Dynamic Dependency-Aware Vulnerability and Patch Management for
Critical Interconnected Systems

Umar Sa’ad?, Woongsoo Nab, Nhu-Ngoc Dao®*, Sungrae Cho®*

4School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea
bDepartment of Software, Kongju National University, Cheonan 31080, South Korea
¢Department of Computer Science and Engineering, Sejong University, Seoul 05006, South Korea

Abstract

Critical infrastructure systems characterized by complex interdependencies face significant challenges in vulnerability management
due to cascading risk propagation through interconnected components. Traditional approaches that individually prioritize vulnerabili-
ties inefficiently manage these dependency structures, leading to suboptimal security outcomes. This paper introduces an adaptive
dependency-aware patching technique (ADAPT), a dynamic vulnerability and patch management framework that integrates formal
dependency modeling with reinforcement learning to optimize patching strategies for critical interconnected systems. The proposed
approach employs a mathematical formulation to capture direct and transitive dependencies via reachability matrices, enabling precise
quantification of cascading risk propagation. The framework dynamically adapts patching decisions under resource constraints using
proximal policy optimization within a constrained Markov decision process formulation. Comprehensive evaluation across 954
system configurations and six baseline strategies demonstrates consistent performance improvements, with 5.5% advantage over
state-of-the-art NSGA-II multi-objective optimization while achieving 1,513 computational speedup. Optimality gap analysis
reveals 4.33% average deviation from theoretical bounds, validating the framework’s near-optimal solution quality. A critical
infrastructure case study confirms practical applicability, with ADAPT achieving 89.7% risk reduction compared to 86.4% for
sophisticated baseline methods, while enabling real-time decision-making through sub-second computation times. The results
demonstrate superior performance under high dependency density and resource constraints, highlighting the framework’s suitability
for environments where cascading failures pose operational threats.

Keywords: Cascading risk mitigation, dependency-aware cybersecurity, vulnerability propagation, proximal policy optimization.

propagate via interconnected systems, causing widespread dis-
ruptions exceeding the scope of the initial compromise. The
Colonial Pipeline ransomware attack of 2021 [5] is a notable
example. The attack initially targeted information technology
systems but affected operational technology components, dis-
rupting fuel delivery across multiple states and creating supply
chain problems with national implications. Similarly, the Solar-
Winds supply chain attack [6] exploited software dependencies,
compromising thousands of organizations via a single vulnera-
bility in a widely used management platform. These incidents
underscore the critical need for vulnerability management ap-
proaches that explicitly account for system dependencies and
their role in risk propagation.

Despite recent advances in vulnerability scoring systems
and prioritization methods, several research challenges remain.
Current research on dependency modeling approaches has indi-
cated opportunities for improvement in the formal mathematical
representation of complex dependencies in operational environ-
ments [7, 8]. Existing methods have continued to evolve to
balance risk reduction with resource constraints, particularly

1. Introduction

From power grids and telecommunications networks to health-
care systems and transportation networks, critical infrastruc-
ture systems have become increasingly interconnected. This
interconnectedness creates complex dependencies, complicating
vulnerability management and patching decisions. Traditional
approaches to vulnerability prioritization commonly treat each
system component in isolation, focusing on individual vulnera-
bility severity scores while neglecting the intricate dependencies
characterizing the infrastructure [1, 2, 3]. This analytical gap
causes suboptimal security configurations because vulnerabili-
ties in low-priority components can propagate via dependency
chains to influence critical services and operational capabili-
ties [4].

Inadequate dependency modeling in vulnerability manage-
ment has significant and far-reaching consequences. Recent
security incidents have demonstrated how cascading failures

*Corresponding authors

Email addresses: umar@uclab.re.kr (Umar Sa’ad),
wsna@kongju.ac.kr (Woongsoo Na), nndao@sejong.ac.kr (Nhu-Ngoc
Dao), srcho@cau. ac.kr (Sungrae Cho)

when dependencies create sequential requirements for patching
operations [9]. Furthermore, current vulnerability management
frameworks do not address the dynamic nature of operational

systems, where dependencies and vulnerabilities continuously
evolve in response to organizational requirements, technological
changes, and emerging threats [10].

While significant research addresses individual aspects of
vulnerability management, existing approaches exhibit funda-
mental limitations. Multicriteria optimization frameworks [11,
12] advance resource allocation but employ static prioritiza-
tion that cannot adapt to evolving threat landscapes. Graph-
theoretic methods [13, 14, 15] model dependency structures but
lack optimization mechanisms to balance competing objectives
under resource constraints. Recent reinforcement learning ap-
proaches [16, 12] demonstrate adaptive decision-making but
inadequately model cascading dependencies and their role in
risk propagation. Genetic algorithms such as NSGA-II [17, 18]
provide multi-objective optimization but suffer from computa-
tional scalability limitations that prevent real-time deployment in
large-scale systems. No existing framework simultaneously ad-
dresses: (1) formal mathematical representation of transitive de-
pendencies via reachability analysis, (2) adaptive policy learning
that improves through environmental interaction, and (3) com-
putational efficiency enabling sub-second decision-making at
operational scales.

