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Abstract

The proliferation of encrypted Domain Name System (DNS) traffic through protocols like DNS over Hypertext Transfer Protocol
Secure presents significant privacy advantages but creates new challenges for anomaly detection. Traditional security mechanisms
that rely on payload inspection become ineffective, necessitating advanced strategies capable of detecting threats in encrypted traffic.
This study introduces the Hybrid Ensemble Approach for Robust Anomaly Detection (HERALD), a novel framework designed
to detect anomalies in encrypted DNS traffic. HERALD combines unsupervised base detectors, including Isolation Forest (IF),
One-Class Support Vector Machine (OCSVM), and Local Outlier Factor (LOF), with a supervised Random Forest meta-model,
leveraging the strengths of both paradigms. Our comprehensive evaluation demonstrates HERALD’s exceptional performance,
achieving 99.99 percent accuracy, precision, recall, and F1-score on the CIRA-CIC-DoHBrw-2020 dataset, while maintaining
competitive computational efficiency with 110s training time and 2.2ms inference time. HERALD also demonstrates superior
generalization capabilities on cross-dataset evaluations, exhibiting minimal performance degradation of only 2-4 percent when
tested on previously unseen attack patterns, outperforming purely supervised models, which showed 5-8 percent degradation.
The interpretability analysis, incorporating feature importance, accumulated local effects, and local interpretable model-agnostic
explanations, provides insights into the relative contributions of each base detector, with OCSVM emerging as the most influential
component, followed by IF and LOF. This study advances the field of network security by offering a robust, interpretable, and
adaptable solution for detecting anomalies in encrypted DNS traffic that balances a high detection rate with a low false-positive
rate.
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1. Introduction

1.1. Background
Concerns regarding pervasive monitoring, and the increas-

ing frequency and sophistication of cyberattacks, have acceler-
ated efforts to improve the security and privacy properties of
major internet protocols and services. According to a Forti-
Guard Labs report [1], approximately 85% of the current web
traffic is encrypted, a 30% increase from 2017. These figures
are expected to rise due to increased efforts to secure the last
significant unencrypted traffic on the Internet: the Domain Name
System (DNS).

The DNS is a critical component of the Internet ecosystem.
It is a distributed, hierarchical database used to translate net-
work queries from human-friendly domain names to machine-
readable Internet Protocol (IP) addresses. This traffic is sent
in plaintext by default and can be intercepted by rogue enti-
ties. This information may include the identity of the nodes
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querying the database and the specific data requested. Further-
more, multiple points in the DNS resolution path, including the
stub resolver, its communication links, the recursive resolver,
and the authoritative nameservers, are susceptible to informa-
tion leakage [2].

Given the privacy implications, several industry and aca-
demic efforts have been launched to reduce information leakage
in the DNS resolution pipeline. This study explores the efforts
to encrypt DNS transactions, and the most popular technology
developed in this regard include DNS over Transport Layer Se-
curity (TLS) called DoT [3] and DNS over Hypertext Transfer
Protocol Secure (HTTPS) called DoH [4]. Moreover, DoT im-
proves the privacy properties of the DNS resolution pipeline
by ensuring communication is secured over a TLS connection
on TCP port 853. In contrast, DoH sends and receives DNS
queries over an HTTPS connection on TCP port 443. Security
concerns abound because of the possibility of malicious actors
abusing these mechanisms.

Furthermore, existing security tools rely on the ability to
analyze unencrypted DNS traffic to detect and prevent its ma-
licious use. Data exfiltration via DNS tunneling and concealed
malware command-and-control communication are two stan-
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dard methods of DNS abuse. Thus, the addition of encryption
to DNS exacerbates the problem by allowing rogue entities to
conceal their malicious activities. Moreover, unlike DoT traf-
fic, which is distinguishable because it uses its own standard
TCP port number, distinguishing DoH traffic from encrypted
web traffic requires considerably more effort. Consequently,
DoH may be more vulnerable to abuse than DoT. Fig. 1 presents
a schematic representation of malicious data exfiltration using
DoH tunneling.

1.2. Motivation
In recent years, DoH has grown in popularity due to its abil-

ity to improve user privacy and security while browsing the In-
ternet. Moreover, DoH support has been built into most web
browsers and operating systems [5]. Furthermore, several ex-
tensive DNS services, such as Google, Cloudflare, and Quad9,
have built DoH support into their public DNS resolvers [6]. A
study by [7] suggests that many working DoH servers are not
publicly known or published, implying that considerable num-
ber of DoH servers are used for new service offerings. Approx-
imately 73% of these unpublished resolvers lack a reverse DNS
host name, which could be considered suspicious and an indi-
cation of malicious or fraudulent activity.

Thus, a critical task is to develop detection mechanisms
that can navigate the intricacies of encrypted DNS traffic with-
out infringing on user privacy. Such mechanisms must be so-
phisticated enough to differentiate between benign and mali-
cious use, ensuring network security without undermining the
foundational principles of Internet privacy. This backdrop of
heightened security risk amid increasing privacy measures mo-
tivates this research. It underscores the imperative for innova-
tive approaches that are adept at identifying anomalies within
encrypted DNS traffic and are transparent and adaptable to the
ever-evolving tactics of cyber adversaries.

1.3. Contributions
This study introduces the hybrid ensemble approach for ro-

bust anomaly detection (HERALD), an innovative approach specif-
ically tailored to address the complexities of encrypted DNS
traffic. The HERALD framework combines the strengths of un-
supervised anomaly detection methods with the precision of a
supervised learning meta-model. The following contributions
are central to this research:

• We propose a sophisticated ensemble model that strate-
gically integrates multiple unsupervised algorithms with
a random forest (RF) meta-model. This hybridization al-
lows for a nuanced interpretation of the encrypted DNS
traffic, capitalizing on the diverse perspectives offered by
each detection method.

• Our approach is underscored by a specialized training
regimen that optimizes the performance of both base de-
tectors and meta-model. By partitioning the dataset and
leveraging the distinctive characteristics of benign and
malicious traffic, HERALD achieves a fine-tuned balance
between sensitivity and specificity, maintaining remark-
ably low false positive rates across diverse test scenarios.

• We implement a carefully administered feature extraction
process to derive anomaly scores from the base detec-
tors into a format that enriches the meta-model learning
phase. This extraction encapsulates the insights of the
detectors, furnishing the meta-model with sophisticated
descriptive and predictive features that enable effective
discrimination between normal and anomalous encrypted
traffic.

• Through cross-dataset evaluation with three diverse datasets,
we demonstrate HERALD’s superior generalization ca-
pabilities, exhibiting only 2-4 percent performance degra-
dation on previously unseen attack patterns compared to
5-8 percent for purely supervised models. This highlights
HERALD’s ability to adapt to novel threats in encrypted
DNS traffic, a critical advantage in evolving cybersecu-
rity landscapes.

• Beyond its robust detection capabilities, HERALD is de-
signed with an emphasis on interpretability. Our detailed
interpretability analysis, including feature importance, ac-
cumulated local effects, and local interpretable model-
agnostic explanation plots, reveals the relative contribu-
tions of each base detector, with OCSVM emerging as
the most influential component (42 percent), followed by
IF (38 percent) and LOF (20 percent). This transparency
fosters trust and provides security administrators with ac-
tionable insights on model predictions.

The remainder of this paper is organized as follows. Sec-
tion 2 explores the background literature concerning the privacy
enhancements and security challenges introduced by DoH, ex-
amines machine learning approaches for encrypted DNS traf-
fic analysis, investigates deep learning and image-based detec-
tion methods, and discusses the innovative adaptation of hy-
brid learning models for anomaly detection. Section 3 describes
HERALD’s design rationale, detailing the selection methodol-
ogy for unsupervised base detectors and explaining the role of
the supervised meta-model. Next, Section 4 covers the dataset
description, exploratory feature analysis, and outlines the pre-
processing steps including handling missing values, feature elim-
ination, standardization, and dataset resampling. Then, Section
5 details the model training process and evaluation methodol-
ogy, including cross-dataset validation, and presents a compar-
ative analysis of HERALD against purely unsupervised, super-
vised, and deep learning models. Section 6 offers an in-depth
interpretability analysis, incorporating feature importance to quan-
tify detector contributions, accumulated local effects to visual-
ize feature-response relationships, statistical analysis of detec-
tor influences, and LIME explanations for individual predic-
tions. Finally, Section 7 concludes with a discussion on the
potential and limitations of HERALD and suggests directions
for future work to enhance and generalize this approach.

2. Background Literature

This section explores the multifaceted landscape of anomaly
detection in DoH traffic, a critical research area in the network
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Figure 1: Schematic representation of malicious data exfiltration using DNS over HTTPS (DoH) tunneling attack.

security and privacy domain. The literature review is structured
into four thematic areas: 1) an examination of the privacy en-
hancements and challenges introduced by adopting DoH; 2) an
exploration of the role of machine learning in analyzing en-
crypted DNS traffic; 3) innovative approaches in deep learn-
ing and image-based detection for DoH abuse; and 4) insight
into hybrid learning models that combine supervised and un-
supervised techniques. Each theme collectively builds an un-
derstanding of the current state of anomaly detection within en-
crypted DNS traffic, providing a foundation on which the pro-
posed HERALD framework is developed. This review high-
lights the complexities and advancements in this field and sets
the stage for the ensuing discussion on the novel approach of
HERALD in addressing these challenges.

