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Abstract—The exponential growth of the Internet of Things
(IoTs) has led to an increasing demand for intelligent IoT Devices
(IoTDs), requiring innovative network capacity expansion. Re-
cently, several research has been conducted on the identification
of hidden network resources for network capacity expansion.
However, the spatial resource identification scheme through the
omni-directional antenna has limitations in terms of frequency
efficiency compared to the scheme with the directional antenna.
In this paper, we propose a directional spatial-resource iden-
tification technique for device-to-device (D2D) communication.
To find the optimal identification parameters, we design the
objective function and apply a reinforcement learning. The
training data used for reinforcement learning is collected in each
report phase, and Q-learning is applied to find the optimal beam
set. Furthermore, based on the obtained frequency information,
we propose a contention-based D2D communication scheme. The
proposed contention-based D2D communication scheme can effi-
ciently solve the deafness problem occurring in a directional D2D
communication. Finally, we perform a simulation using OPNET
to measure the performance and evaluate the effectiveness of
the proposed technique. The simulation results show that the
proposed schemes realize a better performance than the existing
schemes proposed in previous works in terms of energy efficiency,
frequency efficiency, aggregate network throughput, and deafness
duration.

Index Terms—IoT networks, directional identification, D2D
communication, Radio Resource Harvesting Edge.

I. INTRODUCTION

HE proliferation of IoT devices (IoTDs) has resulted

in the exponential growth of wireless data traffic in
Internet of Things (IoTs) networks [1], [2]. Existing wireless
access methods that employ macro base stations (MBSs) are
incapable of accommodating such gargantuan data demands
because of the poor signal quality received by IoTDs that
are located indoors or at the cell boundaries [3], [4]. As
a result, the deployment of femto base stations (FBSs) is
considered a viable solution for providing IoTDs with bet-
ter signal quality [5]. In this architecture, the macro cells
offload data through femto-cell networks to the IoTDs [6]; this
architecture can facilitate efficient spectrum sharing between
IoTDs. In addition, the FBS, which has low deployment cost
and flexible configuration ability, can achieve more efficient
spectrum sharing by using the spectral information collected
from the surrounding IoTDs.

Fig. 1 presents an example of an IoT network model. As
shown in the figure, an FBS (or edge server) is deployed in
the network topology. In this architecture, the IoTDs transmit
data to/from the FBSs over licensed bands. However, certain
spatial frequency resources remain unused by the I[oTDs,
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Fig. 1. Example of IoT networks (IoTDs perform D2D communica-
tion by identifying unused spatial-frequency resources).

which results in spectrum inefficiency. Identification of these
unused spatial resources can improve the spectrum efficiency,
and the IoTDs can utilize these frequency resources for
infrastructureless Device-to-device (D2D) communication.

Literature reviews have shown that the majority of previ-
ous spectrum-identification techniques [7]-[12] used omni-
directional antennas in the field of cognitive radio networks
(CRNSs) or spectrum agile communications. However, it was
observed that omni-directional identification is inefficient
when compared with directional identification in terms of the
spectrum efficiency. Furthermore, as the use of millimeter-
wave (mmWave) bands has recently increased to expand
network capacity, beamforming using directional antennas has
become a necessity [13].

Fig. 2 presents the benefits of directional identification
over omni-directional identification. As shown in the figure,
the directional-identification-scheme can identify the spec-
trum over a longer range with the same energy budget and
can provide fine-grained identification, which omni-directional
identification techniques cannot. As a result, a directional-
identification-based scheme can be used to identify the direc-
tion of [oTDs as well as hidden spatial-spectrum resources. For
instance, in Fig. 2 (a), an IoTD uses omni-directional identifi-
cation to identify channel 1 and other devices existing within
the identification range. Therefore, it cannot use channel 1.
In contrast, the directional-identification-based scheme can be
used to identify the location of the IoTDs and unused spatial-
spectrum resources (indicated by yellow areas in Fig. 2 (b)).
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Fig. 2. Omni-directional identification versus directional identifica-
tion.

Therefore, the IoTDs can communicate through these unused
spatial resources.

To overcome the shortcomings of the omni-directional iden-
tification technique, a centralized directional spectrum sensing
technique was studied in [14]. In [14], secondary users (SUs)
performed spectrum sensing with sensing parameters such as
the sensing period, power, channel, and beams. The parameters
were periodically updated by the central entity of the SUs.
Furthermore, a non-linear optimization technique (for sensing
periods and power) and a heuristic algorithm (for channels and
beams) were used to calculate the optimal sensing parameters.
However, although the proposed heuristic-based algorithm ef-
ficiently finds the hidden-frequency space, it does not consider
the energy consumption for the sensing; thus, the energy
consumption of the SUs tended to be unbalanced.

Therefore, we propose a machine-learning-based spatial-
resource identification/harvesting scheme' for IoT networks.
Based on the success of the previous study in terms of efficient
cooperative spectrum sensing in the cognitive radio domain,
this study is focused on spectrum identification/harvesting
for D2D communication with the objective of enhancing the
spectrum efficiency. There have been studies that applied
reinforcement learning to the cognitive radio domain [15]—
[19]. In their studies, reinforcement learning was performed
on licensed frequency information such as noise power and
primary user resident time in order for SU to access the
spectrum in an opportunistic manner [18], [19]. On the other
hands, in a few studies, reinforcement learning is used to find
optimal identification parameters [15]-[17]. However, since
their study assumed an omni-directional antenna environment,
the optimal beam selection was not considered. In this paper,
using reinforcement learning (RL), the proposed identifica-
tion/harvesting technique is used to find an energy-efficient
beam set. The Radio Resource Harvesting Edge (RRHE) learns
the reward according to the beam set identified by each IoTD
and selects the beam set that produces the maximum gain for
the future. The contributions of this paper can be summarized
as follows:

ISpatial-resource identification/harvesting is different from spectrum sens-
ing in that identification/harvesting is performed for the same communication
resource pool, while whereas sensing ( [14]) is performed for the resources
of the primary users.

e We propose a directional spectrum identifica-
tion/harvesting technique for massive IoT networks.
Existing resource identification studies were based on
omni-directional antennas, the proposed scheme is a
study to identify resources using a directional antenna in
mmWave environment. The proposed technique is aimed
at designing optimal beam-identification parameters
through the use of RL. To find the optimal beam-
identification parameters, we design the state, action,
and reward functions for the Q-learning algorithm.

