing sensing
results and receives a command frame from the FC (lines 18–
19) in the report phase. If SNi is not located in a 1-hop range
from the FC, the SNi uses a routing algorithm to communicate
with the FC. The routing algorithm is beyond the scope of
this paper, but relevant material has been studied in [31] and
[29] as well as our own previous paper [28]. After receiving a
command frame, SNi blocks the beams with the PU and the
beams are indicated in the received command frame during
the transmission phase (line 20).

After the sensing phase and report phase, SNi is in the trans-
mission phase until Ti (line 21). SNi transmits or receives data
frames to/from other nodes using unblocked beams (line 22).8
At the end of the transmission phase (line 23), SNi updates
Ti, Ri, Bi, and Ci from the command frame received during
the report phase (line 24). Note that Ci remains unchanged
for κ sensing periods to reflect the time-varying channel

6Note that a secondary node in the report/transmission phase should vacate
the channel within a predefined time similarly in [1] when a PU appears on
the channel.

7In the transmission phase, the secondary nodes perform fast sensing before
transmitting data (or periodically). Fast sensing checks if there is a PU signal
within a short time and stops the transmission if a PU signal is detected during
that time.

8Since the SNs located on boundaries of their cluster interfere with other
clusters, we assume that SNi avoids transmitting over the channels used
in adjacent clusters. The channel used in adjacent clusters can be easily
calculated. More detailed information is described in subsection V-D

Algorithm 1 Cooperative Directional Sensing (Non-FC
Nodes)

1: Ti : Length of the sensing period for SNi;
2: Ri : PU detection margin for SNi;
3: Ci : Sensing channel for SNi;
4: Bi : Set of sensing beams for SNi;
5: Lr : Length of report phase;
6: ts : Spectrum sensing time;
7: t : Timer;
8: γji (Ci) : The SNR of PU(s) measured at the jth beam of SNi with Ci;
9: t := 0;

10: loop
11: if 0 ≤ t ≤ ts then {// Sensing phase}
12: SNi senses Ci using Ri and Bi;
13: if ∃γji (Ci) ≥ Ri then {// SNi detects at least one PU}
14: Find the beam index at which the PU(s) is located
15: end if
16: else if ts ≤ t ≤ ts + Lr then {// Report phase}
17: Transmit report frame to the FC over the control channel;
18: Receive command frame from the FC over the control channel;
19: Block the beams that the PU(s) is located and the beams indicated

in the command frame
20: else if ts + Lr ≤ t < Ti then {// Transmission phase}
21: Transmit or Receive data frames;
22: else if t = Ti then {// The end of the transmission phase}
23: Update Ti, Ri, Bi, and Ci from command frame;
24: Unblock whole blocked beams;
25: t := 0;
26: end if
27: end loop

environment. This is addressed in detail in subsection V-D.
SNi unblocks whole blocked beams and resets its timer t to
0 (lines 25 – 26).

The FC collects report frames from SNis and calculates the
optimized sensing parameters using the nonlinear optimization
technique to maximize the PU detection probability. It also
selects beams to be blocked from sensing results based on the
connectivity matrix. Information on beams to be blocked are
contained in the command frame. The FC disseminates the
command frames to all SNis over the control channel.



Fig. 3 shows an example of the proposed directional sensing
scheme. In this figure, we assume that there are 5 secondary
nodes (FC, SN1-SN4) and 2 primary users (PU0 and PU1) in
a given network topology. SN1 and SN2 belong to cluster 0,
and SN3 and SN4 belong to cluster 1.

In Fig. 3(a), cluster 0 starts a new sensing period and is in
the sensing phase with sensing parameters allocated in the
previous sensing period from the FC. PU0 is present over
channel 0 before the sensing period. SN1 and SN2 perform
spectrum sensing over channel 0, and SN2 detects PU0 using
beam 0. Note that SN1 and SN2 cannot transmit a frame in
ts owing to the quiet period. Cluster 1 is in the transmission
phase. SN3 and SN4 communicate data frames.

In Fig. 3(b), cluster 0 is in the report phase. SN1 and SN2
then transmit a report frame containing their sensing results to
the FC and receive a command frame including new sensing
parameters and beams to be blocked from the FC. At the end of
the report phase, SN2 blocks beam 0 at which PU0 is located.
PU1 begins existing in the area of cluster 1 over channel 1 just
before the sensing phase. The SNis in cluster 1 are allocated
according to the current sensing parameters from the FC in
the previous sensing period. The SNis from cluster 1 perform
sensing over channel 1. SN4 detects PU1 in the direction of
beam 0.

In Fig. 3(c), cluster 0 is in the transmission phase when SN1
and SN2 communicate data frames, except beam 0 of SN2. At
the end of the transmission phase, SN1 and SN2 update the
sensing parameters for the next sensing periods. The sensing
parameters are contained in the command frame received in
the report phase (Fig. 3(b)). Cluster 1 is in the report phase. In
the report phase, SN3 and SN4 transmit report frames to the
FC. The FC is aware that PU1 is in the range of beam 0 of SN4,
and the range of beam 0 overlaps with beam 2 of SN3 from
the connectivity matrix of cluster 1. Therefore, the FC inserts
information to block beam 2 into its command frame for SN3
and disseminates command frames to all SNis in cluster 1.
Then, SN3 and SN4 block beams 2 and 0, respectively, as
shown in Fig. 3(d).