2.1. Enhancing Privacy with DoH: Challenges and Opportu-
nities

The evolution from conventional DNS to encrypted DNS
represents a significant leap in securing user privacy. As out-
lined by researchers e.g., [8], DoH effectively addresses long-
standing privacy concerns associated with traditional, unencrypted
DNS communications. This advancement encrypts DNS queries,
protecting them from external surveillance and interference. Fur-
thermore, one study [9] made a significant contribution by im-
plementing and deploying the Oblivious DoH, which maintains
performance comparable to DoH and DoT while significantly
enhancing client privacy. This innovation indicates the potential
of the Oblivious DoH and similar protocols to serve as practi-
cal, privacy-enhancing alternatives to conventional DNS usage,
representing a leap forward in the ongoing quest to secure user
data.

Comprehensive surveys [10, 11] highlight the dual-use na-
ture of DNS encryption technologies, including DoH and DoT.
While these protocols enhance privacy, they simultaneously com-
plicate threat detection efforts. These surveys outline common
attack vectors such as data exfiltration and command-and-control
(C2) communication, emphasizing the necessary shift from tra-
ditional payload-based detection methods to more sophisticated
behavioral analysis techniques that examine query patterns, tim-

ing characteristics, and entropy measures. Another study [12]
further contributes to this understanding by specifically focus-
ing on DoH abuse, categorizing various malicious use cases and
advocating for machine learning-driven detection approaches
that leverage metadata such as packet sizes and session dura-
tion to compensate for encrypted payloads.

The encryption that DoH provides, although safeguarding
privacy, introduces new challenges in network monitoring and
security because encryption conceals DNS query content, mak-
ing traditional monitoring and threat detection methodologies
less effective. Researchers [5] and [13] have discussed the diffi-
culties in recognizing and controlling malicious activities, such
as DNS tunneling, in the face of encrypted DoH traffic. These
studies underline the complexities involved in identifying and
classifying encrypted traffic, necessitating innovative techniques
capable of identifying and mitigating potential threats hidden
within encrypted traffic. These techniques must strike a delicate
balance, maintaining robust security measures without infring-
ing on the privacy enhancements that DoH provides.

2.2. Machine Learning for DoH Traffic Abuse Detection

Recent advancements in machine learning approaches for
detecting DoH traffic abuse have underscored the significant po-
tential of these methods to balance privacy enhancement with
effective network security measures. The field has witnessed a
rise in innovative machine learning-based approaches aimed at
accurately detecting and classifying malicious DoH traffic. No-
tably, [14] introduced a systematic two-layer approach employ-
ing six machine learning algorithms to differentiate between be-
nign and malicious DoH traffic. This study highlights the in-
creasing reliance on sophisticated, multifaceted machine learn-
ing strategies for effective DoH traffic analysis.

Building upon foundational network traffic analysis tech-
niques, researchers have demonstrated the effectiveness of ma-
chine learning approaches in broader network security contexts.
A study [15] developed a dual-grained classification system that
employs supervised machine learning models to analyze net-
work behavioral patterns of enterprise assets. Their approach
utilizes transport- and network-layer behavioral analysis to clas-
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sify assets into both fine-grained specific types and coarse-grained
generic categories, achieving classification accuracy of nearly
99 percent. This dual-grained methodology demonstrates the
potential for sophisticated behavioral analysis that could be adapted
for encrypted traffic scenarios where payload inspection is not
possible. Similarly, researchers [16] contributed to the under-
standing of DNS traffic behavioral analysis through compre-
hensive passive traffic analysis techniques. Their work on en-
terprise DNS asset mapping and cyber-health tracking provides
valuable insights into DNS behavioral profiling that can inform
DoH anomaly detection approaches.

Moreover, researchers [17, 18] have conducted systematic
comparisons of various machine learning models for DoH de-
tection, revealing that tree-based models such as XGBoost of-
ten outperform neural networks in scenarios with limited train-
ing data. Their research identifies critical features for effective
detection, including temporal metrics like query frequency and
domain name characteristics such as entropy and subdomain
counts. In another study, researchers [19] prioritize real-time
detection capabilities using traditional machine learning models
including Random Forest and Support Vector Machines (SVM)
with carefully engineered features such as query length and do-
main entropy. Their system emphasizes low latency, making it
particularly suitable for deployment in enterprise network envi-
ronments.

Furthermore, the work by [20] provides a comparative anal-
ysis of feature selection techniques in the realm of encrypted
HTTPS traffic, offering valuable insight that extends to the de-
tection of abusive DoH traffic. This comparative perspective is
crucial in understanding and enhancing the performance of ma-
chine learning models tailored for DoH abuse detection. Addi-
tionally, researchers [21, 22] have contributed to the evolving
landscape of DoH traffic analysis by exploring deep learning
and other learning approaches for detecting DoH traffic tunnels
and identifying malicious activities. Their research provides a
glimpse into the potential of these advanced methodologies to
offer deeper insight and more accurate classification, thereby
enhancing privacy and security.

The authors in [23] used an immensely popular public DoH
dataset to develop an accurate and explainable artificial intel-
ligence (AI)-based intrusion detection system. This approach
provides a practical solution for detecting and classifying DoH
attacks and emphasizes the importance of transparency and un-
derstandability in AI applications. The use of explainable AI in
this context ensures that the rationale behind decisions made by
machine learning models is accessible and interpretable, which
is crucial for trust and validation in security applications. Sim-
ilarly, another study [24] addresses interpretability challenges
with a deep learning framework that provides feature impor-
tance scores, aiding administrators in understanding detection
decisions and improving the practical utility of these sophisti-
cated models.

Collectively, the literature underscores a burgeoning interest
in leveraging machine learning to combat DoH traffic abuse.
The development of innovative models and techniques reflects
the dynamic nature of the field, continually evolving to address
the intricate challenges associated with DoH abuse.

2.3. Deep Learning and Image-Based Detection Approaches

As the complexity of DoH abuse techniques increases, re-
searchers have explored novel deep learning and image-based
approaches to enhance detection capabilities. Studies by [25]
and [26] have applied sophisticated deep learning techniques,
including Long Short-Term Memory networks (LSTMs) and
Convolutional Neural Networks (CNNs), to classify DoH traf-
fic by leveraging raw packet sequences for automated feature
learning. While these models excel in accuracy, they face sig-
nificant challenges in terms of explainability, a critical factor
for practical implementation in security systems.

A particularly innovative approach has emerged in the form
of image-based detection methods. Researchers [27] propose
converting DNS traffic into grayscale images (DNS-images) and
employing CNNs for classification. This method effectively
captures spatial patterns in DNS queries, achieving high accu-
racy rates despite requiring substantial preprocessing. Building
upon this concept, researchers [28] have developed FECC, a hy-
brid approach that combines CNNs for feature extraction with
clustering techniques (unsupervised learning) to detect novel
tunneling variants. This integration of supervised and unsu-
pervised learning methodologies significantly improves the sys-
tem’s adaptability to evolving threats, a crucial advantage in the
rapidly changing landscape of DoH abuse.

These image-based and deep learning approaches represent
a significant departure from traditional detection methods, of-
fering new perspectives on how to analyze and identify mali-
cious patterns in encrypted DNS traffic. By transforming the
detection problem into an image recognition challenge, researchers
have opened new avenues for leveraging advancements in com-
puter vision to enhance network security, particularly in the
context of encrypted protocols like DoH.

2.4. Innovative Adaptation of Hybrid Learning for DoH Anomaly
Detection

While hybrid learning models have demonstrated their effi-
cacy in various domains [29, 30, 31, 32, 33], their application
to DoH abuse detection is a pioneering venture. These mod-
els synergize supervised and unsupervised learning methods, an
approach previously unexplored in the context of DoH anomaly
detection. The promise of this methodology, as demonstrated in
other areas, offers a compelling premise for its potential effec-
tiveness in identifying and mitigating DoH abuse. This research
is among the first to apply such an innovative approach in the
DoH domain, setting a new benchmark in anomaly detection
strategies.

Recent work by [28] demonstrates the growing interest in
hybrid approaches specifically for DoH traffic analysis. By
combining CNN-based feature extraction with clustering algo-
rithms, their research shows how hybrid models can effectively
detect novel variants of tunneling attacks in encrypted DNS
traffic. This approach aligns with our research direction and
confirms the validity of pursuing hybrid methodologies for en-
hanced detection capabilities.

The unique advantage of hybrid approaches is the ability to
combine the predictive accuracy of supervised learning with the
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Figure 2: The HERALD Anomaly Detection Pipeline.

pattern recognition capabilities of unsupervised learning. This
synergy enables a more nuanced understanding and detection
of anomalies within encrypted DNS traffic. Integrating these
methods permits the detection of complex patterns and sub-
tle irregularities, which might be challenging to identify using
traditional single-method approaches. This enhanced detection
capability is crucial in the DoH context, where encryption adds
a layer of complexity to traffic analysis.