« To improve communication reliability, we integrated our
contention-based D2D communication scheme [21] be-
tween the IoTDs through the identified hidden spatial-
spectrum resources. In [21], we proposed a D2D com-
munication technique for solving the issue of deafness by
using two antennas. However, in this study, we reinforced
the D2D communication scheme used to solve the issue
of deafness using one data channel by applying non-
orthogonal multiple access (NOMA). Furthermore, we
analytically proved that the D2D communication scheme
does not incur any deafness.

o We showed that our proposed scheme outperforms the
existing techniques in terms of various performance in-
dices, including energy efficiency, frequency efficiency,
aggregate network throughput, and deafness duration.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model of IoT networks. Sec-
tion III describes the proposed RL-based spectrum identifica-
tion/harvesting technique. Section IV presents the description
and analysis of the deafness-free D2D communication scheme.
Section V presents an evaluation of the performance of the pro-
posed algorithms using simulations. Finally, the conclusions of
this study are presented in Section VI.

II. SYSTEM MODEL
A. Basic Assumption

The overall system model is illustrated in Fig. 3. We
consider a network model that consists of IoTDs, and a
RRHE. In addition, we consider that IoTDs have three phases:
identification phase, report phase, and transmission phase. In
each phase, the IoTD performs the following actions:

o Identification phase: Each 10TD detects signals within
the sensing range of IoTD based on an energy-detection
scheme and identifies empty spatial resources. The pro-
posed identification scheme used the optimized identifi-
cation parameters and stores the location of the detected
IoTD in a local connectivity matrix.

e Report phase: Each IoTD sends a local connectivity
matrix containing the location information of an IoTD
detected during the identification period to the RRHE.
The report frame is delivered via the underlying control
channel (or it can be forwarded in a multi-hop manner
via wireless backhaul routing). The RRHE identifies the
optimal identification parameters based on the informa-
tion and delivers this information to each IoTD in the
next report phase.

o Transmission phase: During this phase, an IoTD can com-
municate by utilizing unused spatial-frequency resources.

Fig. 3 presents the timeline for the proposed scheme.
In the proposed scheme, each IoTD identifies an unused
spectrum resource with its identification parameters in each
identification phase. After the identification phase, each IoTD
transmits a report frame containing the identification results
to the RRHE and receives a command frame from the RRHE.



Table I: Key notation descriptions.

| Notations| Description
N The number of IoTDs
M The number of antennas
i, |Bi| | The set of identification beams for ith IoTD and the
number of selected beams for identification
P The IoTD detection probability
B The identification overhead
ts The identification time
L, The length of the report phase
p the energy consumption per unit time
s,a, T State, action, and reward

After receiving the command frame, each IoTD blocks the
beams mentioned in the received command frame. In the trans-
mission phase, the IoTDs transmit/receive data frames to/from
other IoTDs using the unblocked beams. In this phase, the
IoTDs operate in a contention-based manner. The associated
communication techniques are discussed in Section IV. Major
notations used in this paper are listed in Table 1.

B. Antenna Model

I0TDs performing D2D communication are equipped with
directional antennas, and they communicate directionally. Di-
rectional antennas in the mmWave band are classified as
1) switched-beam antennas and 2) beam-steering antennas.
Switched-beam antennas are designed to cover a certain area
per fixed beam, and one beam is activated to perform the
communication. In beam-steering antennas, the main beam is
controlled by the phase shifters in the desired direction to
transmit and receive information.

The former has the advantage of convenient implementation
and low cost, but has the disadvantage of attenuating the
signal strength during switching between beams. The latter
has the advantage of high signal quality realized through
sophisticated control, but its implementation is expensive and
complex. We assume that switched-beam antennas are used
in IoTD systems operating under limited available energy and
computing power. We also assume that the IoTDs including
RRHEs are equipped with a switched-beam array antenna
with M beam patterns, and each beam pattern is ideally
non-overlapped. During transmission, only one direction of
each sector is activated to transmit the signals, and the other
sectors are blocked. During reception, multiple sectors can be
activated simultaneously, or only a specific direction can be
activated. An antenna controller is assumed to be used to keep
track of the direction from which the maximum signal power
is received.

C. Radio Resource Harvesting Edge

We assume that the RRHE collects the identification results
from the IoTDs. Based on the identification results, the RRHE
determines the optimal identification parameters of each IoTD.
Furthermore, the RRHE sends the identified spatial frequency
information to the IoTDs for D2D communication. The RRHE
can comprise any form or combination of an MBS, FBS,
WiFi AP, or dedicated RRHE. It should be noted that even
if the FBS/MBS is aware of the frequency information in
its cell area, it cannot know the local information of the
IoTDs. Therefore, the RRHE can maximize the frequency

resource efficiency by allocating spatial-frequency resources
to the IoTDs based on their local identification information.

D. Channel Model

We assume that the IoTDs use C' data channels and
NOMA [22]-based wireless networks. As in [22], the NOMA
scheme is implemented by combining orthogonal-frequency
division multiplexing access and multi-carrier code division
multiple access. As in their scheme, we assume a single
physical data channel with S subcarriers. The data channel
is divided into two subcarrier groups (SCGs) as follows:

e SCG 1 (Sy): the minimum number of subcarriers for
data transmission. These subcarriers occupy only a small
portion of the bandwidth of the data channel.

e SCG 2 (S3): The set of remaining subcarriers excluding
S in the data channel.