In Fig. 3(d), cluster 0 starts the next sensing period with the
parameters updated in the previous sensing period. SN2 detects
PU0 using beam 0 again. Cluster 1 is in the transmission
period.

C. Discussion of Multi-hop Routing

In this subsction, we discuss the multi-hop routing scheme
for the report phase. As mentioned in subsection III-D, the
secondary node, which is located outside the range of the FC,
uses a multi-hop routing scheme to transmit (or receive) report
(or command) frames within the report phase. For this, we
assume that we use an emergency routing algorithm that is
very sensitive to QoS and has a very low routing latency.

Additionally, if there are no relaying nodes in the same
cluster, SNi cannot report within the report phase. In this
case, the SNis located in adjacent clusters can function as
a relaying node. However, they might be in the report phase
or transmission phase, i.e., they may not be able to relay
the report frame. To resolve this problem, we assume that
each secondary node has two MAC units: one is used for the
data channel and the another is used for the control channel.
Therefore, the node can relay the report frame (or command
frame) through the control channel even if the node is in the
transmission phase or sensing phase [26].

V. OPTIMIZATION OF SENSING PARAMETER

In order to maximize the efficiency of our cooperative
spectrum sensing, we optimize the sensing period (Ti), PU
detection margin (Ri), channel to sense (Ci), and a set
of beams to sense (Bi) for each secondary node using an
objective function. Bi can be further described by Bi=[b0i ,
b1i , b2i , . . ., bM−1

i ]T , where bji is 1 if the jth beam of SNi is
used for sensing; otherwise, bji is 0. Let N denote the number
of secondary nodes in the same cluster. Then, N × 1 vectors

of the sensing period, PU detection margin, and channel to
sense for the secondary nodes are defined by

T = [T0, T1, T2, . . . , TN−1]
T
, (1)

R = [R0, R1, R2, . . . , RN−1]
T
, (2)

C = [C0, C1, C2, . . . , CN−1]
T
, (3)

respectively, and an N × M matrix of the set of beams to
sense is defined by

B = [B0, B1, B2, . . . BN−1]
T
, (4)

where Bi =
[
b0i , b

1
i , . . . , b

M−1
i

]
.

Our goal is to find an optimum quadruple (T ∗, R∗, C∗,B∗)
with an optimization problem defined as

min
T ,R,C,B

α (1−Ψ(T ,R,C,B)) + βΦ(T ,R,C,B) (5)

s.t α+ β = 1, α, β ∈ [0, 1], (6)
if Ci = Cj , then Ti = Tj , (7)
Ti > ts + Lr, (8)
Ri > 0, (9)
∀bji ∈ {0, 1}, (10)

where Ψ(T ,R,C,B) and Φ(T ,R,C,B) denote the PU detec-
tion probability and the sensing overhead in terms of T ,R,C,
and B, respectively. Φ(T ,R,C,B) and Ψ(T ,R,C,B) are
explained in Sections V-A and V-B, respectively.

A. Analysis of PU Detection Probability
To find the optimum sensing parameters, we cal-

culate the PU detection probability Ψ(T ,R,C,B). Let
Ψi(Ti, Ri, Ci, Bi) denote the probability that SNi can find at
least one PU with Ti, Ri, Ci, and Bi. We assume that SNi and
SNj independently sense the white space, where i 6= j,∀i, j.
Then, Ψ(T ,R,C,B) can be calculated as follows:

Ψ(T ,R,C,B) = P ( At least one SNi detect any PU)

= 1− P (N nodes cannot find any PU)

= 1−
N−1∏
i=0

{1−Ψi(Ti, Ri, Ci, Bi)} . (11)

From the viewpoint of a single secondary node, i.e., SNi,
the ON-OFF alternating process of a single PU superimposed
by ON-OFF processes of the other PUs can be observed
as another single merged ON-OFF process, where the ON
state indicates that the SNR of the aggregated PU signal is
greater than Ri and the OFF state shows otherwise. Therefore,
Ψi(Ti, Ri, Ci, Bi) can be formulated using the following two
hypotheses related to the merged PU signal. The hypotheses
are defined as

Hi
0 :A PU is absent from the viewpoint of SNi (12)

Hi
1 :A PU is present from the viewpoint of SNi. (13)

Let D denote the total duration in which the PU detection
probability is to be computed. Fig. 4 shows the timeline of the
sensing task. There are

⌊
D
Ti

⌋
9 sensing periods during D. We

assume that D should be greater than Ti (Ti is greater than ts)
in order to calculate the PU detection probability. Let Ψi(χi)
denote the probability that SNi detects PU at least once for
time duration D, where χi is a set of variables Ti, Ri, Ci,
and Bi. Then, Ψi(χi) is given by

Ψi (χi) = PS(Bi, Ci)

1−

⌊
D
Ti

⌋
−1∏

j=0

(1− P i,jD (Ti, Ri))


(14)

where PS(Bi, Ci) and P i,jD (Ti, Ri) denote the probability that
SNi tries to sense a PU using Bi on the channel Ci and SNi

9
⌊

D
Ti

⌋
is equal to κ, introduced in Section IV-B.



makes a PU detection during the jth sensing period when it
selects Ti and Ri, respectively.

We assume that PUs are deployed uniformly and the SU’s
beam patterns have the same sensing range and are ideally
non-overlapping. Therefore, PS(Bi, Ci) is calculated as fol-
lows:

PS(Bi, Ci) =
The number of beams to sense

The number of entire beams
=

∑M−1
j=0 bji
M

.