This paper introduces the adaptive dependency-aware patch-
ing technique (ADAPT), a dynamic framework for vulnerability
management and patching in critical interconnected systems.
The proposed ADAPT framework integrates dependency graph
modeling with reinforcement learning (RL) to optimize sequen-
tial patching decisions under operational constraints. System
dependencies are represented as a directed graph, enabling the
computation of reachability matrices that capture direct and
transitive risk propagation pathways. The patching problem is
formulated as a constrained Markov decision process with proxi-
mal policy optimization (PPO) for policy learning. The principal
contributions of this work are as follows.

e A mathematical formulation for modeling direct and tran-
sitive dependencies in infrastructure systems that enables
precise identification of cascading risk propagation path-
ways. The reachability matrix approach supports compre-
hensive impact analysis and informs dependency-aware
patching sequences.

e A constraint-based reinforcement learning architecture
that employs PPO to optimize patching strategies under
dependency and resource constraints. The framework
adapts to evolving system conditions through environ-
mental interactions, improving effectiveness in complex
dependency networks.

e Comprehensive evaluation against six baseline strategies
spanning heuristic, graph-theoretic, and multi-objective
optimization approaches. Results demonstrate consistent
performance improvements with 5.5% advantage over
state-of-the-art NSGA-II optimization, 4.33% average op-
timality gap relative to theoretical bounds, and 1,513x
computational speedup enabling real-time deployment in
critical infrastructure environments.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work on dependency modeling, risk
quantification, and optimization approaches for vulnerability
management. Next, Section 3 presents the proposed system
model and formal problem formulation, including the depen-
dency representation and risk quantification. Then, Section 4
details the dependency-aware RL framework, covering the state
representation, action space, reward function, transition dynam-
ics, and policy optimization. Further, Section 5 discusses the
algorithm design (including the selection of PPO as the deep RL
algorithm), training process, and policy representation. More-
over, Section 6 describes the experimental evaluation (including
the implementation of baseline patching strategies for the com-
parative analysis), comprehensive experimental setup, results
and analysis, and robustness analysis. Section 7 provides a case
study on a critical infrastructure scenario. Section 8 presents
discussion and limitations of our work. Finally, Section 9 con-
cludes the paper by summarizing the findings, contributions, and
future research.

2. Related Work

Vulnerability and patch management in interconnected criti-
cal infrastructure systems requires sophisticated approaches that
consider complex interdependencies and resource constraints.
Although significant research has addressed individual aspects
of this challenge, the existing approaches have fundamental lim-
itations preventing optimal security in critical systems. This
section investigates the evolution of vulnerability management
approaches and identifies the critical gaps that motivate the
dependency-aware RL framework.

2.1. Dependency Modeling in the Critical Infrastructure

Traditional vulnerability management frameworks manage
system components in isolation, focusing on individual vulner-
abilities without considering their interconnectedness [19, 20].
This methodological limitation causes incomplete risk assess-
ments and suboptimal patching strategies, particularly when con-
sidering cascading effects via interconnected components. Re-
searchers [21] have highlighted the limitations of traditional as-
sessments that identify critical components without considering
their interconnections, advocating for holistic approaches that
assess vulnerability measures across entire networks. Similarly,
one study [22] introduced vulnerability clouds” to describe vul-
nerability distributions across critical systems, enabling a better
comprehension of the topology and controllability of systems
under disruptive scenarios.

The challenge of accurately representing direct and indirect
dependencies remains substantial. A study [23] noted that the
current methods often neglect indirect dependencies arising from
interconnected networks, resulting in patching strategies that
address immediate vulnerabilities but fail to mitigate broader
systemic risks [7]. Advanced approaches have emerged, includ-
ing the multiattribute vulnerability criticality analysis model [9],
which estimates the influence of the vulnerability by considering
its severity, attack probability, and functional dependencies. This

quantitative approach permits prioritization based on systemic
influence rather than isolated severity metrics; however, this
approach remains primarily static and fails to adapt to evolving
configurations.

2.2. Risk Propagation and Cascading Effects

Understanding risk propagation throughout interdependent
systems is crucial for effective vulnerability management. Mul-
tiple studies have demonstrated how interdependencies between
critical infrastructures cause cascading failures, where disrup-
tions induce subsequent failures in connected systems [24, 25].
Mathematical modeling approaches have been developed to de-
fine these cascading effects [26, 27], with simplified models
revealing the critical characteristics of interconnected systems
and the correlation between component outages in coupled sys-
tems.

Quantitative risk assessment methods have emerged using
graph centrality measures alongside dependency risk graphs to
gauge critical infrastructures [8], identifying the nodes most at
risk due to interdependencies. Complementary work [28] has
demonstrated the effectiveness of quantitative models in assess-
ing infrastructure interdependencies and enhancing disaster re-
silience, enabling the quantification of component functionality
dependencies and vulnerability propagation pathways. However,
these approaches apply static analyses that fail to capture the
dynamic nature of system configurations and the evolving threat
landscapes.