We assume that a full subcarrier is allocated for each beam
of the IoTD 4. Let Cl denote the data channel of the jth

beam direction of the IOTD i. (C‘ can be interpreted as the
geographical transmission and receptlon coverage area of the
I0TD ¢ when it exploits the jth beam. Furthermore, SZ - and
S’ denote SCGs 1 and 2 for the jth beam of the IoTD i,
respectlvely We designed the system to have a wider spectrum
for S, than for S;. We assume that S; and S, are sufficiently
separated to negate any interference between them?.

In the proposed scheme, we also assume an underlying
control channel that utilizes all S; of the C' channels. The
implementation of an underlying control channel for CRNs
was validated by [24]. Each IoTD reports its identification re-
sults (presence/absence and position of the IoTD) to the RRHE
via the control channel. Similarly, the RRHE calculates the
optimal identification parameters for each IoTD by utilizing
the reported information and disseminates the identification
parameters to all the IoTDs via the control channel.

E. 10oTD Detection

Several classical spectrum identification techniques have
been proposed, including matched filters, feature detection,
and energy detection. In our study, we assume that the IoTDs
utilize an energy-detection technique to determine the presence
or absence of an IoTD based on the amount of energy
received. The received signal is integrated over the observation
interval. Finally, the output of the integrator divided by the
noise power (i.e., the signal-to-noise ratio, SNR) is compared
with a certain threshold (or IoTD detection sensitivity) to
determine the presence of an IoTD. An IoTD is present in
the identified channel if the SNR is greater than the IoTD-
detection sensitivity.

III. CENTRALIZED SPECTRUM
IDENTIFICATION/HARVESTING

A. Directional Spectrum Identification/Harvesting

In the cooperative directional identification/harvesting
scheme, the I0TDs share the identification area with each
other, which prevents the detection of overlapping areas.
Furthermore, the RRHE forms multiple clusters. Each IoTD
identifies a specific assigned direction using its identification
beams. These identification beams for the IoTDs are assigned

2Inter-cartier interference between subcarriers can be reduced to a level
where data communication is possible through an interference cancellation
technique. [23]
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by the RRHE, which attempts to maximize the detection prob-
ability of the IoTD while reducing the overall identification
overhead.

To improve the detection probability, the IoTDs may use as
many beams as possible for identification. However, this ap-
proach results in various side effects such as significant energy
consumption by the IoTDs in addition to time and network
resources consumed for the identification. The following are
the main overhead issues caused by the identification process:

1) Energy overhead caused by identification: An IoTD that
is performing identification consumes additional energy.

2) Energy overhead caused by reporting: An [oTD that
is transmitting an identification result to the RRHE
consumes energy to transmit the report frames.

Therefore, the optimization technique should identify the
identification parameters that can detect the IoTD and reduce
the identification overhead simultaneously. The relevant opti-
mization techniques are described in subsection III-B.

B. Identification Parameter Optimization

To maximize the efficiency of our spectrum identification
process, we optimize the set of beams to identify (B;) for the
IoTDs while using an objective function similar to that used
in [14]. B; can be fur_ther described by B;=[b?, b}, b2,
and bf‘/[ 1]T, where bf is 1 if the jth beam of the IoTD ; is
used for the identification. Otherwise, b? is zero.

Here, the objective function is written as follows:

min o (1 - P(B)) + (1 - 2)O(B), (1)
where P(B) and O(B) denote the IoTD detection probability
and identification overhead in terms of B, respectively and «
denotes the weight factor. Furthermore, B denotes the set of
beams for all 1oTDs i.

Here, the IoTD detection probability P is modeled in a
manner similar to that in [14]. The IoTD detection probability

0

[Report Phase]

|oTDs report identification results, and the
RRHE distributes identification parameters

0 @
[Transmission Ph;;éi

If channel is vacant, loTDs can
communicate with identified resource

3. Timeline for the proposed directional spectrum-sensing technique.

P is given as
P(B) = P( At least one [oTD detect any other [oTD)
=1- P(N nodes cannot find any other IoTD)

—1—H{1— (B},

where N denotes the number of IoTDs, and P;(B;) denotes
the ith IoTD detection probability in terms of the identified
beams. Then, P;(B;) is given as

(@)

M—1,j
Zj:() bi
M
In the previous study, the identification overhead was mod-
eled in terms of the time overhead for the identification.

However, herein, the identification overhead (O) has been
modeled based on the energy consumed for the identification.

The identification overhead O is defined as

> 0.(B),

z€{s,r}

Pi(B)) Number of beams to sense _
ST Number of entire beams

. (3)

“

where O, (B) denotes the overhead due to spectrum identifi-
cation. O,.(B) denotes the overhead due to the transmission
of the identification results and reception of the identification
parameters from the RRHE.

An IoTD consumes energy while identifying a channel. Let
p denote the energy consumption per unit time. Then, O4(B)
is expressed as

N—1
= Z |B;| *ts * p

=0

&)

where ¢, and |B;| denote the identification time and number
of selected beams for the spectrum identification, respectively.

Similarly, IoTDs also consume energy while transmitting
identification results and receiving the identification parame-



ters. Hence, the report overhead O,.(B) is given as

N-1
0,(B) = ) |Bi|* L, % p. (6)
=0

where L, denotes the length of the report phase.

In the previous work, the identification beams with the
highest SNR values were used for improving the identification
accuracy and minimizing the overlapped identification area to
reduce the overhead. However, in the previous algorithm, a
beam with a good channel condition was always selected,
resulting in an energy-consumption inequality between the
TIoTDs. Furthermore, because the identification overhead was
modeled as a wasted time opportunity, the energy consumed
for the identification was relatively high. To address this
problem, we propose a beam selection algorithm based on
a machine learning technique.

C. Optimal Beam Selection based on Reinforcement Learning

A standard RL model comprises a finite set of possible states
of an environment S = {s1,89,...,8,}, a set of possible
actions A = {aj,aq,...,a,} of a learning agent, a scalar
reinforcement signal r, and an agent policy 7. At each time
step, the agent perceives the state s € S of the environment
and selects an action ¢ € A based on its current policy .
Time is represented by a sequence of time steps ¢t = 0,1, - -.
At each time step, a controller observes the system’s current
state and selects an action. Correspondingly, the environment
makes a transition to the new state s’ € S and generates a
reinforcement signal ¢;, which is called an immediate reward.
This is given to the agent. The learning agent then updates its
policy and the next round of iteration is begins [25].