(15)

The probability P i,jD (Ti, Ri) is given by

P i,jD (Ti, Ri) =

[
P
(
γi,j ≥ Ri Hi

0

)
PTi
j (Hi

0)

+ P
(
γi,j ≥ Ri Hi

1

)
PTi
j (Hi

1)

]
, (16)

where PTi
j (Hi

0) and PTi
j (Hi

1) denote the probability of Hi
0

and Hi
1 during the jth sensing period when SNi selects the

sensing period as Ti, respectively. Furthermore, γi,j denotes
the SNR measured by SNi at the jth sensing period.

Now, we consider the PU detection probability under hy-
pothesis Hi

0. The detection probability under Hi
0 is equal to

the false alarm probability. Therefore, the detection probability
under Hi

0 is given by [15]

P
(
SNi detects a PU Hi

0

)
= P if (Ri) =

Γ
(
u, Ri

2

)
Γ(u)

, (17)

where P if (·) denotes the false alarm probability, u is the time-
bandwidth product, Γ(·) is the gamma function, and Γ(·, ·) is
the incomplete gamma function10.

The detection of at least one PU under hypothesis
Hi

1 is interpreted to imply that no miss detection occur.
P (SNi detects a PU Hi

1) is given by [15]
P
(
SNi detects a PU Hi

1

)
= 1− P im(Ri, Ci, Bi) = Qu

(√
2γji (Ci),

√
Ri

)
, (18)

where P im(·, ·, ·) and Qu(·, ·) are the SNi’s miss detection
probability and the generalized Marcum Q function, respec-
tively.

In order to detect a PU, it should appear during the (j−1)th
sensing period and disappear after the jth sensing phase since
we assumed that at least a sensing time ts is required to detect
a PU. We denote the time a PU appears by ta (PU arrival time)
and the time a PU disappears as td (PU departure time). The
time duration for which a PU exists is denoted as ton (i.e.,
td = ton + ta).

10the false alarm probability is calculated over the additive white Gaussian
noise (AWGN) channel

Therefore, PTi
j (Hi

1) is calculated as

PTi
j (Hi

1) = P

(
A PU appears in(j − 1)Ti to jTi

and disappears after jTi + ts

)
= P (ta ≤ jTi ∩ td > jTi + ts ta > (j − 1)Ti)

= P (ta ≤ jTi ∩ ton > jTi + ts − ta ta > (j − 1)Ti)

= P (ton > jTi + ts − ta (j − 1)Ti < ta ≤ jTi)P (ta ≤ jTi)

=

∫ jTi

(j−1)Ti

{1− Fon (jTi + ts − x)} fta (x) dxFta(jTi),

(19)
where fta , Fta , and Fon denote the pdf of ta, CDF of ta,

and CDF of the ON duration, respectively.
PTi
j (Hi

0) is the probability that SNi does not find a PU
during the jth sensing period. PTi

j (Hi
0) is naturally caculated

from (19) as follows:
PTi
j (Hi

0) = 1− PTi
j (Hi

1). (20)

Thus, P i,jD (Ti, Ri) is calculated as (21) from (17), (18), (19),
and (20). As a result, Ψi(Ti, Ri, Ci, Bi), which is derived from
(15) and (21), can be given by (22).

B. Analysis of the Sensing Overhead

In this subsection, we analyze the sensing overhead
Φ(T ,R,C,B). Φ(T ,R,C,B) is defined as

Φ(T ,R,C,B) =
∑

z∈{s,r,f,c,u}

$z ·Oz(T ,R,C,B) (23)

where Oz(T ,R,C,B) and $z denote the overhead
due to spectrum sensing and weight factor, respectively.
Or(T ,R,C,B) denotes the overhead due to transmission
of sensing results and reception of sensing parameters.
Of (T ,R,C,B) denotes unused opportunity due to false
alarms. Oc(T ,R,C,B) denotes unused opportunity due
to incorrect information provided by the other cooperating
secondary nodes in a cluster, and Ou(T ,R,C,B) denotes
unused opportunity due to beam blocking for PU detection
(we hereafter use Oz instead of Oz(T ,R,C,B)).

When a secondary node performs sensing, SNi loses trans-
mission opportunities during the quiet period. SNi has to be
quiet without transmission to detect PUs during the sensing
phase even though PUs are absent. SNi also consumes its
energy during these phases owing to sensing. Therefore, the
sensing phase itself is sensing overhead, Os, given by

Os =

N−1∑
i=0

⌊
D

Ti

⌋
ts. (24)

SNi also loses transmission opportunities to transmit sens-
ing results and to receive sensing parameters. Hence, the report
phase itself is a report overhead, Or, given by

Or =
N−1∑
i=0

⌊
D

Ti

⌋
Lr. (25)

P i,j
D (Ti, Ri) =

Γ
(
u, Ri

2

)
Γ(u)

[
1−

∫ jTi

(j−1)Ti

{1− Fon (jTi + ts − x)} fta (x) dxFta(jTi)

]

+Qu

(√
2γj

i (Ci),
√
Ri

)∫ jTi

(j−1)Ti

{1− Fon (jTi + ts − x)} fta (x) dxFta(jTi) (21)

Ψi(Ti, Ri, Ci, Bi) =

∑M−1
j=0 bji
M

1−

⌊
D
Ti

⌋
−1∏

j=0

1−

Γ
(
u,

Ri
2

)
Γ(u)

{
1−

∫ jTi

(j−1)Ti
{1− Fon (jTi + ts − x)} fta (x) dxFta(jTi)

}
+Qu

(√
2γj

i (Ci),
√
Ri

)∫ jTi

(j−1)Ti
{1− Fon (jTi + ts − x)} fta (x) dxFta(jTi)





(22)



Fig. 4. Timeline of the sensing tasks.