2.3. Optimization Approaches and Resource Allocation
Resource-constrained optimization for patch management
signifies a critical challenge given the rapidly evolving cyberse-
curity threats and limited resources. Multicriteria optimization
approaches have emerged to address this problem [1, 29], mov-
ing beyond single-metric evaluations in normalization frame-
works that consider multiple risk factors and system relationship
modeling for predictive patch deployment. These approaches
analyze connections and dependencies between software com-
ponents to determine patching decision influences, identifying
critical paths that maximize the limited resource utilization.
However, the current optimization approaches encounter
considerable scalability challenges in large-scale interconnected
systems [30]. As the network complexity and size increase, exist-
ing algorithms have become computationally infeasible, limiting
their practical application. These approaches normally employ
deterministic, one-time decision processes that inadequately
consider future uncertainties and vulnerability dynamics.
Beyond traditional optimization for patch management, the
application of artificial intelligence to broader cybersecurity
challenges provides relevant context for ADAPT’s approach.
Network-level anomaly detection using pattern-based random
walks [31] has demonstrated 95% detection rates through dy-
namic behavioral graph analysis, addressing threat identifi-
cation that complements proactive vulnerability remediation.
More broadly, comprehensive frameworks for Al-enhanced se-
curity [32] position machine learning approaches within the
evolving cybersecurity ecosystem, where adaptive solutions ad-
dress sophisticated threats across multiple dimensions from

detection to response. ADAPT extends this Al-for-security
paradigm specifically to vulnerability and patch management,
where dependency-aware reinforcement learning enables discov-
ery of sophisticated prioritization strategies under operational
constraints.

2.4. Critical Research Gaps

Despite the advances in vulnerability management frame-
works, three fundamental limitations necessitate this research.
First, the current approaches lack dynamic adaptability, employ-
ing static prioritization mechanisms that fail to consider evolving
threat landscapes and changing system configurations [33, 34].
Traditional frameworks, such as NIST CSF, identify vulnera-
bilities but fail to provide actionable prioritization guidance
accounting for organizational context and resource constraints,
and the common vulnerability scoring system (CVSS) inade-
quately captures the dynamic threat evolution or operational
context of critical infrastructure environments.

Second, existing methods poorly integrate dependency rela-
tionships with optimization decisions, addressing dependency
modeling and resource allocation as separate problems rather
than unified challenges. Many frameworks emphasize theoreti-
cal vulnerability severity rather than the likelihood of empirical
exploitation, resulting in misaligned resource allocation where
actively weaponized vulnerabilities receive insufficient attention
[34].

Third, the current approaches display limited learning capa-
bilities and insufficient scalability characteristics [35, 12]. The
evaluation processes remain predominantly manual and resource-
intensive, preventing prioritization based on specific threat actor
tactics and procedures. Although frameworks incorporating RL
and game theory have been proposed [12, 36], these approaches
have not achieved widespread operational adoption. The practi-
cal effect is evident: fewer than 30% of industrial control system
devices achieve patched status within 60 days of a vulnerability
disclosure [30].

The proposed dynamic dependency-aware vulnerability and
patch management framework addresses these gaps by inte-
grating comprehensive dependency modeling with adaptive RL
techniques. This approach enables dynamic optimization that
continuously improves patch management decisions in complex,
resource-constrained environments.

3. System Model and Problem Formulation

This section establishes the system model and problem for-
mulation for dependency-aware vulnerability and patch manage-
ment via graph-theoretic constructs that systematically capture
critical infrastructure interdependencies and vulnerability propa-
gation mechanisms.

3.1. System Representation

We model the system (see Figure 1) as n assets S =
{s1,...,8,} (devices, applications, libraries, or services). Di-
rected dependencies are encoded by a binary matrix D €
{0, 1}, where D;; = 1 iff asset 5; depends on asset s; (edge

Vulnerabilities V

Asset dependency graph (S, D)

p
Legend
— D;j=1:s; — s; (dependency)
---2> Pj=1:v, — s (incidence)

O %= 1 (patched)

o %= 0 (unpatched)
.

0
®
L

Figure 1: System representation: assets S with directed dependencies D, vulnerabilities V with incidence P, and per-asset patch state x. Solid arrows encode D; ;=1
(s;— s;), dashed arrows encode Py =1 (v affects s;), and circular badges indicate x; (patched vs. unpatched).

s;— ;). This captures the immediate operational requirements
among assets (e.g., a service depending on a database) and es-
tablishes the graph on which risk can propagate.

Known vulnerabilities are V = {vy, ..., v,,}. Their incidence
on assets is given by the binary matrix P € {0, 1>, with Py = 1
iff vulnerability v, affects asset s;. Patch state (or decision) is
represented by x € {0, 1}", where x; = 1 denotes that s; is patched
and x; = 0 otherwise. Together, (S, D, P, x) provide a structured
system state used for risk quantification and optimization.