The objective of the agent is to find an optimal policy 7*(s)
for each state that minimizes the total expected discounted
reward over an infinite time horizon. This reward is defined
as

o0
V*(s) =min E <Z ’ytct> , @)
T =0
where [E represents the expectation of the operator, and v €
(0,1) is a discount factor. Note that a reinforcement learning
algorithm is considered to converge when the learning curve
becomes flat and no longer increases. In theory, Q-Learning
has been proven to converge towards the optimal solution [26].
Thus, the optimality condition can be defined by

Vi(s)HY V() <er0, ®)

where ¢ denotes the iteration step and e denotes the small size
threshold. As per Bellman’s optimality criterion, the optimal
policy 7* satisfies

V*(s) = min (C(s, a) 4+ Z Ps,s/(a)V*(s')> ©)
“ s'eS
where C(s,a) denotes the expected cost Cf(s,a) =
E{c(s,a)}, and Ps s denotes the transition probability for
the change from s to s’.
Given the optimal value function, we can specify the optimal
policy as

7 (s) = argmin (C’(s, a)+ 7 Z P, o (a)V*(S/)> .
s’eS (10)

For each agent i, we define an evaluation function, denoted
by Q(s,a), as the expected discounted reinforcement of taking
action a at the state s and then counting by optimally selected
action.

Q(s,a) zE{thc(st,w(s)ﬂso zs} an
t=0
For each agent ¢, Q(s,a) can be rewritten as
Q(s,a) = C(s,a) +7 Y Pos(a)Q(s',a'). (12)

s'eS

To apply Bellman’s criterion, we must find an intermediate
minimal value of Q(s,a), denoted as Q*(s,a), where the
intermediate evaluation function for every possible subsequent
state—action pair is minimized, and the optimal action is
performed with respect to each subsequent state. Q*(s,a) is
given as

Q(s,a) = C(s,a) +7 3 Pov(a)minQ*(s',a).
a’'cA
s'€eS
13)
We can then determine the action a* with respect to the current
state s. In other words, we can determine 7*. Therefore,
Q*(s,a*) is minimal and can be expressed as

Q"(s,a”) = minQ"(s, a).

In the Q-learning process, attempts are made to find
Q*(s,a) in a recursive manner by utilizing the available
information (s,a,s’,a’), where s and s’ are the states at times
t and t + 1, respectively, and a and a’ are the actions taken at
time ¢ and ¢+ 1, respectively. The Q-learning rule for updating
the Q values relative to agent ¢ is given as

Qs,0) = Q(s,) + a e+ minQ(,a') ~ Q(s,a)],
s)

(14)

where « denotes the learning rate.

We attempt to find an optimal beam set for all the IoTDs in
different environment states such that the objective function is
minimized. Our reasons for applying RL to find the optimal
beam selection are as follows:

o The advantage of RL is that, over time, reward-based

learning results in increasing number of optimal results.
In the network environment we assume the 10TDs are
distributed, and they opportunistically detect unused spec-
trum resources for D2D communication. Therefore, fixed
IoTDs can detect a great number of unused spectrum at
a lower cost over time.

o There are frequent network topology changes. The status
of the IoTDs changes from time to time. In some cases,
the battery wears out, thus causing the [oTD to power
down or a new 1oTD to participate. Therefore, in a topol-
ogy where the network conditions change frequently, RL
techniques that yield the optimum result with relatively
few computations may be suitable.

We consider the RRHE as the learning agent, and the
IoTDs being served and their identification beam set as the
agent’s environment. Correspondingly, we define the basic RL
elements as follows:

o State: The selection of a state space is a basic step of
Q-learning. The selected state variables should comprise
the features that are knowable and have no aftereffects.
In this scheme, we define the state as the set of beams
that each IoTD utilizes for identification. As there are
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2M total combinations of beams utilized, the number of
states for each I0TD is 2, and the state of IoTD 4 (s;)
is defined as follows:

= (BB B

where b7 is 1 if the jth beam of the IoTD i is utilized
for identification. Otherwise, b{ is zero.
o Action: The set of possible actions is determined based

on the selected beams for each IoTD. The action of the
I0TD i (a;) is defined as

a; = {5?763~5127~B;9_1} C i, Vi

(16)

a7

where b! denotes the member of the selected beam set
and S denotes the number of selected beams.

o Reward: In our RL-based Q-learning, each state is
defined as the set of beams that each IoTD utilizes for
identification, and the action is defined as the beam set
to be activated for the identification of all the nodes.
When determining new beam sets for all the IoTDs, the
overall network reward is defined as the probability of
finding spectrum resources against the energy consumed
for the identification. In other words, the reward function
C(s,a) can be designed with the objective function (1).
Therefore, C(s,a) is defined as

C(s,a) =a(1-P(B))+ (1 —a)O(B). (18)

In the proposed identification algorithm, the RRHE deter-
mines the identification parameters of all the [oTDs. As each
IoTD has a different channel environment, location, etc., the
RRHE should learn about all of the IoTDs individually. Algo-
rithm 1 outlines the Q-learning-based B; selection algorithm
for the spectrum identification. For the beam selection (action)
by each IoTD, the RRHE utilizes an e-greedy algorithm, where
€ is a random factor that is used to find the optimal values to
avoid the local minima.

RRHE works as follows with our proposed RL technique.

o The RRHE collects the [o0TD’s spectrum identification
information in the report phase.

o The RRHE performs the RL algorithm until the next
report phase and calculates the reward for determining
the optimal beam set.