Before defining Of , Oc and Ou, we consider the following.
First, we consider the PU status. The probability that a PU is
absent is given as

PPUabsent = P (PU is absent) =
E[OFF ]

E[ON ] + E[OFF ]

=

∫∞
0
tfoff (t)dt∫∞

0
tfon(t)dt+

∫∞
0
tfoff (t)dt

(26)

where foff (·) and fon(·) are pdfs of the OFF duration and
ON duration, respectively. Similar to (26), the probability that
a PU is present is derived as

PPUpresent = P (PU is present) =
E[ON ]

E[ON ] + E[OFF ]

=

∫∞
0
tfon(t)dt∫∞

0
tfon(t)dt+

∫∞
0
tfoff (t)dt

. (27)

Next, we consider the fraction of unused time. µ(c, t) is
introduced to denote the average fraction of the OFF duration
during t on channel c.

In our scheme, SNi blocks a beam where at least one PU
is detected to avoid interference with the PU. However, this
operation is unnecessary if a false alarm occurs, in which case
SNi loses the transmission opportunity due to false alarms.
Of is the unused opportunity (unused time fraction) during
the transmission phase resulting from unused beams due to
false alarms. Fig. 5(c) depicts an example of Of . Therefore,
Of can be calculated as

Of =

N−1∑
i=0

[
µ(Ci, T̃i)P

PU
absent

M−1∑
k=0

bki P
i
f (Ri)

M

⌊
D

Ti

⌋]

=

N−1∑
i=0

µ(Ci, T̃i)P
PU
absent

M−1∑
k=0

bki
Γ(u,Ri

2 )
Γ(u)

M

⌊
D

Ti

⌋ , (28)

where T̃i denotes the length of the transmission phase (T̃i =
Ti− ts−Lr). Here, (28) considers only beams in the sensing
operation. Beams that are not engaged in sensing will be
reflected in Oc.

FC collects sensing results from and sends sensing param-
eters (including Bis) to SNis. The SNis then block all beams,
including the beams with false alarms, such that bki = 0. Oc is
the unused opportunity during the transmission phase resulting
from the unused beams due to false alarms from cooperating
nodes. Fig. 5(d) describes an example of Oc. Therefore, Oc
can be calculated as (29). |·| denotes the absolute value, and
Nk
i is the number of cooperating nodes of SNi on beam k of

SNi.
If SNi detects at least one PU or receives PU information

from the FC, it blocks the corresponding beams. Even though
PUs disappear during the transmission phase, SNi still blocks
the beam until the end of the sensing period. Ou denotes
the unused time fraction during the transmission phase after
PUs are detected. An example of this unused opportunity is
described in Fig. 5(e). Therefore, Ou can be calculated as (30).

From (23), (24), (25), (28), (29), and (30), Φ(T ,R,C,B)
is calculated as (31) where $z = 1/(5· max(Oz)). Since (31)
is the summation of sensing overhead of each SNi, (31) is

decomposed as

Φ(T ,R,C,B) =
1

N
·
N−1∑
i=0

Φi(T ,R,C,B), (32)

where Φi(T ,R,C,B) denotes the sensing overhead of SNi.

C. Optimization of T and R
In this subsection, we determine T ∗ and R∗ from the

optimization problem in (5) using a nonlinear optimization
technique. We will solve this problem by the trust region
method [41]. However, to obtain insight into how our opti-
mization process is achieved, we introduce some reasonable
approximations and assumptions [8], [13], [17], [34].

1) Problem Reduction: First, for a smooth approximation,
to the term

⌊
D
Ti

⌋
is approximated as⌊

D

Ti

⌋
≈ D

Ti
. (33)

The gap of values between the orginal one and the approxi-
mated one is below 0.1% in the objective function. Hereafter,
we denote the approximated

⌊
D
Ti

⌋
by D̃

Ti
.

We assume ton and ta follow an exponential distribution
with rate parameters λon and λa, respectively [8], [13],
[17], [34]. From the memoryless property of the exponential
distribution, (19) is rewritten as

Pj(H
i
1) = P (ta ≤ jTi ∩ td > jTi + ts|ta > (j − 1)Ti)

= P (ta ≤ Ti ∩ td > Ti + ts). (34)
From (34), we observe that Pj(Hi

1) is independent of j. Then,
Pj(H

i
1) = P ′j(H

i
1), ∀j 6= j′. This implies that the Pj(Hi

0)s
are also the same for every j. Pj(Hi

1) and Pj(Hi
0) are assumed

to be constant. P if (Ri) and P im(Ri, Ci, Bi) are assumed to be
fixed, as in subsection V-A. Therefore,

P i,jD = P i,j
′

D , ∀j = j′. (35)
From the assumption, (11) is rewritten as

Ψi(χi) =

∑M−1
j=0 (bji )

M

{
1−

(
1− P i,jD

) D̃
Ti

}
. (36)

(18) is too complicated to calculate for the modified Bessel
function in the Marcum Q function. Thus, the modified Bessel
function is approximated as

Iα(x) ≈ ex√
2πx

, (37)

for x � α. In the case of α = 1, the error between the
original function and the approximation is below 5% when
x > 15. The errors from (33) and (37) are sufficiently small
and negligible.