3.2. Dependency Propagation

Dependencies are not limited to direct links; effects can cas-
cade along paths. We therefore use the reachability (transitive-
closure) matrix R derived from D:

R=(U+D+D*+---+D"") > 0, 1)

where I is the identity and the > 0 operator Booleanizes entries
(positive — 1, otherwise 0). Thus, R;; = 1 iff there exists a
directed path from s; to s;, i.e., s; (directly or indirectly) de-
pends on s;. This closure exposes potential cascade pathways: a
vulnerability present on an upstream asset s; can influence all
downstream assets s; with R;; = 1. Using R enables identifica-
tion of structurally critical assets and prioritization of patches
that mitigate the largest downstream risk.

3.3. Risk Model

We formulate a quantitative risk model that captures the
instantaneous vulnerability exposure of individual assets within
the system. The per-asset risk is characterized by the following
expression:

pit) = vipi® (1 - xi(1)),
where v; > 0 represents the business criticality and potential
impact severity associated with asset i, p;(f) € [0, 1] denotes
the time-dependent exploit probability conditioned on current
exposure levels and contextual threat intelligence, and x;(¢) €
{0, 1} indicates the binary patch status with x;(f) = 1 signifying
successful remediation.

The aggregate system risk is computed as the sum of indi-

vidual asset risks:
1= i),
i=1

The risk reduction achieved at time step ¢ is quantified as
AT, 20, =Ty >0, representing the decrease in total system
vulnerability following remediation actions.

This risk formulation establishes the foundation for the sub-
sequent optimization framework, wherein we define the con-
trol objectives and operational constraints governing admissible
patch deployment strategies.

Estimating exploit probability. We set p;(t) = o(ag+a;CVSS; +
a,EPSS;(?) + a3 {KEV,} + a4At,), where Ag; is time since dis-
closure. Sensitivity varies (a3, @3).

3.4. Optimization Problem

The patch deployment problem is formulated as a con-
strained Markov decision process wherein we seek an optimal
policy my that maximizes the expected discounted return:

-1
2,7k
=0

mglx J(O) =E,,

st a €{0,1)", 2)
Xe41 = Xt V Gy,
a[Q(l _M[) :0.

The binary action constraint ensures discrete patch decisions,
the state evolution equation captures cumulative patching effects,
and the feasibility mask M, enforces dependency and redun-
dancy constraints. The reward function R, incorporates risk
reduction, efficiency metrics, and operational penalties as de-
fined in Sec. 4.3, while y € (0, 1] provides temporal discounting.

Budget constraints may be imposed either through hard lim-

its,
n

Z cia;; < b Vi,

i=1
or incorporated softly via penalty terms within the reward struc-
ture.

One-step MILP surrogate (baseline). To establish a benchmark,
we formulate a myopic mixed-integer linear program that op-
timizes immediate risk reduction from state (x;, p(¢)). Define

per-asset weights w;() £y, pi(t) (1 — x;(¥)) and prerequisite sets
P, 2 J : Djj = 1}. The optimization problem becomes:

max ;wmai - /10;01‘ (3a)
s.t. Zciai < b, (3b)

i=1

a < x{+a; Vi, VjeP, (3c)

Constraint (3c) ensures that asset i can only be patched if all
prerequisites j € P; are either previously patched or simultane-
ously selected. This formulation provides a near-optimal myopic
baseline for evaluating the reinforcement learning policy.

4. Adaptive Dependency-Aware Patching Technique

This section presents the formal structure of the ADAPT
framework. We frame the problem as a Markov decision pro-
cess, where states encapsulate the system security, vulnerability
metrics, and dependency relationships.

The reward design balances the immediate risk reduction
with transitive security improvements while enforcing opera-
tional constraints.

4.1. State, Actions, and Dynamics

We define the system structure through a dependency matrix
(Sec. 3.1), where D;; = 1 indicates that asset j constitutes a
prerequisite for patching asset i. The operational cost vector
¢ € R}, quantifies resource requirements, representing factors
such as system downtime or labor allocation for each asset.

State. The environment state s, comprises concatenated node-
level features and graph-level summary statistics:

se = [x(0), v, ¢, (D), g (D)),

where x(f) = [x1(?), ..., x,(£)]" represents the current patch sta-
tus vector. The function f"°%(D) extracts per-asset topological
features including dependency counts, node degrees, and histori-
cal failure indicators, while g&"*P"(D) computes global network
properties such as mean connectivity, clustering coefficients,
and degree assortativity. This representation maintains fixed
dimensionality while capturing essential structural information.

Action. The agent’s decision at each time step consists of a bi-
nary action vector a; € {0, 1}, where a,; = 1 signifies that asset i
is selected for patch deployment during step ¢. This formulation
permits simultaneous multi-asset patching operations.

Dynamics. The system evolves according to deterministic state
transition dynamics. The patch status updates through element-
wise logical disjunction:

Xeyl = X Voay,

ensuring irreversible patch deployment. While the dependency
structure remains static, the exploit probabilities p;(f) may ex-
hibit temporal evolution through exogenous threat intelligence
updates or endogenous decay following successful remediation
actions.