Thus, applying hybrid learning models to DoH abuse de-
tection represents a significant advancement in network secu-
rity. By introducing this innovative approach, this research lays
the foundation for more sophisticated and effective methods of
detecting anomalies in encrypted DNS traffic. The promising
results in this study validate the potential of hybrid models in
the DoH context and encourage further exploration and devel-
opment of these technologies which could transform security in
the face of challenges of encrypted traffic.

3. HERALD: Hybrid Ensemble Approach

This section presents an in-depth description of HERALD,
a novel approach for robust anomaly detection in encrypted
DNS traffic. We begin by explaining the rationale and under-
lying principles that inform this approach, followed by describ-
ing the selected components, including the unsupervised base
anomaly detectors and supervised meta-model.

3.1. Design Rationale

The hybrid ensemble approach, integrating unsupervised and
supervised detection methodologies, is designed to address the
intricate challenges of anomaly detection in encrypted DNS
traffic. This approach aims to achieve a harmonious balance
between a high detection rate and a low false-alarm rate, two
critical metrics in network security. Fig. 2 presents a schematic
overview of the HERALD framework.

3.1.1. High Detection Rate
The deployment of unsupervised detectors, which are adept

at identifying diverse anomaly types, is central to the high de-
tection rate. These detectors are particularly valuable owing
to their ability to recognize aberrant patterns that may not be
present in the training dataset. This capability is crucial due to
the dynamic nature of network traffic, where new and unfore-
seen types of anomalies continually emerge.

3.1.2. Low False-Alarm Rate
Complementing the unsupervised detectors, the supervised

meta-model of the ensemble refines the initial detection results.
By scrutinizing the output from unsupervised models, the su-
pervised detector plays a critical role in reducing false alarms.
This aspect is essential in encrypted DNS traffic analysis, where
the objective is to detect anomalies and minimize the misclas-
sification of legitimate traffic.

3.1.3. Additional Advantages
Beyond its core capabilities, the hybrid ensemble approach

offers several additional advantages:

• Adaptability to evolving traffic patterns: The dynamic
nature of network traffic, notably encrypted DNS traffic,
necessitates an adaptable detection system. The hybrid
ensemble approach meets this need by allowing the inte-
gration of new unsupervised base detectors as emerging
threats and traffic patterns evolve. Concurrently, the su-
pervised meta-model is designed to assimilate and learn
from the evolving data, ensuring the system remains rel-
evant and practical.

• Potential for generalization: The success of this approach
in encrypted DNS traffic opens avenues for its application
to other types of encrypted traffic including encrypted
web traffic, encrypted email communications, and poten-
tially other domains where encryption is prevalent. The
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ability to generalize this approach to various contexts sig-
nificantly enhances its utility and applicability in the broader
field of network security.

3.2. Unsupervised Base Anomaly Detectors
In this section, we outline the rationale and methodology for

selecting and implementing unsupervised base detectors within
the HERALD framework. Our approach begins with a system-
atic selection process based on heuristics that aims to optimize
both individual performance and methodological diversity. For-
mally, let D = {d1, d2, . . . , dn} denote the set of candidate detec-
tors, where each detector di represents a distinct anomaly de-
tection algorithm. We evaluated each candidate’s performance
using a score P(di), calculated on validation data through the
precision between actual labels y and predictions ŷi. A detector
is included in our ensemble if its performance exceeds τ × P∗,
where P∗ is the highest performance score observed among all
candidates and τ, an empirically determined threshold, is set
to 0.9. This methodology offers several advantages, including
linear computational complexity (O(n)), transparent and repro-
ducible selection criteria, and a reduced risk of overfitting.

Consequently, three detectors were selected as candidates,
each embodying a unique detection paradigm. The first detec-
tor, Isolation Forest (IF) [34], leverages random feature sub-
space isolation to efficiently identify global anomalies. Its anomaly
score is mathematically defined as:

score(xi, n) = 2−E(h(xi))/c(n)

where E(h(xi)) denotes the average path length in the constructed
isolation trees.

Second, the One-Class Support Vector Machine (OCSVM) [35],
implements a boundary-based approach by optimizing a hyper-
plane in the feature space to segregate normal data from anoma-
lies. Its formulation involves minimizing the objective function:

min
w,b,ξ

1
2
||w||2 +

1
νn

n∑
i=1

ξi − b

subject to the constraints:

wTϕ(xi) ≥ b − ξi, ξi ≥ 0, i = 1, 2, ..., n

where ϕ(·) indicates a mapping function that maps the input data
to a higher-dimensional feature space, ξi denotes a slack vari-
able that allows for some misclassification of training examples,
and ν represents a hyperparameter that controls the fraction of
outliers in the data.

The third detector, the Local Outlier Factor (LOF) [36],
identifies anomalies by comparing the local density of a data
point to that of its neighbors. This method computes the LOF
value for a point Xi by evaluating the ratio between the average
local reachability density of its neighbors to its own, thereby
offering context-aware anomaly identification. Mathematically,
the LOF value is computed as:

LOF(Xi) =

∑
X j∈Nk(Xi) lrd(X j)

∥ NK(Xi) ∥
×

1
lrd(Xi)

where lrd(Xi) is the local reachability distance of Xi and NK(Xi)
the set of k−nearest neighbors of Xi.

The integration of these detectors is a strategic decision un-
derscored by several key advantages:

• Diversity of detection methods: The enhancement of en-
semble models in anomaly detection, particularly in en-
crypted DNS traffic, is significantly bolstered by the di-
versity of their detection methodologies, underscored by
extensive research in ensemble learning [37, 38]. Renowned
for its efficiency in large data sets, IF utilizes an isolation-
based mechanism to identify anomalies, which is effec-
tive for detecting rare and atypical patterns prevalent in
encrypted traffic. Employing a boundary-based approach,
OCSVM excels in establishing a demarcation around nor-
mative data patterns, which is essential for identifying de-
viations within environments where anomalies lack clear
definition. With a local density-based approach, LOF
adds a granular layer of detection by identifying anoma-
lies in the context of their local data neighborhood, mak-
ing it particularly adept at uncovering subtle aberrations.

• Complementarity and robustness: The distinct methods
that these algorithms employ complement each other in
how they detect anomalies. The isolation approach of
IF, the delineation of the normative data boundaries of
OCSVM, and the assessment of local density variances
of LOF integrate synergistically to foster a robust detec-
tion framework, capable of accurately identifying a broad
spectrum of anomalies and enhancing overall reliability
of the system.

However, we recognize that the reliance on individual per-
formance metrics may overlook potential interactions between
detectors, and the fixed-threshold methodology presents trade-
offs between computational efficiency and the exhaustive explo-
ration of detector combinations. Despite these challenges, the
selected ensemble represents a balanced compromise between
simplicity and domain-specific optimization, thus forming a ro-
bust foundation for subsequent anomaly detection within the
HERALD framework.

3.3. Supervised Meta-Model: Random Forest (RF)
The Random Forest (RF) [39] meta-model within the HER-

ALD framework plays a pivotal role in aggregating and in-
terpreting the outputs from unsupervised base detectors. This
supervised meta-model operates on feature vectors defined as
Fi = [ f1, f2, f3], where f1 is the anomaly score of the IF, f2
represents the decision function of the OCSVM, and f3 is the
outlier factor computed by the LOF. The ensemble is configured
with 100 trees, an unrestricted maximum tree depth, a minimum
of 2 samples required to split a node, and employs feature sam-
pling based on the square root of the total number of features.
The architecture of the RF metamodel is shown in Fig. 3

For a given input sample X the meta-model produces an
output defined as:

RF(X) = mode{t1(X), t2(X), ..., tT (X)}
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where each ti(X) corresponds to the prediction from an indi-
vidual tree. The selection of the RF meta-model is driven by its
architectural advantages, such as the ability to automatically de-
tect interactions among features and robustly handle nonlinear
relationships, while inherently leveraging ensemble character-
istics. Additionally, the model offers significant implementa-
tion benefits. It requires minimal hyperparameter tuning, sup-
ports natively heterogeneous input, and provides built-in met-
rics to assess the importance of characteristics.

Performance-wise, the RF meta-model exhibits a training
complexity of O(T × n log n) and a prediction complexity of
O(T × log n), with a memory footprint of O(T × n), where T
represents the number of trees and n denotes the sample size.
This configuration ensures that the meta-model not only en-
hances detection accuracy through ensemble learning but also
maintains computational efficiency, making it an effective com-
ponent of the overall anomaly detection strategy in HERALD.

4. Dataset Description, Analysis, and Preprocessing

This section outlines the dataset employed to train and eval-
uate HERALD by detailing its composition and the prepro-
cessing measures. We provide an analysis of the dataset fea-
tures, highlighting the distinctions between benign and mali-
cious traffic patterns. The preprocessing steps, which are crit-
ical to model accuracy including feature standardization, han-
dling missing values, and class balance are concisely described,
setting a solid foundation for the model’s performance assess-
ment.