In subsection V-B, we introduced µ(c, t) to denote the
average fraction of the OFF duration. The OFF duration on
channel c is assumed to be distributed exponentially with a
rate parameter λoff |c. Then, µ(c, t) is given as [17, (3)]

µ(c, t) =
1

λoff |c

{
1− 1− e−λoff|ct

λoff |ct

}
. (38)

The dimensionality for the domain of the T and R opti-
mization problem is 2N (N Tis and N Ris). A constraint (7)
is interpreted as implying that all Ti have to be the same when
in the same cluster (due to the quiet period). Under fixed C∗
and B∗, T can be substituted by a scalar variable τ . Then, the
objective function (5) is rewritten with respect to τ and R as
f (τ,R) = α {1−Ψ (τ,R,C∗,B∗)}+ βΦ (τ,R,C∗,B∗)

= αΨ
∗

(τ,R) + βΦ∗ (τ,R) , (39)
where Ψ

∗
(·) denotes 1−Ψ(·). The new dimensionality of the

problem is N + 1 (almost half of the original one).
In our objective function, we observe that Φ∗ (τ,R) (here-

after Φ
∗
) dominates in finding an optimal point since the range



(a) Unused opportunity due to sensing (Os) (b) Unused opportunity due to report phase (Or)

(c) Unused opportunity due to false alarm (Of ) (d) Unused opportunity due to cooperative sensing (Oc)

(e) Unused opportunity due to PU detection (Ou)

Fig. 5. Examples for timelines of each Oz .

of Ψ
∗

is smaller than the range of Φ
∗11. To solve the above

problem, α and β from (39) should have values that balance
between the ranges of Ψ

∗
and Φ∗. We use two variables

∆Ψ
∗

= max Ψ
∗ −min Ψ

∗
, (40)

∆Φ∗ = max Φ∗ −min Φ∗. (41)
It is clear that the ranges of 1

∆Ψ
∗Ψ
∗

and 1
∆ΦΦ∗ are identical.

Therefore, we propose α and β as

α =
∆Φ∗

∆Ψ
∗

+ ∆Φ∗
, (42)

β =
∆Ψ

∗

∆Ψ
∗

+ ∆Φ∗
(43)

where (42) and (43) satisfy (6).
From the above approximations and assumptions, we can

show our problem has a global optimal point X , which is an
N + 1-component vector, defined as

X = [τ,R0, R1, · · · , RN−1]
T
, (44)

where X replaces τ and R.
τ includes the length of the sensing phase, the report phase,

and the transmission phase (Ti). The transmission phase is
essential since a CRN needs to communicate. However, there
is no length for the transmission phase in (8). SNi uses an
energy detector for spectrum sensing. A spectrum sensing
result (energy) is always larger than 0 for noise. Therefore,
the ranges of τ and Ris are redefined as

τ ∈ [ts + Lr + εT , Tmax] , (45)
Ri ∈ [εR, Rmax] , (46)

11The ranges of both Φ
∗ and Ψ

∗ are 0 to 1. However, Ψ
∗ is very small

because it denotes the probability that all SUs will not find any PUs.

where εT and εR are sufficiently small positive constants.

Theorem 1. The objective function f(X) is a convex function.

Proof. See Appendix ??. �

Karush-Khun-Tucker (KKT) conditions can be used to find
the optimality of our optimization problem. Note that KKT
conditions are necessary conditions of optimality for nonlinear
optimization [46]. The Lagrange function for the objective
function thus becomes

L(X,Ξ) =

f(X) + ξ1 (−τ + ts + Lr + εT ) + ξ2(τ − Tmax) (47)

+

N−1∑
i=0

[ξ2i+3(−Ri + εR) + ξ2i+4(Ri −Rmax)] ,

where ξi(i = 1, 2, . . . , 2N+2) denotes a Lagrange multiplier.
The KKT conditions of our objective problem are given by

[46]
ts + Lr + εT ≤τ∗ ≤ Tmax, (48)

εR ≤R∗i ≤ Rmax,∀Ri (49)
ξd ≥ 0,∀ξd (50)

ξ1 (−τ∗ + ts + Lr + εT ) = 0, (51)
ξ2(τ∗ − Tmax) = 0, (52)

ξ2i+3(−R∗i + εR) = 0,∀i, (53)
ξ2i+4(R∗i −Rmax) = 0,∀i, (54)

5XL(X∗,Ξ) = 0, (55)
where 5X is the derivative with respect to X , X∗ is the
optimal X and Ξ = [ξ1, ξ2, · · · , ξ2N+2]T .