4.2. Dependency-Aware Masking

We enforce feasibility with a binary mask M; € {0, 1}" that
disables actions which are already completed or violate prereq-
uisites:

0, if x;(r) = 1 (already patched),
M;; =10, ifdj: D;; =1 A x;(t) = 0 (unmet prerequisite),
1’

otherwise.

To apply the mask inside the policy, we use a numerically
stable log-mask on the logits z, € R":

7 = z +log(M; + &), e~ 1079,

so infeasible coordinates receive ~ —oo before the sigmoid. The
policy factorizes as independent masked Bernoulli terms (no
cross-dimensional normalization):

n

moar | s M) = | o)™ (1 -o(z)) ™,

i=1

a;;i €10, 1}.

This concentrates probability mass on feasible actions and blocks
gradients through infeasible ones, while retaining differentiabil-
ity on valid dimensions. (Alternative multi-label parameteriza-
tions are possible but not used here.)

4.3. Reward Design

We balance risk reduction and operational efficiency while
enforcing hard constraints (dependencies, per-window budget,
and capacity). Let P; = { j : D;; = 1} denote prerequisites for
asset i.

n

G 2 > ciay, (4a)
i=1
viol, £ UG, > b} + Ullaly > Kmas)
+1{Fi: a;=1A3jePi: x,;=0}, (4b)

AT AY
L W=+ -w) ——, viol, =0,
R, £ Yo Gi+¢ (4c)
—k violy, viol;, > 0,

where ¢ is a small constant for numerical stability and x > 0
is a penalty weight. Feasibility thus requires: (i) dependency
satisfaction (a;; = 1 = x,; = 1 for all j € P;), (ii) budget
G, < b, and (iii) sparsity ||a|lo < kmax. These same constraints
are enforced in the policy via the mask M, (Sec. 4.2).

The trade-off parameter w € [0, 1] captures organizational
risk tolerance. We use w = 0.7 to prioritize risk reduction while
remaining cost-aware; sensitivity analysis shows stable behavior
for w € [0.6,0.8]. The term AY,/Y provides scale-invariant
improvement, whereas A, /(G,+¢&) measures mitigation per unit
spend. Constraint violations incur a negative reward proportional
to viol,, nudging the policy toward feasible actions.

5. Algorithm Design

This section presents a systematic framework for selecting
the RL algorithm in ADAPT. We established formal criteria for
evaluating these algorithmic approaches based on their capac-
ity to address high-dimensional state-action spaces, complex
constraint satisfaction, and computational efficiency in intercon-
nected systems.

5.1. Deep Reinforcement Learning Algorithm Selection

The selection of an appropriate algorithm is essential to
address the challenges of dependency-aware vulnerability and
patch management in dynamic and complex environments. The
chosen algorithm must efficiently handle high-dimensional state
and action spaces, complex constraint satisfaction, and scalabil-
ity requirements in large interconnected systems. Considering
the specific problem characteristics, this work prioritizes algo-
rithms that balance computational efficiency, learning stability,
and policy adaptability.

For this framework, PPO [37] was selected as the primary
deep RL algorithm. The PPO algorithm is an actor-critic method
that employs a clipped surrogate objective function to limit pol-
icy updates while learning a value function. This approach
offers several advantages in vulnerability management: (1) sam-
ple efficiency (which is crucial when complex system interaction
simulations are computationally expensive), (2) stable learning
with controlled policy updates (crucial for avoiding catastrophic
forgetting when vulnerability landscapes evolve), and (3) effec-
tive constraint handling via auxiliary loss functions (essential
for respecting dependency ordering and resource limitations).

Another candidate algorithm for consideration is the deep
Q-network (DQN) [38], a value-based approach that estimates
the optimal action-value function Q(s, a) using a neural network.
The DQN approach is advantageous in environments with dis-
crete action spaces, making it suitable for scenarios where the
RL agent determines whether to patch individual elements or
predefined clusters. However, the DQN method may encounter
challenges in scalability when managing large action spaces or
dynamic environments because it requires a separate evaluation
of each potential action.

For problems involving complex decision spaces, other actor-
critic variants, including advantage actor-critic [39] or soft actor-
critic [40] methods could also be considered. These methods
(e.g., PPO) maintain the policy and value function components
but differ in their update mechanisms and exploration strategies.
For instance, the soft actor-critic network incorporates entropy
regularization to encourage exploration, which can be beneficial
in environments with multiple viable patching solutions.