4.1. Dataset Description
In this research, we used the widely acknowledged CIRA-

CIC-DoHBrw-2020 dataset [40], provided by the Canadian In-

stitute of Cybersecurity (CIC). This dataset encompasses non-
DoH and DoH traffic. The former represents HTTPS traffic
from visits to Alexa-ranked domains. In contrast, the latter is
classified into benign traffic from browser-based DoH clients
such as Mozilla Firefox and Google Chrome, and malicious
traffic produced using DNS tunneling tools, including dns2tcp,
DNSCat2, and Iodine [40]. This study focused exclusively on
DoH traffic (benign and malicious) to build an ensemble model
for detecting DoH abuse.

The dataset consists of 34 features organized into various
categories such as network endpoint information, flow statis-
tics, and packet statistics. The network endpoint information
encompasses the IP addresses and port numbers of the source
and destination nodes. Flow statistics are subdivided into two
categories: flow timing and duration, containing attributes like
”TimeStamp” and ”Duration”, and flow volume and rate, in-
cluding such attributes as ”FlowBytesSent” and ”FlowSentRate”.
Packet statistics are further segmented into packet length, packet
timing, and response time statistics. Table 1 provides a compre-
hensive breakdown of these categories and their corresponding
features.

4.2. Exploratory Feature Analysis

The feature profiles were thoroughly examined to elucidate
the unique attributes distinguishing benign and malicious DoH
traffic. Consequently, kernel density estimation (KDE) plots
were employed to visualize the classwise density distribution
for ”Duration”, ”FlowBytesSent”, ”FlowBytesReceived”, and
”PacketLengthMean”. This is as shown in Fig. 4. The KDE
plots provide a smooth, continuous visualization of the prob-
ability density functions of various features which is advanta-
geous in discerning subtle differences in the distribution pat-
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Table 1: Categorization of the Dataset’s Features

Category Features
Network endpoint information SourceIP, DestinationIP, SourcePort, DestinationPort
Flow timing and duration TimeStamp, Duration
Flow volume and rate FlowBytesSent, FlowSentRate, FlowBytesReceived, FlowReceivedRate
Packet length statistics PacketLengthVariance, PacketLengthStandardDeviation, PacketLengthMean, PacketLengthMedian,

PacketLengthMode, PacketLengthSkewFromMedian, PacketLengthSkewFromMode, PacketLength-
CoefficientofVariation

Packet timing statistics PacketTimeVariance, PacketTimeStandardDeviation, PacketTimeMean, PacketTimeMedian, Pack-
etTimeMode, PacketTimeSkewFromMedian, PacketTimeSkewFromMode, PacketTimeCoefficientof-
Variation

Response time statistics ResponseTimeTimeVariance, ResponseTimeTimeStandardDeviation, ResponseTimeTimeMean, Re-
sponseTimeTimeMedian, ResponseTimeTimeMode, ResponseTimeTimeSkewFromMedian, Respon-
seTimeTimeSkewFromMode, ResponseTimeTimeCoefficientofVariation

terns between benign and malicious traffic. Unlike histograms
or bar charts, KDE plots offer a nuanced and detailed represen-
tation, allowing for a clear comparison of overlapping densities
and identification of distinct distributional characteristics.

The KDE plots in Fig. 4 reveal distinctive differences be-
tween benign and malicious network activities. Malicious ac-
tivities are characterized by concentrated spikes in short dura-
tions and specific average packet lengths, suggesting a pattern
of behavior. In contrast, benign activities display a wider range
of durations and a broader, more varied distribution in packet
lengths, including occasional high-volume data transmissions
that are atypical of malicious traffic. While malicious activities
might follow a more predictable pattern, benign activities en-
compass a more diverse spectrum of network behavior. These
findings can be instrumental in developing cybersecurity mea-
sures, as the defined characteristics of malicious traffic could
be employed to enhance anomaly detection algorithms and im-
prove network security protocols.

4.3. Data Preprocessing
A systematic approach was employed to prepare the dataset

for analysis and modeling, addressing common data problems
such as missing values, discrepancies in feature scale, and class
imbalance.

4.3.1. Handling Missing Values
The dataset contains 688 missing data points across two

features, which was addressed by imputing missing data points
with the median of the relevant feature distributions. This method
was selected owing to its superior statistical properties, notably
its robustness against the distortion effects of outliers and skewed
data. This approach ensures that the central tendency of the
dataset remains intact, conserving the intrinsic distributional
properties of the data and maintaining the structural integrity
of the dataset. This method facilitates an unbiased analytical
foundation for modeling exercises.

4.3.2. Feature Elimination
Feature elimination was performed to enhance the general-

ization of the model by eliminating attributes that could intro-
duce bias or redundancy. Specifically, categorical network end-
point information such as ”SourceIP”, ”DestinationIP”, ”Sour-
cePort”, and ”DestinationPort” was excluded from the data set.

These features inherently encode node-specific attributes that
may inadvertently lead to model overfitting by associating spe-
cific endpoints with malicious or benign activity rather than
learning intrinsic traffic patterns. Additionally, the ”TimeStamp”
feature was removed to prevent potential temporal biases that
could skew the anomaly detection process.

4.3.3. Feature Standardization
Feature standardization was implemented to ensure unifor-

mity in feature scales using the Robust Scaler, which scales the
features based on the median and interquartile range (IQR). The
transformation is expressed as follows.

Xscaled =
X −median(X)

IQR(X)

Unlike standardization techniques that assume a Gaussian
distribution, the Robust Scaler was specifically chosen because
the KDE plots in Fig. 4 revealed that our dataset exhibits non-
Gaussian characteristics with significant skewness and outliers.
By centering the data around the median and scaling it using
the interquartile range, RobustScaler effectively mitigates the
influence of extreme values, preserving the intrinsic structure of
the dataset while ensuring that feature magnitudes remain com-
parable. This choice is particularly advantageous for anomaly
detection tasks, where preserving the relative spacing between
data points is crucial to identifying deviations from normal pat-
terns.

4.3.4. Dataset Resampling
Initially, the dataset was characterized by a significant class

imbalance, with an overrepresentation of malicious instances
compared to benign ones. Several resampling techniques were
considered, including synthetic minority over-sampling tech-
nique (SMOTE) [41], adaptive synthetic sampling (ADASYN) [42],
and packet conditional generative adversarial networks (Pack-
etCGAN) [43]. However, SMOTE was ultimately selected due
to its computational efficiency, stability, and demonstrated ef-
fectiveness in preserving decision boundaries in high-dimensional
feature spaces.

SMOTE was applied exclusively to the training set to pre-
vent data leakage and ensure that the validation and test sets
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Figure 4: Comparative kernel density estimation (KDE) plots of network traffic features.
.

remained representative of real-world distributions. This tech-
nique synthesizes new instances in the minority class by inter-
polating between existing, similar instances. It selects a minor-
ity class instance a and determines its k-nearest minority class
neighbors. A synthetic instance is created by choosing one of
these k neighbors, b, and generating a new instance at a ran-
dom point along the line segment joining a and b. Formally, the
synthetic instance s is given by:

s = a + (b − a) · λ

where λ is a random number between 0 and 1.
The preference for SMOTE was due to three key contextual

factors. First, its deterministic interpolation mechanism facili-
tated reproducible and computationally efficient sample gener-
ation, aligning with the need for resource-aware training cycles.
Second, SMOTE’s localized sampling strategy mitigated the
risk of over-adaptation, a challenge associated with ADASYN’s
boundary-focused approach, which could reduce generalizabil-
ity in imbalanced threat detection scenarios [44]. Lastly, by
restricting SMOTE’s application to the training set, the valida-
tion and test sets preserved their original real-world distribu-
tions, ensuring an unbiased evaluation of model performance.
Consequently, SMOTE provided an optimal balance between
synthetic diversity, computational efficiency, and feature space
integrity, making it well-suited for the HERALD framework’s
operational requirements.

5. Model Training and Evaluation

This section delineates the structured training process of the
individual base detectors and the RF meta-model constituting
the HERALD approach. This section details the dataset parti-
tioning, specialized training, feature extraction, and their inte-
gration within the ensemble. Evaluation metrics, performance
comparisons, and a comprehensive assessment of the predictive
capabilities of the ensemble are also presented.

5.1. Model Training

The HERALD framework implements a sophisticated train-
ing methodology that systematically integrates unsupervised base
detectors with a supervised meta-learning approach to achieve
optimal anomaly detection performance. This section details
the structured training protocol across the pipeline’s compo-
nents.

5.1.1. Dataset Partitioning and Preparation
Following the data processing phase, the dataset underwent

a three-way split: 70 percent for training, 15 percent for vali-
dation, and 15 percent for testing, as illustrated in Fig. 2. To
address class imbalance challenges inherent in cybersecurity
datasets, SMOTE balancing was exclusively applied to the train-
ing partition while validation and test sets maintained their orig-
inal distributions to ensure realistic performance evaluation. The
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training set was further segregated based on traffic classifica-
tion (benign/malicious) to accommodate the specific learning
requirements of each base detector.

5.1.2. Unsupervised Base Detector Training
The HERALD pipeline incorporates three complementary

unsupervised detection algorithms, each trained according to
its optimal learning paradigm:

• IF was trained on the complete spectrum of training data
(benign and malicious) to effectively model outliers within
the feature space.