From (47), the Lagrange form of our objective function is
a constrained problem. Therefore, the optimization problem

Oc =

N−1∑
i=0

µ(Ci, T̃i)P
PU
absent

M−1∑
k=0

∣∣1− bki ∣∣ {1−
(
1− P i

f (Ri)
)Nk

i

}
M

⌊
D

Ti

⌋

=

N−1∑
i=0

µ(Ci, T̃i)P
PU
absent

M−1∑
k=0

∣∣1− bki ∣∣
{

1−
(

1−
Γ
(
u,

Ri
2

)
Γ(u)

)Nk
i
}

M

⌊
D

Ti

⌋
 , (29)



Ou =

N−1∑
i=0

[
µ(Ci, T̃i)P

PU
present

M−1∑
k=0

[
bki {1− P i

m(Ri, Ci, Bi)}+
∣∣1− bki ∣∣ {1− P i

m(Ri, Ci, Bi)
Nk

i }
M

]⌊
D

Ti

⌋]
(30)

=

N−1∑
i=0

µ(Ci, T̃i)P
PU
present

M−1∑
k=0


bkiQu

(√
2γj

i (Ci),
√
Ri

)
+
∣∣1− bki ∣∣

{
1−

{
1−Qu

(√
2γj

i (Ci),
√
Ri

)}Nk
i

}
M


⌊
D

Ti

⌋
Φ(T ,R,C,B) = $s

N−1∑
i=0

⌊
D

Ti

⌋
ts +$r

N−1∑
i=0

⌊
D

Ti

⌋
Lr +$f

N−1∑
i=0

µ(Ci, T̃i)P
PU
absent

M−1∑
k=0

bki
Γ
(
u,

Ri
2

)
Γ(u)

M

⌊
D

Ti

⌋

+$c

N−1∑
i=0

µ(Ci, T̃i)P
PU
absent

M−1∑
k=0

∣∣1− bki ∣∣
{

1−
(

1−
Γ
(
u,

Ri
2

)
Γ(u)

)Nk
i
}

M

⌊
D

Ti

⌋
 (31)

+$u

N−1∑
i=0

µ(Ci, T̃i)P
PU
present

M−1∑
k=0


bkiQu

(√
2γj

i (Ci),
√
Ri

)
+
∣∣1− bki ∣∣

{
1−

{
1−Qu

(√
2γj

i (Ci),
√
Ri

)}Nk
i

}
M


⌊
D

Ti

⌋

needs to be converted from the constrained problem to an
unconstrained problem using the logarithmic barrier method
[16]. The logarithmic barrier method forms a barrier on the
objective function using the constraints in (48) and (49). Then,
our problem is converted to the following:

min f̂(X) =

[
f(X)− log(Lt − εT )− log(−τ + Tmax)

−
∑N−1

i=0 {log(Ri − εR) + log(−Ri +Rmax)}

]
,

(56)
where Lt and f̂(·) denote τ − ts − Lr and the converted
unconstrained objective function, respectively.

Similar to the previous step, the KKT conditions of (56) are
given by

5X f̂(X∗) = 0. (57)
2) Proposed Optimization Algorithm: (57) is too compli-

cated to solve analytically. There is at least one minimum
point according to Theorem 1. We introduce a numerical
optimization algorithm based on the gradient descent method
of which the time complexity of which is small [35].

We define the numerical gradient since computing the
gradient of the objective function has a large complexity.

Definition 1. The numerical gradient 5̃ is defined as

5̃g(Y ) =
∑
∀k

g(Y + hak)− g(Y − hak)

2h
ak, (58)

where g(·), Y , and h are a function, a vector, and a step size,
respectively. ak is a column vector, whose size is the same as
the size of Y , consisting of 0s except for the kth element (the
kth element is 1).
We calculate the numerical gradient instead of the gradient
because the differentiation of the objective function is highly
complex. The algorithm is described in Algorithm 2.

D. Selection of B∗ and C∗

In this subsection, we select optimized parameters Bi and
Ci. Since Bi and Ci are discrete variables, we cannot use
the non-linear optimization technique used for finding T ∗ and
Ri
∗. Therefore, this paper proposes an algorithm to select Bi

and Ci.
All of the secondary nodes, which are located in the same

cluster, sense the same channel and have the same κ, as stated

Algorithm 2 Numerical Gradient Method for T and R

1: X0: The starting point (input)
2: X∗: The optimal solution (output)
3: Xk: The point at the kth iteration
4: δ: The tolerance
5: h: The numerical gradient step size
6: k := 0
7: Xk := X0;
8: γ := [ h

Tmax−ts−Lr−εT ,
h

Rmax−εR , ...,
h

Rmax−εR ]T // The
size of γ is (N + 1)× 1

9: while 5̃f̂(Xk) > δ do
10: Xk+1 := Xk − γ · 5̃f̂(Xk);
11: k := k + 1
12: if Xk exceeds the left edge of (48) and (49) then
13: Xk := [ts + Lr + εT , εR, ..., εR]T ;
14: break;
15: else if Xk exceeds the right edge of (48) and (49) then
16: Xk := [Tmax, Rmax, ..., Rmax]T ;
17: break;
18: end if
19: end while
20: X∗ := Xk

in subsection IV-B. The FC selects a new Ci after the κth
sensing period from the new Ci selection. The new Ci is
selected as {(Ci + 1) mod K}.

The goal of objective function (5) is to maximize the
PU detection probability and minimize the sensing overhead.
We can achieve this goal by selecting beams with higher
γji (Ci) and minimizing the number of sensing beams from
(22) and (31). In this paper, we propose an algorithm to
select B∗. Recall that the FC maintains SNR tables, as stated
in Section III-D. There are K SNR matrices (for each data
channel) of size N × M (same size as B). The proposed
algorithm selects non-overlapped ranges of beams with higher



TABLE I
SIMULATION PARAMETERS.