Considering the specific requirements of the ADAPT frame-
work, PPO offers a compelling balance of sample efficiency,
stability, and performance regarding actor-critic methods [41].
The controlled policy updates of PPO prevent drastic strategy
changes that could disrupt critical system operations. In addi-
tion, the ability of PPO to incorporate multiple objectives and
constraints via auxiliary loss terms makes it suitable for simul-
taneously balancing risk reduction, resource utilization, and
dependency satisfaction. These characteristics ensure reliable

Algorithm 1 ADAPT (Training with Masked-Bernoulli Policy
and PPO)
Require: Dependency matrix D, severities v, costs ¢, capacity kmax, budget cap

b, risk tradeoff w, policy mg, value V, discount y, GAE A, PPO clip e, Irs
g, &y, numeric € (log-mask)

1: /* Initialization */
2: Initialize policy parameters 6 and value parameters ¢
3: for each iteration do
4: Initialize empty buffer O
5: for each episode do
6: Reset: xg « 0"; observe initial state s¢
7 while episode not terminated do
8: /* Feasibility mask (structural/window constraints) */
9: M, « GetMask(x;, D) {M,€{0, 1}"*}
10: /* Masked-Bernoulli policy */
11: 7t < fo(st, My) {policy logits}
12: 7y « 21 + log(M; + &) {log-mask, infeasible — —co}
13: Sample multi-asset action: a; ~ []7_, Bernoulli(a'(z;,,.))
14: /* Environment step */
15: Xer1 < X V a; {element-wise OR}
16: G 2 Z:.’:] cjay; {per-step expenditure}
17: Compute Yy, Y1 and AY, £, — T, {risk model}
18: /* Constraints & reward */
19: viol; £ G, > b} + Ullarllo > Kimax}
20: if viol, = O then
21: r,éwAT—“f"+(l—w)é{"9
22: else
23: r; & —k viol; {penalty weight k > 0}
24: end if
25: Observe s.41; store (s, as, 1y, Si+1, My, 2;) in D
26: if 3 x;+1,; = nor max(M,;1) = O then
27: Terminate episode
28: end if
29: end while
30: end for
31: /* Advantage estimation (GAE) */
32: for each trajectory in D (reverse time) do
33: (51 —r+ 7V¢(As,+1) - V¢(As,)
34: Ay« 6+ yA A {with Ay = 0}
35: Vi A+ Vy(sp)
36: end for

37: /* PPO updates */
38: for each epoch do

39: for each minibatch 8 %VI D do
40: r4(6) < ol | st Mp). {masked policy ratio}
”(y]d(at | St, Mr)
41: LEHP(0) Eg|min(r(@)A;, clip(r(6).1 - €1+ €)A,)]
42: 0 — 0+ agVoLCLP(6)
43: ¢ — ¢ - ayVs(Vo(s) - V1)
44: end for
45: end for
46: end for

47: return Trained dependency-aware policy mg

performance even in scenarios where dependencies, vulnerabili-
ties, and budgets evolve.

5.2. Training Process and Policy Architecture

The policy network 7y is a feedforward MLP with two hid-
den layers (128 units each, ReLLU) and dropout (p = 0.1). The
input dimension is |s;| + n, concatenating the state features with
the feasibility mask M, €{0, 1}". The policy head emits n logits
z; € R" which are masked and passed through an elementwise
sigmoid. Concretely, we apply a stable log-mask,

7 = z +1log(M, + ¢), e~ 1079,

Policy & Value Networks

Dense 128 Lafs o Mask invalid
+ ReLU g actions (—co)

Deployment (deterministic):
al,r =
1 € TopK (p; Kay Over {i : M,; = 1))}

sigmoid

+ masked
Bernoulli

Dense 128
+ ReLU

Dense 64

|
|

i

|

!

mo(als, M) | |

|

|

!

+ReLU |
i

Minibatches

Rollout buffer bs = 64,

T steps

U

collect (s;, a, 1, My)

epochs = 4

I
i
' [32 parallel envs
I
I
I
I

Training Loop

i
I

PPO cli 1

[LCL(l‘Flp]—> Update 6, ¢ !
|

I

Figure 2: Policy/value architecture with dependency-aware action masking, PPO training loop, and deterministic deployment. Invalid actions are masked by assigning
—oo to their logits before sigmoid + masked Bernoulli, ensuring mg(als;, M;) has support only on valid actions.

so infeasible entries receive ~ —co before the sigmoid. Actions
factorize as independent masked Bernoulli variables:

n

mo(a; | s, My) = na(z;i)“‘""(l ~ @)™, a,ef0,1).
i=1

The value network V shares the input embedding and branches
into two hidden layers (128, 64) terminating in a scalar.

Training follows Algorithm 1 with hyperparameters in Ta-
ble 1. Each iteration gathers rollouts from 32 parallel environ-
ments, then performs 4 epochs of minibatch PPO updates with
batch size 64. The clipped objective (with masking inside the
policy) is

LEYP(9) = B[min(r,(6) A, clip(ri(6), 1 - €, 1+) A))],
mo(ay | ¢, My) (5)

r(6) = .
' mowa(as | S;, My)

Because infeasible dimensions are driven to near-zero prob-
ability via z;, gradients flow only through valid actions while
retaining differentiability for feasible entries.

Convergence and early stopping. We monitor a sliding window
of 100 episodes and stop when all hold: (i) average risk reduction
improves by < 1% over the previous 200 episodes (plateau), (ii)
constraint violations <0.1% for 100 consecutive episodes, and
(iii) value loss < 7 with T = 0.01. This guards against overfitting
to the training distribution.