Algorithm 1 Q-learning algorithm for B; selection

Initialize:
Initialize Q(s, a) with random weights;
Evaluate the starting state s;;

loop
Generate a random number 7, 0 < r < 1;
if » < € then
Select an action randomly;
10:  else
11: Select the action a characterized by the minimum Q
value;
12:  end if
13:  Evaluate an immediate cost ci based on (18);
14:  Observe the next state s ;

150 Q(s.a) = Q(s,a) + a [c+ yminQ(s', @) — Q(s,0)]:
16: S}« St
17: end loop

1:
2:
3:
4:
5. Learning:
6:
7
8
9

o The RRHE shares the identification beam parameters with
the IoTDs based on previously obtained values in the next
report phase and retrains and finds the optimal values
based on the reported results.

It should be noted that the IoTDs can report manipulated
malicious information for reducing energy consumption. That
is, the entire system may be vulnerable owing to selfish [oTD
behaviors. However, some research contributions present a
view of trust computing by demonstrating why devices inside
a networks system should act honestly [20]. In [20], the total
network utilities of each participant are maximized when the
devices are truthful. Therefore, we also assumed that none of
the IoTDs exhibited dishonest behavior.

D. Complexity Analysis

In our algorithm, the RRHE is a learning agent that should
manage the identification parameters of all the IoTDs. There-



fore, the algorithm complexity depends on the number of
IoTDs and number of antennas. In this section, we analyze the
complexity of our algorithm to find the optimal identification
beam set based on our RL.

In our model, each ToT has a total of 2M states, and there
are 2™ candidate actions. Therefore, the algorithm for finding
the optimal beam set based on the proposed RL has a worst-
case time complexity of O(N - 2*), assuming a total of N
I0oTDs. In the algorithm for finding the optimal beam set, the
RRHE finds the optimal beam sets for all the [oTDs based on
RL and informs each IoTD of the optimal beam set in the next
report phase. Therefore, the calculation should be completed
within the interval of the report phase.

Assuming an RRHE implementation with the Raspberry Pi
4B as a representative IoTD, the CPU generates 1.5 million
clocks per second (1.5 GHz). If we consider approximatel}rf
100 clocks for calculating the reward, approximately 1.5 x 10
operations are performed [14]. When M = 16 (the number
of antennas of the IoTD = 16) and the identification cycle
is 1 s, we can find the optimal identification beams for 228
IoTDs (228 - 26 ~ 1.5 x 107). Thus, by assuming that the
identification period is T, we can find the identification beams
for 228 - T, IoTDs.

Although we have performed a preliminary analysis on the
time consumption of the Q-learning algorithm in this case
based on an IoT system, the applicability of the proposed
scheme to a real system is unclear. To evaluate the applicability
of the proposed RL-based harvesting method, we built a simple
IoT system and measured its computational time. In this
system, the Raspberry Pi 3 model plays the role of the RRHE,
and RL is used to find the optimal beam of the surrounding
200 IoTDs. In our experimental result, the reward is converged
between approximately 150 and 200 epochs, as shown in
Fig. 5. As 20 epochs consumed approximately 1 s, it was
analyzed that approximately 7.5 s would be required in the
actual experimental environment. Therefore, the optimization
should be completed within 7.5 s to ensure accurate sensing
results on this system, i.e., the sum of the identification period
(Ts) and communication period (7;) should be longer than 7.5
s. Note that an RRHE with high computing power may have
shorter delay requirements in a real system.

E. Workflow of the Proposed RL-based Identification Scheme

Fig. 4 presents the entire workflow of the proposed RL-
based identification scheme. As mentioned in the previous
section, the proposed technique comprises three phases. In the
identification phase, each IoTD finds unused spatial resources
using the identification parameters selected from the RRHE.
Simultaneously, the RRHE finds the optimal identification
parameters through RL. In the report phase, each IoTD sends
the identification results to the RRHE through the control
channel. The RRHE receives the identification results and
sends the identification parameters found in the RL in the
previous phase to the IoTD. In the communication phase, each
I0TD performs D2D communication through the surrounding
unused spectrum resources, and the RRHE updates the new
data (identification results) and starts identifying the identifi-
cation parameters using RL. It should be noted that the RRHE
performs the same step as in the identification phase, which
can be combined into the learning and optimization phase.

IV. CONTENTION-BASED COMMUNICATION SCHEME
A. Deafness-Free D2D communication

In the transmission phase, each IoTD can communicate
opportunistically through an empty channel/beam. Each IoTD

20 epoch ~ 1 sec
T T

Average reward (0~1)

150 epoch ~ 7.5 sec

.
200 300 400
Epoch

0 100

Fig. 5. Variation of reward according to the learning epoch in the
experiment (Number of IoTDs: 200, RRHE: Raspberry PI 3).

can perform ad hoc communication with other IoTDs (D2D
link). As this D2D link should not interfere with the communi-
cation within the femto-cell, it can perform D2D transmission
by performing carrier sensing before the transmission and
sending the communication request frame.

However, a deafness problem occurs when the transmitting
IoTD transmits a communication request frame at the same
time when the receiving IoTD is communicating, wherein
the frame cannot be heard. To overcome this problem, there
have been research about contention-based communication
schemes such as circular-request/response-based MAC [27],
[28], advanced-notice-based MAC [29], [30], and tone-based
MAC [31], [32]. The characteristics of each contention-based
MAC scheme can be summarized as follows:

« Circular-request/response-based MAC [27], [28]: A tech-
nique to prevent deafness by notifying that the node is
communicating by transmitting the control frame in a
circular manner in all directions.

o Advanced-notice-based MAC [29], [30]: A technique to
prevent deafness by checking its transmission waiting
queue and notifying the next communication target node
in advance.

o Tone-based MAC [31], [32]: A technique to prevent
deafness by notifying that a node is communicating by
sending a tone around during communication.

The above studies are not a fundamental solution because there
are scenarios in which deafness can occur, but the proposed
technique can identify deafness and avoid it.

In the proposed scheme, the transmitting IoTD can transmit
a communication request frame with both SCGs to the receiv-
ing IoTD. In [21], we studied the problem of deafness in an ad
hoc network environment. We dealt with the deafness problem
using two channels. In this work, we modified the previous
scheme using the NOMA technique with one data channel.
For our scheme, we can consider the following scenarios.