Parameter Value
Topology Size 1 km x 1 km

Data Frame Size 1024 Bytes
Traffic Rate of SNi 0.1 sec

Operating Frequency 60 GHz
Energy Consumption per Sensing 0.4 mJ

Number of Beams M 2-16
Number of PUs 1-10

Number of Secondary Nodes 25
The Length of Report Phase Lr 0.04 sec12

The Length of Sensing Phase ts 0.01 sec
1/λon 0.5-5.5
1/λoff 2.0
1/λa 0.5-4.5

SNR using an SNR matrix.
First, the FC initializes as all bji as 1 and sorts the bji s

corresponding channel in descending order of γji (Ci). Then,
the FC starts to determine each beam to perform sensing
from the first bji . The FC checks whether there are beams
overlapping with the beam corresponding to the selected bji
using the connectivity matrix. If there are overlapped beams
(connected beams in the in connectivity matrix), the bji s
corresponding to the beams are set to 0. This process is
skipped if the corresponding bji = 0 and repeated until the
last bji . By the above algorithm, the FC can select beams with
higher SNR and minimize the number of sensing beams by
selecting non-overlapping beams.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed

directional cooperative sensing scheme. We developed a simu-
lator using the OPNET modeler. The simulation parameters are
listed in Table I. To measure the effectiveness of the proposed
scheme, we evaluate the following performance metrics.
• Aggregate Throughput of Secondary Nodes (Mbps):

Total data traffic of all secondary nodes in bits transferred
successfully from all secondary nodes divided by time

• Energy Consumption for Sensing (mJ): Total energy
consumption from all secondary nodes for sensing

• Channel Utilization (%): The percentage of time that
a channel is occupied by secondary nodes in the entire
time

• Sensing Overhead: The summation of the sensing over-
head, as defined in (31) divided by time

To evaluate the effectiveness of our proposed scheme,
we compared the performance of our proposed scheme,
non-optimized schemes (directional sensing), and an omni-
directional sensing scheme. The difference between our pro-
posed scheme and the non-optimized scheme is whether the
sensing parameters T , R, C, and B are optimized. Addi-
tionally, in the omni-directional sensing scheme, the sensing
parameters are optimized based on our optimization technique
(T and R)

Moreover, for directional sensing, the PU signal can be de-
tected on the side lobe, and secondary nodes may be mistaken
for the position of the PU (due to multipath propagation).
Because of the error in estimating the PU location, the false
probability of alarm in directional sensing is greater than in
omni-directional sensing. To compensate for this probability,
we adjusted the false alarm probability to a similar level as in
reference [43] for our simulation.

12If the length of Lr is short in a dense environment, there is a possibility
that optimization may not work properly owing to report message collision.
For this purpose, we set 0.04 s as a fairly fixed Lr .
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Fig. 6. Aggregate throughput vs. 1/λon.

A. Simulation Setup
We simulate a system consisting of multiple clusters of 24

SNis and one FC. The number of clusters is the same with
as the number of beams per secondary node. The nodes in
these networks are uniformly distributed over 1 × 1 km2 .
Secondary nodes consume 0.4 mJ per spectrum sensing. We
adopt an inter-arrival time of SNi from an upper-layer as 0.1
s. SNi is in the report phase for 0.03 s, and we assume that
the FC takes 5 µs to find the optimal value.

We introduced the time-bandwidth product u in Section V
to calculate some functions. u heavily affects the functions
e.g., through Ri-axis scaling, which affects the result of
computation. u is defined as u = Wts. We set the bandwidth
per data channel W to 1000 Hz and the length of the sensing
phase ts to 0.01 s. Then, u is calculated as 1, which is a
reasonable value for calculating R∗.

We measure the performance of our proposed scheme in
the following three scenarios: (1) 1/λon is variable (1/λon ∈
[0.5, 5.5]), (2) 1/λa is variable (1/λa ∈ [0.5, 4.5]), and
(3) the number of SU’s beams (M ) is variable (M ∈
{2, 4, 6, 8, 10, 12, 14, 16}). The simulation parameters are
summarized in Table I.

The number of PUs is not fixed in Table I. However, we
state that the ON-OFF alternating process of multiple PUs is
superimposed on a single ON-OFF alternating process, as in
Section V. The number of PUs affects the values of λon and
λa. Therefore, we do not consider the number of PUs as a
scenario.

We compared each metric for each SNi. The definitions
of 1/λon and 1/λa are the average of the ON duration of
PUs and the inter-arrival time of PUs, respectively. From the
definitions, however, 1/λon and 1/λa are interpreted as how
long PUs are on and how often PUs are present, respectively.

B. Simulation Results
We first evaluate a metric aggregate throughput. Figs. 6, 7,

and 8 show the simulation results of the aggregate throughput
versus 1/λon, 1/λa, and the number of beams, respectively.
We observe that the aggregate throughput decreases as 1/λon
increases since the time occupied by PUs is longer. Contrary to
the previous case, the aggregate throughput increases as 1/λa
increases, as shown in Fig. 7. A larger 1/λa does not indicate
a longer occupation by PUs. The FC optimizes T longer when
1/λon is smaller and 1/λa is larger to maximize PU detection
probability and minimize unused opportunity. A larger T
means a smaller number of sensing periods. Frequent sensing
causes lower aggregate throughput due to more quiet periods,
sensing overhead, and report overhead. We also observed
that the directional sensing technique outperforms the omni-
directional sensing tehchnique for all ranges. Although, the
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Fig. 7. Aggregate throughput vs. 1/λa.
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directional sensing technique causes false alarm, secondary
nodes transmit more data with spatial resources.