Deployment (deterministic decoding, Top-k). At inference we
form masked probabilities p, = 0(z;) © M, and select the kpax
largest feasible entries (if fewer than k.« are feasible, we select
all):

as; = 1{i € TopK (ps; kmax Over {i : M;; = 1})}.

This Top-k decoder mirrors the per-window capacity used in
evaluation and in our myopic MILP surrogate, yields O(n log n)
complexity (sorting), and requires only a forward pass through
the policy. See Figure 2 for an architectural schematic.

Table 1: ADAPT Hyperparameter Configuration

Parameter Value
Policy network architecture [128, 128]
Value network architecture [128, 64]
Learning rate 3x 1077
Discount factor (y) 0.99

GAE parameter (1) 0.95
Clipping parameter (€) 0.2

Value function coefficient 0.5
Entropy coefficient 0.01
Training episodes 1,000

6. Experimental Evaluation

6.1. Baseline Patching Strategies

This section presents six baseline approaches used to bench-
mark ADAPT across practical deployment scenarios. Table 2
summarizes the methods spanning heuristic, graph-theoretic,
and optimization families.

Heuristic baselines — Random and Severity (CVSS/EPSS):
provide fundamental bounds, where Random samples uniformly
from the feasible action set, while Severity selects the highest
per-asset risk score (e.g., CVSS- or EPSS-derived), ignoring
topology.

Graph-theoretic baselines — In-Degree (Popularity),
PageRank, and Betweenness: leverage the directed dependency
graph. In-Degree targets assets most depended upon (high in-
coming degree). PageRank uses a damping factor d = 0.85 and
iterates to convergence:

PR(s;) = le +d

s;EM(s;)

PR(s;
Ty ©
(s5)

where n is the number of assets, M(s;) are predecessors (assets
that depend on s;), and L(s;) is the out-degree of s;. Betweenness
centrality prioritizes bridge nodes that lie on many shortest paths.
For efficiency, all centrality scores are precomputed once per run
and cached; per-step selection is then made from these cached
rankings subject to feasibility.

Optimization baseline — Non-dominated Sorting Genetic
Algorithm Il (NSGA-II): conducts a multi-objective search over
risk reduction, cost, and operational constraints. The configura-
tion uses population size N = 100, G = 200 generations, and
crossover probability p. = 0.9. For single-point comparisons
against other methods, a representative solution is chosen from
the Pareto set using TOPSIS.

Together, these six baselines cover a spectrum from simple
score-based heuristics to structure-aware graph analytics and
scalable multi-objective optimization.

6.1.1. Baseline Implementation Details

To ensure fair comparison and reproducibility, we provide
detailed experimental configurations for each baseline strategy:

Random Baseline: At each decision step, the random
baseline samples uniformly from the set of feasible actions
A, = {a € {0,1}" : M, ®©a = a}, where M, is the feasibility
mask enforcing dependency and budget constraints. This pro-
vides a lower-bound performance metric representing decisions
made without any strategic consideration.

Severity-Based (CVSS/EPSS): Vulnerability severity is
computed as s; = @] CVSS; +a>EPSS;(¢), using the same weight-
ing coefficients as ADAPT’s risk model to ensure consistent
severity assessment. At each step, the strategy selects the kyax
feasible assets with highest severity scores. Severity scores are
precomputed once per configuration and remain static through-
out the episode. When multiple assets have identical severity
scores, selection priority is determined by asset index (lower
indices selected first) for deterministic reproducibility.

Popularity (In-Degree): The in-degree deg™ (s;) = Z’}zl Dj;
represents the number of assets that depend on asset i. Assets
with higher in-degree protect more downstream dependencies.
In-degree values are computed once from the dependency matrix
D at the start of each configuration and cached for O(1) lookup
during selection. This baseline represents the intuition that
patching highly-depended-upon components provides maximum
cascading protection.

PageRank: We implement PageRank with damping fac-
tor d = 0.85 and convergence tolerance £ = 107, following
standard recommendations [42]. The algorithm iterates Equa-
tion 6 until |[PR*Y — PR?||; < &, typically converging within
20-30 iterations for our network sizes. PageRank scores are
precomputed once per configuration. This captures global im-
portance through the entire dependency graph rather than just
local connectivity.

Betweenness Centrality: We compute betweenness using
Brandes’ algorithm [43] with complexity O(n|E]) for unweighted
graphs. For each asset i, betweenness BC(i) =) ;i %(f’) quan-
tifies how many shortest paths pass through i, identifying critical
bridge nodes. Betweenness scores are precomputed and cached.
Assets with high betweenness act as bottlenecks whose compro-
mise could disconnect parts of the dependency graph.

NSGA-II Configuration: We configure NSGA-II with pop-
ulation size N = 100, maximum generations G = 200, simulated
binary crossover with probability p. = 0.9 and distribution index
n. = 20, and polynomial mutation with probability p,, = 1/n
and distribution index 7,, = 20. The fitness evaluation considers

two objectives: (1) total risk reduction AY, and (2) resource
efficiency AY/ Y, c;a;. For comparison against single-objective
methods, we select a representative solution from the final Pareto
front using TOPSIS [44] with equal weights (0.5, 0.5) for both
objectives, representing balanced risk-cost trade-offs. For large-
scale systems (n > 200), computational constraints limit NSGA-
II to G = 50 generations, which is noted in results where appli-
cable.