• OCSVM was trained exclusively on benign traffic sam-
ples to establish a comprehensive boundary representing
normal network behavior.

• LOF similarly focused on benign traffic patterns to de-
velop localized density estimations for anomaly identifi-
cation.

Each detector generates a corresponding anomaly score (IF Score,
OCSVM Score, and LOF Score) that quantifies deviation from
expected behavior patterns.

5.1.3. Heuristic-based Detector Selection
Prior to meta-learning, HERALD employs a critical detec-

tor selection phase as detailed in Section III. This selection
mechanism evaluates the performance of individual base de-
tectors using a comparative threshold approach. Specifically, a
detector is included in the ensemble if and only if its perfor-
mance exceeds τ × P∗, where P∗ represents the highest perfor-
mance score observed among all candidate detectors, and τ is
an empirically determined threshold set to 0.9. This selection
criterion ensures that only detectors performing within 10 per-
cent of the best-performing detector are propagated to the meta-
learning phase. The heuristic-based detector selection mecha-
nism illustrated in Fig. 2 implements this threshold-based fil-
tering, which optimizes the ensemble’s discrimination capabil-
ities by eliminating underperforming detectors while maintain-
ing sufficient diversity in detection approaches. This interme-
diate selection step enhances both the computational efficiency
and overall effectiveness of the final ensemble model.

5.1.4. Feature Vector Integration
Following detector selection, the anomaly scores produced

by the selected base detectors were extracted and consolidated
into an integrated feature vector. This transformation process
converts the raw outputs from the unsupervised models into
structured numerical representations that encapsulate diverse
perspectives on potential anomalies. These feature vectors serve
as the foundation for the subsequent meta-learning phase, bridg-
ing the unsupervised and supervised components of the HER-
ALD pipeline.

5.1.5. Meta-Model Training
The RF meta-model represents the supervised learning com-

ponent of HERALD, utilizing the integrated feature vectors from
the selected base detectors. This meta-model was trained to
synthesize the insights from individual detectors into a cohe-
sive classification framework. During training, the meta-model
learns optimal detector weighting patterns based on their demon-
strated effectiveness during the selection phase. This approach
enables HERALD to leverage complementary strengths across
detection methodologies while minimizing their individual lim-
itations. The final ensemble model resulting from this training
process integrates both unsupervised anomaly detection capa-
bilities and supervised classification precision, culminating in a
robust binary classification system for DoH traffic.

5.2. Model Evaluation
Following the systematic training of HERALD including

the unsupervised base models and supervised meta-model, we
evaluated how the model performs on the testing dataset. The
testing dataset comprises 49968 malicious samples and 3961
benign samples. This section describes the structured assess-
ment methodology, including the model evaluation metrics, con-
fusion matrix, and performance comparison of the base models
and hybrid ensemble model.

5.2.1. Model Evaluation Metrics
The hybrid ensemble model was rigorously evaluated using

a range of metrics crucial to understanding its performance in
categorizing encrypted DNS traffic. The critical metrics used
for this evaluation include the following:

• Accuracy: This metric measures the proportion of true
results (both true positives and true negatives) among the
total number of examined cases defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP denotes true positives, TN represents true neg-
atives, FP indicates false positives, and FN denotes false
negatives.

• Precision: Precision measures the accuracy of the posi-
tive predictions defined as follows:

Precision =
TP

TP + FP
(2)

indicating the proportion of positive detections that are
correct.

• Recall (sensitivity): Recall measures the ability of the
model to identify all relevant instances, representing the
proportion of correctly identified positives, defined as fol-
lows:

Recall =
TP

TP + FN
(3)

• F1-Score: The F1-score is the harmonic mean of the pre-
cision and recall, offering a single metric that balances
them, calculated as follows:

F1 − S core =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)
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Figure 5: Confusion matrices for HERALD model performance evaluation showing both absolute counts (left) and percentages (right).

Table 2: Performance Comparison of All Models

Model Accuracy Precision Recall F1-Score AUC-ROC Training Inference
Time (s) Time (ms)

IF 0.58 0.57 0.58 0.57 0.58 40 0.5
OCSVM 0.56 0.55 0.56 0.56 0.55 45 13.0
LOF 0.60 0.59 0.60 0.59 0.58 50 2.5
RF 0.9998 0.9999 0.9998 0.9999 1.0000 100 1.2
GB 0.9999 0.9999 0.9999 0.9999 1.0000 120 0.2
SVM 0.93 0.89 1.00 0.96 0.96 290 32.0
CNN 0.98 0.97 0.98 0.98 0.99 140 2.3
RNN 0.98 0.98 0.98 0.98 0.99 160 2.9
HERALD 0.9999 0.9999 0.9999 0.9999 1.0000 110 2.2

5.2.2. Confusion Matrices
The confusion matrices for the hybrid ensemble model, as

depicted in Fig. 5, provide a nuanced assessment of its detection
capabilities. The model demonstrated exceptional performance
in identifying true negatives, correctly classifying 49,963 ma-
licious samples out of 49,968, with a precision rate of 99.99
percent. Similarly, the model exhibited strong accuracy in rec-
ognizing benign traffic, correctly identifying 3,957 out of 3,961
benign samples, achieving a 99.90 percent true positive rate.
The model demonstrated minimal error in both directions, with
only 4 benign samples (0.10 percent) misclassified as mali-
cious and merely 5 malicious samples (0.01 percent) incorrectly
labeled as benign. This balanced performance is particularly
noteworthy given the significant class imbalance in the dataset,
where malicious samples constitute approximately 92.7 percent
of the total. The model’s ability to maintain high detection rates
while minimizing both false positives and false negatives under-
scores its effectiveness in security applications where both ac-
curate threat detection and reduction of false alarms are critical
requirements.

5.3. Performance Comparison
The proposed approach was compared with alternative mod-

eling approaches to contextualize the performance of the hybrid
ensemble model: purely unsupervised models, purely super-
vised models, and deep learning models.

5.3.1. Comparison with Purely Unsupervised Models
For purely unsupervised models, we compared HERALD

against the individual unsupervised base detectors, revealing a
clear advantage of the hybrid ensemble approach. As shown
in Fig. 6 and Table 2, the base unsupervised models demon-
strated limited detection capabilities. The IF model achieved
accuracy, precision, and recall values of approximately 0.58,
indicating a balanced but significantly constrained capability in
identifying malicious activities. Similarly, OCSVM displayed
comparable limitations with performance metrics around 0.56,
suggesting difficulties in distinguishing between classes. The
LOF model performed marginally better with metrics near 0.60,
but still fell substantially short of acceptable standards for op-
erational deployment. In contrast, HERALD significantly out-
performed each of these base detectors, achieving near-perfect
scores across all metrics, demonstrating the efficacy of integrat-
ing these models within a hybrid ensemble framework.

5.3.2. Comparison with Purely Supervised Models
In the evaluation against leading supervised models includ-

ing RF, Gradient Boosting (GB), and SVM, HERALD exhib-
ited exceptional performance, establishing new benchmarks in
encrypted DNS traffic anomaly detection. As illustrated in Fig-
ure 6 and detailed in Table 2, traditional supervised models like
RF and GB demonstrated strong performance with metrics con-
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sistently above 0.99. The SVM model showed slightly lower
performance with an accuracy of 0.93 and recall of 1.0, but
with a reduced F1-score of 0.96 due to precision limitations.
Furthermore, SVM demonstrated prohibitively high computa-
tional requirements with a training time of 290 seconds—nearly
three times higher than HERALD. HERALD achieved compa-
rable or marginally superior performance to the best supervised
models with an accuracy of 0.9999, F1-score of 0.9999, preci-
sion of 0.9999, and recall of 0.9999. Importantly, as shown in
Figure 7, HERALD achieved this performance with moderate
computational requirements, representing an optimal balance
between detection capability and efficiency compared to purely
supervised approaches.

5.3.3. Comparison with Deep Learning Models
To provide a comprehensive evaluation, we compared HER-

ALD against state-of-the-art deep learning approaches, specif-
ically Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN), which have gained prominence in net-
work traffic analysis. As shown in Table 2, both CNN and RNN
models demonstrated strong performance with consistent accu-
racy, precision, recall, and F1-scores of 0.98, and AUC-ROC
values of 0.99. While these results highlight the capability of
deep learning methods to effectively model complex patterns in
encrypted DNS traffic, they still fall short of the near-perfect
performance achieved by HERALD (0.9999 across all metrics
with an AUC-ROC of 1.0000). These findings suggest that
while deep learning models offer sophisticated pattern recog-
nition capabilities, the structured integration of multiple com-
plementary models in HERALD’s hybrid framework provides
a more effective and balanced solution for DoH traffic anomaly
detection.