« 1) Normal case: If the receiving IoTD is idle, it receives
two communication request frames from S; and So. It
then sends a reply frame with both SCGs. After some
time, it starts to transmit the data frame only on S,.

o 2) Deafness case: If the receiving IoTD is communicating
with another IoTD, it receives only one content request
frame from S;. The transmitting IoTD then receives only
one reply frame from S; and is aware that the receiving



IoTD is a deaf node. Thus, it attempts to connect with
another IoTD.

« 3) Collision case: If the receiving IoTD does not receive
any frame on S; and Sy because two communication
request frames collide in both SCG, then the sender’s
(more than two [0oTDs) retransmission timer expires, and
the sender retransmits the content request frames on both
SCGs after a back-off period.

The transmitting IoTD can detect an actual network failure
by distinguishing deafness from a collision using the above
technique. If the sender is aware that the receiver is in a deaf
state, the [oTD can start communicating with another I0TD,
thereby improving the aggregate throughput.

B. Analysis of Deafness-Free D2D Communication

In this section, we analytically demonstrate how the
deafness-free Medium Access Control (MAC) overcomes the
deafness problem. First, we introduce a few notations used in
the analysis.

Let C; denote the set of all SCGs of node i. C; is defined
as

Ci={Ci;lke{l,2} and 0<j<M}. (19)
We denote 7/ as the set of SCGs utilized for transmission
from node ¢ to node j, and R;- as the set of SCGs used for the
reception from node j to node <. For instance, if node ¢ trans-
mits a request to send an RTS frame to j using 4’s third beam,

and node j receives the RTS frame with j’s second beam,
then 7/ = { i3, CY 3é7R§ = {C‘ig,andCfL2 . Because
we consider that the SCGs are geographical transmission and
reception coverage areas shared by a transmitter and receiver,
respectively, (i.e., C} 5 = Ciw Vk), it is sufficient to state that
T? = R’ in the above example.

If we denote A; as the set of available (or idle) SCGs
and U; as the set of unavailable SCGs for node i, then
A; NU; = ¢. Here, unavailability results from two scenarios:
(1) the SCGs are busy communicating, or (2) the SCGs
are blocked because they are overhearing nearby ongoing
communications. Furthermore, because the data and control
channels are sufficiently separated, we obtain Cj; ;NCy ; = ¢.

Definition 1. If Ji such that node 7 has data for node j and
Aj N R; = ¢, then node j is a deaf node.

Here, A; N R; = ¢ reflects the situation wherein node j
cannot respond to ¢ because j is either busy with commu-
nicating with another node or because the beams from ¢ are
blocked. Moreover, we exclude the case wherein the SCGs
from ¢ to j are unavailable owing to deafness (i.c., the case
of A;NT] = ¢ (or A;N R = ¢)).

Definition 2. A collision occurs if a random combination of
nodes ix’s (0 < k < N, N > 1) transmits frames at the same

time and {ﬂjk\[:_ol Rj’k} # ¢ for all nodes k.

Let us consider a general node (e.g., source node ¢) and
destination node j. The SCGs between nodes ¢ and j may be
in one of the following possible states:

e Case 1) All the SCGs are idle: In this case, there is no
communication nearby. Therefore, node ¢ is ready for
transmission or reception.

o Case 2) All the SCGs are blocked: The DF-DMAC pro-
tocol is designed to utilize the control SCGs to transmit
request frames and response frames only, which means

that at most one control SCG can be blocked while ¢
transmits or receives a frame. Therefore, the other M — 1
control SCGs are always idle. Because our DF-DMAC
protocol operates with M > 1, this case is automatically
excluded from the proof.

o Case 3) Multiple SCGs are unavailable: In this case,
multiple SCGs are blocked owing to their overhearing
of other ongoing communication or they are busy with
transmission or reception. Therefore, we further divide
this case as follows.

— Case 3.1) Only a pair of data and control SCGs
is utilized for communication: Node i is engaged
in communication. Node ¢ does not listen to any
other communication. Therefore, only one data and
one control SCG are unavailable, and all the other
SCGs are available. For example, on the red line in
Fig. 6 (a), node ¢ is engaged in communication and is
utilizing beam zero. Therefore, the data and control
SCGs that are affected by beam zero are unavailable,
whereas the other SCGs are available.

— Case 3.2) Multiple data SCGs are blocked by on-
going overheard communication: Although node i
is not engaged in communication, it can overhear
other nearby communications and set its directional
network allocation vector (DNAV) accordingly’. It
means that multiple data SCGs may be unavailable.
All the control SCGs are available because they
are blocked only when the nodes are engaged in
communication. For example, on the red line in
Fig. 6 (b), node % listens to the communication
while using beam 1. Therefore, the data SCG that
is affected by beam 1 is unavailable.

— Case 3.3) Combination of Cases 3.1 and 3.2: In this
case, node ¢ is in communication and overhears other
communications, which means that it updates its
DNAV. Therefore, some data SCGs and one control
SCG are unavailable. For example, on the red line in
Figure 6 (c), node ¢ is engaged in communication and
is using beam zero. Therefore, the data and control
SCGs that are affected by beam zero are unavailable.
Furthermore, node ¢ listens to other communications
while using beam 1. Therefore, the data SCG that is
affected by beam 1 is unavailable.

e Case 4) Others: Other cases besides the aforementioned
cases cannot occur, for example, a case wherein multiple
control SCGs are blocked. However, more than two
control SCGs of node 7 cannot be blocked for the reason
discussed in (Case 2). Therefore, we do not need to
consider this case. In DF-DMAC, a management entity
is exploited to report errors in the system.

Lemma 1. In deafness-free D2D communication, if a source
node transmits an RTS to a destination that is not engaged in
communication, then destination can reply to the source node
(no deafness).