“How long” (1/λon) and “how often” (1/λa) are indepen-
dent, i.e., 1/λa does not affect 1/λon. Therefore, there are no
abnormal channel utilization increases following 1/λa. The FC
actually optimally maximizes channel utilization. Furthermore,
the channel utilization increases as the number of beams
increases. This is because a narrower beam stimulates spatial
reuse, and communication is possible by avoiding the PU
signal.

The aggregate throughput increases as the number of beams
increases. This is because a narrower beam stimulates spatial
reuse in our scheme and allows more fine-grained sensing. As
a result, the SNs have more opportunity to transmit simulta-
neously. One interest finding is that the slope of throughput
decreases as the number of beams increases after M = 10.
Since the PU transmits in all directions, the number of beams
that cannot be used increase even if the beam is narrowed.
As a result, even if the number of beams increases by 10 or
more, the spatial reuse cannot be maximized. The aggregate
throughput of the proposed scheme demonstrates the best
performance among the compared schemes.

Now, we measure the metric energy consumption.
Figs. 9, 10, and 11 show the simulation results of the energy
consumption of SNis versus 1/λon, 1/λa, and the number of
beams, respectively. The energy consumption includes only
the energy consumed for sensing. We observe that the energy
consumption increases as 1/λon increases since SNi performs
more frequent spectrum sensing. On the other hand, the energy
consumption decreases as 1/λa increases. The above two
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Fig. 9. Energy consumption of SNs vs. 1/λon.
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Fig. 10. Energy consumption of SNs vs. 1/λa.
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Fig. 11. Energy consumption vs. the number of beams.

cases show opposite results to cases of aggregate throughput
where there are less sensing phases with small 1/λon and
large 1/λa. Moreover, we observed that the omni-directional
sensing technique consumes more energy for sensing than the
directional sensing technique. This is because, in the omni-
directional sensing technique, the sensing range is smaller than
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Fig. 12. Channel utilization vs. 1/λon.
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Fig. 13. Channel utilization vs. 1/λa.

for the directional sensing scheme. As a result, the cooperative
sensing is limited among secondary nodes, which perform
more spectrum sensing.

In Fig. 11, the energy consumption increases as M in-
creases. This is because more beams require additional sensing
tasks. One interesting finding is that the energy consumption
slowly increases after M = 10 in the optimization scheme. In
the optimized scheme, the FC optimizes the sensing beams and
thus energy consumption is almost the same. However, in a
non-optimized scheme, the energy consumption still increases
after M = 10. This is because SNi uses all beams for spectrum
sensing, which causes unnecessary spectrum sensing, such as
duplicated sensing. As a result, energy consumption is greater
than for the optimized scheme.

Figs. 12, 13, and 14 show the channel utilization versus
1/λon, 1/λa, and the number of beams, respectively. We
observe that the channel utilization decreases as 1/λon in-
creases, as the time occupied by PUs is longer since SNi
cannot transmit data frames because at least one PU is present.
Similarly, the channel utilization increases as 1/λa increases
as shown in Fig. 7. Furthermore, in Fig. 14, the channel
utilization increases as the number of beams increases, where
the narrower beams stimulate spatial reuse.

Fig. 15 shows the sensing overhead versus 1/λon. Some
sensing overheads such as Of , Oc, and Ou increase at large
values of 1/λon. Additionally, in the non-optimized scheme,
the PU detection probabilities are fixed for the entire 1/λon.
As a result, as shown in the figure, the sensing overhead of
non-optimized schemes decreases as 1/λon increases. On the
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Fig. 15. Unused opportunity vs. 1/λon.

other hand, the sensing overhead of an optimized schemes
(omni-directional sensing and directional sensing) increases as
1/λon on increases. This is because Ti becomes shorter than
1/λon on to avoid interfering with the PUs occupation of the
spectrum channel in the optimized scheme (i.e., it causes more
spectrum sensing).

VII. CONCLUSION

Recently, cognitive radio has been used to solve the prob-
lems of spectrum scarcity and usage inefficiency. One of the
key techniques of cognitive radio is spectrum sensing, where
secondary nodes can detect chunks of unused licensed spec-
trum. Most of the previous spectrum sensing techniques used
an omni-directional antenna. However, the use of directional
antennas for spectrum sensing is a promising technique for the
realizing a longer sensing range and fine-grained sensing of the
PU. In this paper, we propose a directional sensing technique
for cognitive radio networks. We assume that one coordinator
who is aware of all network information gathers the sensing
results from secondary nodes. Using reported information,
the coordinator optimizes the length of the sensing period,
PU detection margin, channel to sense, and beams to sense
per secondary node and assigns the sensing parameters to
each secondary node. For optimization, we use a nonlinear
optimization technique. The simulation results show that our
directional spectrum sensing technique is well suited to the
existing cognitive radio environment. In this paper, it is
assumed that PU performs omnidirectional communication.



However, in the near future, there will be more PUs that per-
form communication only in one directional beam. Since the
transmission signal of the PU is transmitted in one direction,
rather than all directions, it is difficult for the SU to accurately
grasp the position of the PU. Additionally, false alarms due to
the side lobes of the PU occur frequently. We need to solve
this issue, which is our future research problem.
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