5.3.4. Computational Efficiency Analysis
Beyond training efficiency, operational deployment consid-

erations necessitate evaluating model inference time, i.e., the
computational cost of generating predictions in real-world set-
tings. As shown in Table 2 and Figure 7, inference time varied
significantly across models. The GB model demonstrated ex-
ceptional inference speed (0.2 ms), followed by IF (0.5 ms) and
RF (1.2 ms). However, this computational efficiency must be
contextualized alongside detection performance; while GB and
IF offer rapid inference, only GB provides comparable detec-
tion capabilities to HERALD. HERALD achieved competitive
inference performance (2.2 ms), comparable to CNN (2.3 ms)
and marginally faster than RNN (2.9 ms). The most computa-
tionally intensive models were SVM (32 ms inference, 290 sec-
onds training) and OCSVM (13 ms inference), exhibiting laten-
cies significantly higher than other approaches. SVM, in par-
ticular, represents the most computationally demanding model
in both training and inference phases. These findings reveal
that training time and inference time are not necessarily corre-
lated, with some models demonstrating inefficient performance
in both dimensions (SVM), while others exhibited efficient in-
ference despite varying training requirements (GB, IF).
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Figure 6: Performance metrics comparison across different models. The chart
compares accuracy, precision, recall, F1-score, and AUC-ROC values for un-
supervised learning methods (IF, OCSVM, LOF), supervised learning methods
(RF, GB, SVM), and deep learning approaches (CNN, RNN) alongside our pro-
posed HERALD approach.
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Figure 7: Performance-efficiency tradeoff visualization showing the relation-
ship between accuracy, training time, and inference time across all evaluated
models.

5.4. Cross-Dataset Performance Analysis

To comprehensively evaluate HERALD’s generalizability
and robustness in detecting DoH anomalies across different traf-
fic contexts, we extended our evaluation beyond the CIRA-
CIC-DoHBrw-2020 dataset to include two specialized datasets:
DoH-DGA-Malware-Traffic-HKD [45] and DoH-Tunnel-Traffic-
HKD [46]. The datasets are described in Table 3.

The DoH-DGA-Malware-Traffic-HKD dataset contains 4,212
flows representing four malware families: Tinba (42.9%), Pad-
crypt (19.9%), Zloader (19.5%), and Sisron (17.7%), with flow
durations ranging from 0 to 170.7 seconds and an average of
72.4 seconds. The significantly larger DoH-Tunnel-Traffic-HKD
dataset comprises 98,080 flows from three DNS tunneling tools:
dns2tcp (47.0%), dnstt (30.6%), and iodine (29.6%), with du-
rations spanning 0 to 135 seconds and averaging 68.2 seconds.
Both datasets utilize the same 34 statistical features as the CIRA-
CIC-DoHBrw-2020 dataset, ensuring feature compatibility for
cross-dataset evaluation. While the malware dataset presents
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challenges through high behavioral diversity across families,
the tunneling dataset introduces complexity via obfuscation tech-
niques and legitimate tool mimicry. These datasets enable com-
prehensive evaluation of HERALD’s generalization capabilities
across malware family identification and covert tunneling de-
tection scenarios.

Furthermore, unlike the CIRA-CIC-DoHBrw-2020 dataset,
which contains both benign and malicious traffic samples, the
DoH-DGA-Malware-Traffic-HKD and DoH-Tunnel-Traffic-HKD
datasets predominantly contain malicious traffic. This presents
a methodological challenge for binary classification models that
require both positive and negative samples for training and eval-
uation. To address this challenge, we employed a specialized
evaluation framework as detailed below.

5.4.1. Methodology and Performance Metrics
The methodology for cross-dataset evaluation was designed

to rigorously assess HERALD’s detection capabilities across
diverse datasets and attack scenarios. The process began with
the construction of hybrid evaluation datasets, which were cre-
ated by combining malicious traffic from the DoH-DGA-Malware-
Traffic-HKD and DoH-Tunnel-Traffic-HKD datasets with be-
nign traffic samples from the CIRA-CIC-DoHBrw-2020 dataset.
This approach preserved the binary classification paradigm while
introducing novel malicious patterns for evaluation.

To evaluate HERALD’s ability to generalize to previously
unseen attack vectors, a transfer learning paradigm was em-
ployed. Models were trained on the CIRA-CIC-DoHBrw-2020
dataset and tested on the constructed hybrid datasets. This zero-
shot detection approach assessed the model’s capability to iden-
tify malicious patterns without prior exposure to specific attack
types, highlighting its adaptability to new threats.

Further granularity was achieved through attack-type-specific
analysis, where malicious traffic was categorized to evaluate
HERALD’s performance across different threat vectors. This
included assessing detection capabilities for Domain Genera-
tion Algorithm (DGA)-based malware traffic, analyzing perfor-
mance on various DNS tunneling techniques, and identifying
novel attack patterns that posed detection challenges.

To ensure a comprehensive and rigorous evaluation, a range
of performance metrics was employed. Standard classification
metrics such as accuracy, precision, recall, F1-score, and AUC-
ROC were used alongside security-focused metrics, including
detection rate (DR), false positive rate (FPR), and false nega-
tive rate (FNR). Additionally, stability metrics such as perfor-
mance degradation rate (PDR) and Matthew’s Correlation Co-
efficient (MCC) were utilized to evaluate performance consis-
tency and robustness, particularly in imbalanced dataset sce-
narios. This multi-faceted approach provided a thorough as-
sessment of HERALD’s effectiveness and generalizability in
detecting diverse and evolving threats.

5.4.2. Performance Comparison
Table 4 presents a comprehensive performance compari-

son, revealing key insights into model behavior. All models
exhibited some degree of performance degradation when eval-
uated on additional datasets compared to the original CIRA-

CIC-DoHBrw-2020 dataset, indicating that the new datasets
introduced novel attack patterns with distinctive characteris-
tics. HERALD consistently outperformed all baseline models,
demonstrating significant advantages on the additional datasets.
While purely supervised models like RF and GB showed con-
siderable performance drops when faced with new attack pat-
terns, HERALD maintained exceptional detection capabilities
with minimal degradation, underscoring the effectiveness of its
hybrid architecture. The DoH-Tunnel-Traffic-HKD dataset proved
more challenging than the DoH-DGA-Malware-HKD dataset
across all models, suggesting that tunneling techniques employ
more sophisticated obfuscation methods that closely mimic le-
gitimate traffic patterns. HERALD exhibited only 2-4 percent
performance degradation on new datasets, compared to 5-8 per-
cent for purely supervised models, highlighting its superior gen-
eralization ability by leveraging the complementary strengths of
supervised and unsupervised approaches. Deep learning mod-
els like CNN and RNN showed significant performance degra-
dation, indicating potential overfitting to specific patterns in the
training data, a limitation effectively mitigated by HERALD’s
hybrid ensemble approach.

Further analysis by attack type provided targeted insights
for security improvements. HERALD achieved a 97.32 per-
cent detection rate for DGA-based malicious traffic and 95.73
percent for DoH tunneling traffic, outperforming baseline mod-
els such as GB (95.83 and 93.11 percent respectively) and RF
(93.56 and 91.02 percent respectively). Additionally, HERALD
maintained remarkably low false positive rates across datasets
(2.12 percent for DGA-Malware and 3.67 percent for Tunnel-
ing), significantly outperforming baseline models like GB (3.12
percent and 5.42 percent) and RF (4.78 percent and 7.69 per-
cent). This balance between high detection capability and min-
imal false alarms makes HERALD particularly suitable for op-
erational deployment in production environments, where false
positives can significantly impact workflow efficiency.

6. Interpretability Analysis

This section presents a comprehensive interpretability anal-
ysis of HERALD. We employed feature importance plots to ex-
tract the relative influence of the integrated detection method-
ologies, ALE plots to elucidate the relationships between crit-
ical features and the predictive outcomes, and LIME plots to
provide instance-based insight into the decision-making pro-
cess for HERALD. This analysis aims to clarify the operational
mechanics of the ensemble, explaining the contributions of in-
dividual algorithms and the influence of specific feature varia-
tions on the model predictions.

6.1. Feature Importance Analysis

Understanding the relative contributions of individual anomaly
detection components within HERALD is essential for optimiz-
ing its predictive performance in encrypted DNS traffic. To this
end, we conducted a built-in feature importance analysis, quan-
tifying the contributions of IF, OCSVM, and LOF to the ensem-
ble model.
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Table 3: Comprehensive Characteristics of Supplementary Evaluation Datasets

Aspect DoH-DGA-Malware-Traffic-HKD DoH-Tunnel-Traffic-HKD
Scale 4,212 flows, 4 malware families 98,080 flows, 3 tunneling tools
Families/Tools Tinba (42.9%), Padcrypt (19.9%), Zloader (19.5%), Sis-

ron (17.7%)
dns2tcp (47.0%), dnstt (30.6%), iodine (29.6%)

Features 34 features (same as CIRA- CIC-DoHBrw-2020) 34 features (same as CIRA- CIC-DoHBrw-2020)
Duration Range 0–170.7 seconds (avg: 72.4s) 0–135 seconds (avg: 68.28s)
Key Challenge High behavioral diversity across families Obfuscation and legitimate tool mimicry
Primary Application Malware family identification Covert tunneling detection

Table 4: Cross-Dataset Performance Comparison of All Models

Model Dataset Acc. Prec. Rec. F1 AUC DR FPR PDR MCC
IF CIRA-CIC-DoHBrw-2020 0.58 0.57 0.58 0.57 0.58 0.58 0.43 - 0.15