Proof. For the proof of this lemma, we consider a destination
node that is not in communication (the opposite case is proved
in Lemma 2). Therefore, we do not need to consider Cases
3.1 and 3.3. If the source node ¢ wishes to communicate with
the destination node j, then node i transmits an RTS over

T = {C’Cl'lm,7 Cé,m}, and node j replies with a clear-to-send

3A node that is listening to any other communication updates its corre-
sponding DNAV. Therefore, the corresponding data SCG is unavailable.
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message over R} = {C’i N Cl n} (m is beam ¢’s index for

transmission from i to j; and n is beam j’s index for reception
from i to j, where 0 < m < M)). As mentioned previously,

C}i,m = Iz,n” V.
In Case 1),
Lg:¢Aj:@%Mkeq¢ogn<m@. (20)
Therefore, we obtain the following result:
&mm:{@mc‘}
={Cin Cl} # 0 @1

In this case, node j can reply to ¢ because j is not a deaf
node according to Definition 1.

In Case 3.3),
5= {Claln c Qin # 6}

Aj =C;-U,. (22)
Therefore, we obtain the following result:
, ci, if C%, ¢ A,
AjNRi = { }. dm 7 (23)
{Cd s CLn ¢ otherwise

Although the data SCG of node j is unavailable in the
former case, node j can reply to 4 by using a control SCG. In
the latter case, node j can reply to ¢ with both the SCGs that
are pointed toward 7. O

Lemma 2. In the DF-DMAC protocol, a source node that
transmits an RTS frame to a destination node that is engaged
in communication can distinguish between collision and deaf-
ness.

Proof. Lemma 2 is based on the same assumptions as
Lemma 1, and we do not need to consider case I because in
Lemma 2, it is assumed that the destination node is engaged
in communication. For one source node, if node 7 wishes to

communicate with node j, then node ¢ transmits an RTS frame
with T/ = { s Cl ¢ (m is a used beam index when

node ¢ transmits to node j (0 < m < M)).

In Case 3.1),
Uy ={ClCl} (0 n< M)

A= {C]J€(1|k e{c,d},(0<a<nn<a< M},
24)
Therefore, we obtain the following result:
; @ if R = U;
j J{@hﬂ i RA U (25)

In the former case, node j cannot reply to ¢. However, node
j is transmitting a frame in this case.

From Definition 2, we can obtain
RiN Ry =U; NRY

{an» dn} # ¢

Therefore, this is a collision case, and node j does not reply
to node 7. In the latter case, node j can reply to 7 because both
SCGs that are pointed toward ¢ are available.

(26)

In Case 3.2),
={c.cu{cdo<a<nn<a<n}
Aj =C; -U. 27)
Therefore, we obtain the following result:
10) if R; cU;
A;NRi = Cﬁn} ifelse 7, €U (28)

C i Cl ,,L} otherwise

In the first case, node j cannot reply to . However, node
j 1s transmitting a frame in this case. From Definition 2, we
can obtain the following:

RO R = {Ch, ) 4o

Therefore, this is a collision case, and node j does not reply
to node i. In the second and third cases, node j can reply to
1 because more than one SCG is available in these two cases.
Therefore, if the source node does not receive a reply, the
transmitted frame has encountered a collision. Otherwise, the
source node can react appropriately to the destination reply.

(29)



Table II: Simulation parameters.

Parameter Value
Topology Size 1 km x 1 km
Data Frame Size 1024 Bytes
Inter-Arrival Time of IoTDs 0.1s
Energy Consumption 04 mJ
Number of Beams M 2~16
Operating Frequency 28 GHz

Number of IoTDs 24

Bandwidth W 1 kHz

The Length of Report Phase L, 0.04 sec

The Length of Sensing Phase ¢, 0.01 sec
Discount Factor ~y 0.9

Theorem 1. There is no deafness problem in the DF-DMAC
protocol.

Proof. Owing to Lemma 1 and 2, there is no deafness problem
in the DF-DMAC protocol. O

V. PERFORMANCE EVALUATION

For the performance evaluation, we developed a simulator
based on OPNET modeler 14.5. The evaluation performance
was measured using the following metrics:

o Energy Consumption for Spectrum Identification (mJ):
The total energy consumption from all the IoTDs for the
spectrum identification.

o Channel Utilization (%): The percentage of time for
which a channel is occupied by the IoTDs over the entire
time period.

o Aggregate Throughput of loTDs (Mbps): The total amount
of traffic successfully transmitted and received through
the unused spatial resources among the IoTDs.

o Deafness Duration (ms). The time between the first
transmission of the request frame and its corresponding
response frame.

To evaluate the effectiveness of our proposed scheme, we
compared the proposed scheme, omni-directional identification
scheme, and directional identification scheme [14]. In addition,
we analyzed the deafness-free D2D communication scheme
with other contention-based communication schemes such as
circular-request/response-based MAC [27], [28], advanced-
notice-based MAC [29], [30], and tone-based MAC [31],
[32] in terms of the medium access efficiency from the
identification/harvesting perspective.

The details of the simulation parameters are listed in Ta-
ble II. The simulation system consists of 24 IoTDs and one
RRHE. The IoTDs are uniformly distributed in the topology,
where the RRHE is located at the center. Let us assume
that each IoTD consumes 0.4 mJ of energy per spectrum
identification. In this experiment, we assume that each IoTD
enters the idle mode to save energy after the operating time
is complete. Then, each IoTD can wake up from the idle
mode for communication or identification. We assume that
the awake time interval of the IoTDs follows an exponential
distribution with a mean of 5.0 s. In addition, we adopt the
inter-arrival-time of the data frame from an upper layer as
0.1 s. The data frame size is set as 1024 bytes. To measure
the value of each graph, we generated a total of 100 samples
for each point and calculated the average value. In addition,
each sample is generated through a random seed value and the
total simulation time of each sample is 1 h. The location of the
IoTDs for each iteration is random within the topology and
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Fig. 7. Average operating time of IoTDs versus total energy con-
sumption for identification.
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Total energy conusmption (mdJ)

Fig. 8. Number of antennas versus total energy consumption of IoTDs
for identification.

the on-off duration follows a normal Distribution with mean
10 and standard deviation 2.
Fig. 7 presents the simulation results of the energy con-

Table III: Awake time interval distribution of IoTDs versus their total
energy consumption (mJ)

Omni-directional Directional Identification Proposed Identification
Identification Scheme Scheme (Non-beam opt.) Scheme (Beam opt.)

Exponential Distribution
(A=0.2)
Uniform Distribution
(u(1,5))
Normal Distribution
(N(5,1)

76 52.08 45.08

814 57.32 42.16

77.68 53.11 4481

Table IV: Awake time interval distribution of IoTDs versus their
channel utilization (%)

Omni-directional Directional Identification Proposed Identification
Identification Scheme Scheme (Non-beam opt.) Scheme (Beam opt.)

Exponential Distribution

o
=02 29 53 62
Uniform Distribution
(u(1,5)) 32 57 66
Normal Distribution 31 55 65

(N(5,1)
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sumption of the IoTDs for identification versus the average
operating time of the IoTDs*. It is observed that the energy
consumption increases as the operating time of the [oTDs
increases because the IoTDs perform spectrum identifica-
tion more frequently. Moreover, we observed that the omni-
directional identification technique consumes more energy for
the identification than the directional identification technique.
This is because the identification range in the omni-directional
identification technique is smaller than that in the directional
identification scheme. In addition, our proposed RL-based
spectrum identification technique shows an approximately
18% performance improvement over that of the directional
identification scheme. This is because identification in the
directional identification scheme is performed by specific
IoTDs, whereas the identification work is uniformly distributed
in our proposed scheme. Table III shows the awake time
interval distribution of ToTDs versus their total energy con-
sumption, where the average operating time of the IoTDs is 5
s. As shown in the table, the proposed scheme demonstrates
the best performance regardless of the distribution. This is
because it adapts well to changes in the environment topology,
which is one of the advantages of our proposed RL-based

4 Average operating time is defined as the average time from when the IoTD
starts its identification to its return to the idle mode.
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Fig. 11. Average deafness duration of IoTDs.

identification scheme. Fig. 8 presents the simulation results
of the energy consumption of the [oTDs for identification
versus their number of antennas. As shown in the figure,
as the number of antennas increases, the energy consumed
for sensing increases, and thus, the total energy consumption
increases. However, the slope of the proposed technique is less
than that of the non-optimized technique. Similar to Fig. 7,
the proposed technique with beam optimization results in
approximately 50% greater energy savings when compared
with the non-optimized technique. Note that the proposed
method consumes more energy than the non-sensing technique
owing to transmission of sensing data and network signaling.
However, energy consumption in the identification and report
phases is less than 5% of the total energy consumption. On the
other hand, the energy consumption in transmission phase is
the highest. Therefore, our technique can realize performance
improvement in terms of throughput by utilizing network
resources while generating less energy overhead.

Fig. 9 presents the channel utilization versus the average
operating time of the IoTDs. It is observed that the channel
utilization decreases as the average operating time of the
IoTDs increases, and the time used by the IoTDs is greater
because they cannot transmit data frames, as at least one
TIoTD occupies the channel. As in the aforementioned results,
directional identification efficiently finds spatial frequency
resources, which means that the channel efficiency is bet-
ter than that in omni-directional identification. In addition,
the proposed RL-based identification technique demonstrates
better efficiency than the directional identification scheme.
Table IV shows the channel utilization of the IoTDs in the
form of the awake time interval distribution. As shown in the
table, the proposed scheme demonstrates the best performance
regardless of distribution. From the results of Tables III and
IV, we can observe that the proposed technique consumes less
energy and activates more hidden space resources regardless
of the network environment.

Fig. 10 presents the aggregate throughput versus the number
of antennas. As shown in the figure, the aggregate through-
put increases as the number of beams increases because a
narrower beam stimulates the spatial reuse in the directional
contention-based MAC protocol. As a result, the nodes have a
greater opportunity to transmit simultaneously. The aggregate
throughput of the deafness-free D2D communication scheme
achieves the best performance among the compared schemes.
This is because other directional contention-based MAC pro-



tocols suffer from deafness problems and cannot cope with
them efficiently. In our simulation result, the omni-directional-
identification-based MAC protocol (CSMA/CA) has a low
throughput (approximately 520 Mbps). Because the simulation
environment has a high-operating-frequency bandwidth, it
has a short transmission distance, and the spatial frequency
resources are not maximized even if a spatial frequency is
found through the spectrum identification. On comparing the
deafness-free MAC with and without spectrum identification,
the performance of the former is found to be better because it
harnesses the hidden spatial spectrum resources.

Fig. 11 presents the deafness duration for 24 IoTDs. The
bar graph indicates that the deafness-free D2D communication
scheme significantly reduces the deafness duration when com-
pared with the other schemes. In particular, the deafness-free
D2D communication scheme reduces the response time to 80%
of the tone-based MAC protocol and 96% of the advanced-
notice-based MAC protocol. This is because a sender that
identifies a deaf node can immediately attempt to identify
another idle node. Thus, the deafness duration of the pro-
posed D2D scheme is similar to that of the omni-directional
MAC. It should be noted that that no deafness problem
occurs between IoTDs with omni-directional antennas. For
D2D communication, the neighboring nodes of a transceiver
can recognize that the nodes are in communication status
because the communication request and response frames are
transmitted in an omni-directional manner.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced mmWave spectrum identifica-
tion/harvesting techniques for D2D communication with the
use of conventional networks. The proposed spectrum identifi-
cation/harvesting technique can find the optimal identification
beam set and D2D links can be utilized by using identified
spatial resources. In addition, we used a deafness-free D2D
communication scheme that solves the deafness problem in
D2D communication, and proved that the D2D communication
scheme does not experience any deafness. Through simulation,
we showed that our proposed scheme outperforms the exist-
ing conventional networks in terms of energy consumption,
channel utilization, overall network throughput, and deafness
duration. However, our computer simulations can overlook the
computational plane elements. In our future works, we intend
to reference other emulation-based tools such as Mininet and
EmuEdge to evaluate the proposed scheme for a more realistic
computation complexity.
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