DoH-DGA-Malware-HKD 0.55 0.54 0.56 0.55 0.56 0.56 0.46 0.035 0.10
DoH-Tunnel-Traffic-HKD 0.53 0.52 0.54 0.53 0.54 0.54 0.48 0.070 0.06

OCSVM CIRA-CIC-DoHBrw-2020 0.56 0.55 0.56 0.56 0.55 0.56 0.45 - 0.11
DoH-DGA-Malware-HKD 0.54 0.53 0.55 0.54 0.54 0.55 0.47 0.036 0.08
DoH-Tunnel-Traffic-HKD 0.52 0.51 0.53 0.52 0.53 0.53 0.49 0.071 0.04

LOF CIRA-CIC-DoHBrw-2020 0.60 0.59 0.60 0.59 0.58 0.60 0.41 - 0.19
DoH-DGA-Malware-HKD 0.58 0.57 0.59 0.58 0.57 0.59 0.43 0.017 0.16
DoH-Tunnel-Traffic-HKD 0.56 0.55 0.57 0.56 0.56 0.57 0.44 0.051 0.13

RF CIRA-CIC-DoHBrw-2020 0.9998 0.9999 0.9998 0.9999 1.0000 0.9998 0.0001 - 0.9997
DoH-DGA-Malware-HKD 0.9423 0.9534 0.9356 0.9444 0.9612 0.9356 0.0478 0.0555 0.8889
DoH-Tunnel-Traffic-HKD 0.9156 0.9245 0.9102 0.9173 0.9394 0.9102 0.0769 0.0826 0.8333

GB CIRA-CIC-DoHBrw-2020 0.9999 0.9999 0.9999 0.9999 1.0000 0.9999 0.0001 - 0.9998
DoH-DGA-Malware-HKD 0.9612 0.9699 0.9583 0.9640 0.9785 0.9583 0.0312 0.0359 0.9280
DoH-Tunnel-Traffic-HKD 0.9347 0.9462 0.9311 0.9386 0.9568 0.9311 0.0542 0.0613 0.8774

SVM CIRA-CIC-DoHBrw-2020 0.93 0.89 1.00 0.96 0.96 1.00 0.12 - 0.88
DoH-DGA-Malware-HKD 0.88 0.83 0.96 0.89 0.91 0.96 0.20 0.0729 0.76
DoH-Tunnel-Traffic-HKD 0.85 0.79 0.93 0.85 0.87 0.93 0.25 0.1146 0.69

CNN CIRA-CIC-DoHBrw-2020 0.98 0.97 0.98 0.98 0.99 0.98 0.03 - 0.95
DoH-DGA-Malware-HKD 0.93 0.92 0.94 0.93 0.94 0.94 0.08 0.0510 0.86
DoH-Tunnel-Traffic-HKD 0.90 0.89 0.91 0.90 0.92 0.91 0.12 0.0816 0.79

RNN CIRA-CIC-DoHBrw-2020 0.98 0.98 0.98 0.98 0.99 0.98 0.02 - 0.96
DoH-DGA-Malware-HKD 0.94 0.93 0.94 0.93 0.95 0.94 0.07 0.0510 0.87
DoH-Tunnel-Traffic-HKD 0.91 0.90 0.91 0.90 0.93 0.91 0.10 0.0816 0.81

HERALD CIRA-CIC-DoHBrw-2020 0.9999 0.9999 0.9999 0.9999 1.0000 0.9999 0.0001 - 0.9998
DoH-DGA-Malware-HKD 0.9764 0.9795 0.9732 0.9763 0.9912 0.9732 0.0212 0.0236 0.9527
DoH-Tunnel-Traffic-HKD 0.9587 0.9642 0.9573 0.9607 0.9832 0.9573 0.0367 0.0392 0.9215

The feature importance analysis reveals a distinct hierarchy
in the influence of each algorithm. OCSVM emerges as the
most influential component, contributing the highest proportion
(48 percent) to the model’s predictive capability. This suggests
that the decision boundary learned by OCSVM effectively dif-
ferentiates normal traffic from anomalies in the encrypted DNS
setting. The high importance score of OCSVM may stem from
its ability to generalize across diverse anomaly types, particu-
larly in scenarios where normal traffic distributions are complex
and non-stationary.

Following closely, IF demonstrates substantial influence (40
percent), reinforcing its effectiveness in detecting anomalies by
isolating instances that deviate significantly from the majority
of the data. IF’s contribution highlights its robustness in han-
dling encrypted DNS traffic, where anomalous patterns are of-
ten scattered across different regions of the feature space. The
relatively high importance score of IF suggests that its partitioning-
based anomaly detection mechanism is well-suited for this prob-
lem domain.

In contrast, LOF exhibits the lowest feature importance (12
percent), indicating that its local density-based anomaly detec-
tion approach contributes less significantly to the overall en-

semble. While LOF has traditionally been effective in iden-
tifying anomalies based on local neighborhood deviations, its
lower influence in this setting suggests that anomalies in en-
crypted DNS traffic may not always be well-captured by local
density variations. This finding warrants further investigation
into the parameter tuning of LOF or the potential integration
of additional anomaly detection techniques that can better com-
plement the strengths of IF and OCSVM.

This feature importance analysis underscores the pivotal role
of OCSVM and IF in HERALD’s anomaly detection frame-
work, with LOF playing a more limited role. These insights
provide a foundation for refining the ensemble by adjusting
algorithmic weights or exploring alternative detection mecha-
nisms to enhance performance.

6.2. Accumulated Local Effects Analysis

To complement the feature importance analysis, ALE plots
(Fig. 8) were employed to examine the influence of individual
features on the model’s predictive behavior. These plots pro-
vide an interpretable visualization of feature effects across their
value range while accounting for interactions with other fea-
tures.
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Figure 8: Accumulated Local Effects (ALE) plots for base detectors used in HERALD. The plots show the effect of detector score variations on the final meta-model
output probability, providing insights into how each detector contributes to the ensemble decision.

The ALE plot for the IF Score shows a monotonically de-
creasing trend, indicating that as the IF Score increases, its ef-
fect on the model prediction decreases. This behavior aligns
with the IF methodology, where lower anomaly scores typically
indicate more anomalous instances. The effect size is moderate,
suggesting that while the IF Score influences the model’s pre-
dictions, its impact is not dominant.

The ALE plot for the OCSVM Score reveals a highly non-
linear effect on model predictions. There are sharp fluctua-
tions in the lower score range, suggesting that the OCSVM
score strongly impacts anomaly detection for extreme values.
However, as the score increases, the effect stabilizes, indicat-
ing that OCSVM’s influence is more significant in detecting
pronounced anomalies but diminishes for scores closer to the
normal range.

For the LOF Score, the ALE plot demonstrates a mixed in-
fluence on model predictions. Initially, the effect is negative
for low values, suggesting a contribution to anomaly detection.
However, as the LOF score increases, the effect becomes more
variable, indicating that LOF’s influence on predictions is more
complex and dataset-dependent. This behavior highlights the
adaptive nature of LOF, which considers local density varia-
tions when identifying anomalies.

Overall, the ALE analysis underscores that OCSVM ex-
hibits the most dynamic influence, particularly in detecting ex-
treme anomalies. IF contributes more consistently but with a
decreasing effect as scores rise. LOF shows a more variable and
dataset-dependent effect, reflecting its sensitivity to local den-
sity structures. These insights enhance model interpretability
and provide avenues for refining anomaly detection strategies.

6.3. Statistical Analysis of Detector Contributions

To quantify the influence of each anomaly detection model,
statistical contributions were analyzed from the ALE results
as shown in Table 5. The mean effect values suggest that IF
(0.0020) has a slight positive contribution, while OCSVM (-
0.0001) and LOF (-0.0000) have negligible average effects. How-
ever, their standard deviations (std effect) indicate that OCSVM
(0.2641) exhibits the highest variability in its effect, implying a
more dynamic influence on the predictions.

The maximum and minimum effect values further highlight
this variability, with OCSVM (max: 0.7316, min: -0.7810)
showing the largest spread, suggesting that it strongly influ-
ences model decisions in both positive and negative directions.
In contrast, LOF (max: 0.1251, min: -0.4971) has a more con-
strained effect, meaning that it contributes less significantly to
model decisions.

Additionally, the stability metric suggests that IF (0.0094)
is the most stable detector, while LOF (0.0023) is the least sta-
ble, indicating that LOF’s impact on predictions fluctuates more
depending on feature values.

To statistically assess differences between detectors, Kolmogorov-
Smirnov (KS) tests were performed. The results reveal signif-
icant differences between all three detectors (p-value ≈ 0.0000
in all comparisons). The highest KS statistic (0.4659) between
OCSVM and LOF suggests that these two detectors behave
most differently in their feature contributions.

6.4. Local Interpretable Model-agnostic Explanations

In advancing the interpretability of HERALD, we employed
LIME to analyze model predictions at the instance level. LIME
provides localized explanations, shedding light on the specific
contributions of individual features in each decision, thereby
clarifying how HERALD differentiates between normal and anoma-
lous encrypted DNS traffic.

LIME visualizations were generated for multiple instances
to ensure a comprehensive analysis. The findings from three
representative instances, corresponding to IF, OCSVM, and LOF,
reveal distinct patterns in anomaly detection:

• The LIME plot in Fig. 9a shows that IF made a strong
positive contribution (approximately+0.15) when its score
was above -0.35, meaning it strongly signaled this case
as anomalous. The LOF detector also contributed posi-
tively (+0.08) when its score exceeded 1.18, reinforcing
the anomaly classification. OCSVM had minimal influ-
ence in this case, with only a slight contribution in its op-
erating range. Overall, both IF and LOF aligned in their
assessment, driving this instance toward being classified
as an anomaly.
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Table 5: Statistical Contributions and Significance Tests of Anomaly Detectors

Metric IF OCSVM LOF
Mean Effect 0.0020 -0.0001 -0.0000
Std Effect 0.1764 0.2641 0.0530
Max Effect 0.4026 0.7316 0.1251
Min Effect -0.3640 -0.7810 -0.4971
Effect Range 0.7667 1.5126 0.6222
Abs Mean Effect 0.1528 0.2203 0.0407
Stability 0.0094 0.0040 0.0023

Comparison IF vs OCSVM IF vs LOF OCSVM vs LOF
KS Statistic 0.2028 0.395 0.4659
P-Value 0.0000 0.0000 0.0000

• In contrast, the LIME plot in Fig. 9b reveals a differ-
ent dynamic between the detectors. OCSVM was the
dominant influence, but with a significant negative con-
tribution (approximately -0.08), pushing against classify-
ing this as an anomaly. This occurred when OCSVM’s
score was quite low (3099.54), outside its typical range
for anomalies. Meanwhile, LOF provided a moderate
positive contribution (+0.02) within a specific score range
(1.06-1.18), and IF showed a small positive effect (+0.06)
when its score was below -0.43. This instance demon-
strates how HERALD resolves competing signals, with
OCSVM’s strong negative influence partially offset by
the positive contributions from the other detectors.

• The instance in Fig. 9c highlights a complex interaction
between all three detectors. LOF made a substantial posi-
tive contribution (+0.06), strongly suggesting an anomaly.
However, both OCSVM and IF countered this assess-
ment with negative contributions (-0.03 and -0.05 respec-
tively). OCSVM’s negative influence occurred when its
score was between 17505.44 and 17505.61, while IF’s
negative contribution appeared when its score was below
0.43. This case illustrates HERALD’s ability to weigh
conflicting signals from different detection methods, with
LOF’s anomaly indication partially counterbalanced by
opposing signals from both OCSVM and IF.

These LIME insights complement the broader feature impor-
tance and ALE analyses by offering granular explanations for
individual decisions. The results underscore HERALD’s capac-
ity to integrate diverse anomaly detection mechanisms, lever-
aging the RF meta-model’s ability to synthesize heterogeneous
signals dynamically. Furthermore, the interplay between base
detectors emphasizes the importance of feature space calibra-
tion, particularly for OCSVM, which exhibited high sensitivity
across different instances.

6.5. Synthesis of Interpretability Analysis

A comprehensive understanding of HERALD’s decision-
making process requires integrating multiple interpretability tech-
niques: Feature Importance, ALE, and LIME. Each method il-
luminates distinct yet complementary aspects of the model’s
behavior. Feature Importance quantifies each base detector’s

overall contribution, ALE reveals their global effects across dif-
ferent score ranges, and LIME provides granular insights into
specific instance classifications.

The Feature Importance analysis establishes a clear influ-
ence hierarchy among base detectors. OCSVM emerges as the
most influential component (0.48 importance), followed closely
by IF (0.40), with LOF contributing substantially less (0.12).
This distribution indicates that while OCSVM and IF serve as
primary drivers of HERALD’s classification outcomes, all three
detectors play meaningful roles in the ensemble.

ALE plots (Fig. 8) reveal more nuanced patterns in how
each detector’s influence varies across different score ranges.
OCSVM exhibits the most dramatic effect fluctuations (ranging
from -0.78 to 0.73), with particularly strong responses at ex-
treme values. This suggests OCSVM excels at distinguishing
clear anomalies from normal traffic. IF demonstrates a more
gradual transition from positive to negative effects as scores
increase, indicating a more consistent but evolving influence.
LOF, despite having the smallest overall impact, shows com-
plex oscillating patterns, confirming its contribution is highly
context-dependent and particularly valuable for specific traffic
patterns.

The statistical analysis reinforces these observations, with
OCSVM showing the highest standard deviation (0.2641) and
widest effect range (1.5126), while IF demonstrates the highest
stability (0.0094). These metrics quantify OCSVM’s dynamic
response capabilities versus IF’s more stable contribution pat-
tern.

At the instance level, LIME plots (Fig. 9) illustrate how
detector contributions vary across specific cases. In some in-
stances, IF and LOF align to reinforce a classification decision
(as in Instance 1). In others, OCSVM may provide a strong
signal in opposition to the other detectors (Instance 2), or the
detectors may exhibit competing influences that create a more
balanced decision process (Instance 3). These varied interac-
tion patterns demonstrate HERALD’s adaptability to different
anomaly manifestations.

By synthesizing these interpretability findings, a key char-
acteristic of HERALD becomes evident: its ability to balance
strong global influences with localized adaptability. OCSVM
provides powerful discrimination for clear anomalies, IF offers
consistent and gradually evolving signals across the score spec-
trum, and LOF contributes targeted refinements for specific data
patterns. This complementary integration ensures the model
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(c) Instance 3

Figure 9: Local interpretable model-agnostic explanations (LIME) interpretability plots for individual predictions in HERALD.

leverages each detector’s strengths while compensating for in-
dividual weaknesses.

HERALD’s ensemble architecture effectively combines these
diverse detection signals through a meta-model that dynami-
cally weighs their contributions according to the specific char-
acteristics of each traffic instance. This adaptive approach en-
ables superior performance across diverse network environments
and threat scenarios, optimizing both predictive accuracy and
operational reliability. Moreover, the interpretability mecha-
nisms integrated into HERALD provide security analysts with
transparent insights into detection decisions, enhancing trust
and facilitating effective response to potential threats.

7. Concluding Remarks

This study introduces HERALD, a novel hybrid ensemble
approach for detecting anomalies within encrypted DNS traf-
fic. By integrating unsupervised base detectors (IF, OCSVM,
and LOF) with a supervised RF meta-model, HERALD effec-
tively leverages the complementary strengths of both learning
paradigms. Our comprehensive evaluation demonstrates HER-
ALD’s exceptional performance, achieving 99.99 percent across

accuracy, precision, recall, and F1-score metrics, while main-
taining competitive computational efficiency with 110s training
time and 2.2ms inference time. The cross-dataset evaluation
particularly highlights HERALD’s superior generalization ca-
pabilities, exhibiting only 2-4 percent performance degradation
when tested on previously unseen attack patterns compared to
5-8 percent for purely supervised models. This robustness to
novel threats represents a significant advancement for opera-
tional security systems that must adapt to evolving attack tech-
niques.

Our interpretability analysis illuminates the inner workings
of HERALD, revealing that OCSVM serves as the primary driver
of classifications, contributing the highest influence to the model’s
decisions, followed by IF, with LOF playing a more supportive
role. The synthesis of these interpretability findings demon-
strates HERALD’s ability to balance strong global influences
with localized adaptability, dynamically integrating diverse de-
tection signals based on specific traffic characteristics.

However, the transition from experimental validation to op-
erational deployment requires careful consideration of several
practical factors. HERALD’s deployment necessitates suffi-
cient computational resources, as the 2.2ms inference time al-
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lows processing approximately 450 samples per second per thread,
potentially requiring distributed processing or hardware accel-
eration for high-volume enterprise networks. Furthermore, seam-
less integration with existing SIEM systems demands standard-
ized APIs and compatible data formats. Additionally, opera-
tional deployment requires continuous access to representative
training data reflecting current threat landscapes, necessitating
automated data collection pipelines while maintaining privacy
compliance.

While HERALD demonstrates exceptional performance in
controlled settings, several limitations must be acknowledged.
The framework’s performance is intrinsically linked to training
data quality, with evaluation primarily relying on CIRA-CIC-
DoHBrw-2020, which may not fully capture real-world DoH
traffic diversity across different organizational contexts. The
current implementation depends on 34 pre-defined statistical
features that may not capture all behavioral patterns and are
sensitive to network infrastructure variations. Temporal validity
concerns arise from training on specific time-period datasets,
as rapid evolution of attack techniques may require more fre-
quent updates than anticipated. Moreover, despite employing
SMOTE for class balance, performance under extreme class im-
balances or novel attack distributions remains uncertain.

Future research should focus on the following directions.
First, validating and adapting the framework across more di-
verse datasets would further enhance its generalizability and
robustness. Second, incorporating incremental learning capa-
bilities would address the need for continuous adaptation in
the face of evolving network threats. Third, integrating ad-
ditional unsupervised detectors and advanced feature selection
techniques could improve HERALD’s scalability and efficiency,
particularly in resource-constrained environments. Finally, ex-
panding HERALD’s application to other types of encrypted traf-
fic would broaden its utility in comprehensive network security
architectures.
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