Constraint Enforcement Consistency: All baselines oper-
ate under identical constraints at each decision step:

e Dependency constraints: Asset i can only be selected if all
prerequisites j € P; = {j : D;; = 1} are either already patched
or simultaneously selected

® Budget constraints: The total cost }; cia;; < b must not
exceed the per-step budget

o Cardinality constraints: The number of simultaneously se-
lected assets ||a|lo < kmax re€spects capacity limits

o [rreversibility: Once patched (x; = 1), assets remain patched;
the action space at step r excludes already-patched assets

These constraints are enforced through the feasibility mask
M, for all methods. For NSGA-II, infeasible solutions are pe-
nalized heavily in fitness evaluation rather than using repair
operators, ensuring evolutionary pressure toward feasible re-
gions.

6.2. Experimental Setup

The experimental setup integrates a multifaceted approach
designed to ensure a comprehensive evaluation across hetero-
geneous system configurations. We implemented a controlled
experimental environment with standardized initial conditions to
facilitate a comparative analysis of the algorithmic performance.

6.2.1. System Configuration Parameterization

We developed a parametric system generation framework to
gauge performance across a controlled spectrum of configura-
tions, assessing five primary system scales: small-scale systems
(n = 20 elements and m = 10 vulnerabilities), medium-scale
systems (n = 50 elements and m = 25 vulnerabilities), large-
scale systems (n = 100 elements and m = 40 vulnerabilities),
enterprise-scale systems (n = 200 elements and m = 80 vul-
nerabilities), and critical infrastructure-scale systems (n = 500
elements and m = 150 vulnerabilities). For scales n < 100,
we systematically varied the critical parameters, including the
dependency density (6 : 0.05,0.1,0.2,0.4,0.6), vulnerability
distribution heterogeneity (7 : 0.1, 0.3,0.5,0.7,0.9), budget con-
straints (8 : 0.2,0.4,0.6,0.8x total patching cost) and critical
element ratio (y : 0.1,0.2,0.3). This parameterization yielded
900 distinct system configurations for comprehensive perfor-
mance assessment.

For larger scales (n > 200), computational constraints ne-
cessitated focused evaluation on key parameters: dependency
density (¢ : 0.1,0.2,0.4), budget constraints (8 : 0.2,0.4,0.6),
and fixed heterogeneity (n = 0.5) and critical ratio (y = 0.2),
generating an additional 54 configurations. This extended evalu-
ation demonstrates scalability to realistic critical infrastructure

Table 2: Comparative Analysis of Baseline Patching Strategies

Strategy Selection Rule (among feasible A;) Time (dominant) Space Key Characteristics
Random a; ~ Uniform(A;) o) o) Lower-bound baseline; ignores scores and
structure

Severity arg maxgea, Severity(s;) O(n) O(n) Simple, widely used; per-asset precomputed

(CVSS/EPSS) score (e.g., CVSS/EPSS composite)

In-Degree arg maxyes, deg™(s;) O(|E|) (precompute) O(n + |E)) Targets highly depended-on components;

(Popularity) static ranking cached

PageRank arg maxgea, PR(s;) O(|E|I) (power itera- | O(n + |E]|) Global influence; damping typical (e.g., 0.85);
tion) scores cached for selection

Betweenness | arg maXy;ea, BC(s;) O(n|E]) (Brandes, un- | O(n + |E|) Bridge/bottleneck targeting; higher precom-
weighted) pute cost than degree/PageRank

NSGA-II Pareto search over | O(G N Ceyal) O(N) Multi-objective genetic algorithm; yields

{risk reduction, cost, constraints} trade-off set (Pareto front)

Notes: n = #assets, |E| = #dependency edges, I = PageRank iterations, N = population size, G = generations, Ceya = cost to evaluate one candidate/solution.

Centrality scores are computed once per run; selection from cached scores is O(1) per step.

dimensions while maintaining rigorous comparative analysis
across the parameter space.

6.2.2. Performance Metrics
We employed multidimensional metrics capturing diverse
aspects of patching effectiveness, including the following:

¢ Risk Reduction Ratio (RRR): This ratio measures the
proportional decrease in the overall system risk achieved
by the patching strategy, offering a normalized assessment
of the vulnerability mitigation efficacy. This ratio is given
by

RRR = Yinitial — Tﬁnal.
Yinitial

¢ Resource Utilization Efficiency (RUE): The RUE met-
ric quantifies the risk reduction achieved per unit of re-
source expenditure, allowing a comparative analysis of
the cost-effectiveness across strategies with heterogeneous
resource consumption profiles. This metric is calculated
as follows:

Yinitial = Tfinal

RUE =
Cused

e Critical Coverage Ratio (CCR): The following metric
evaluates the proportion of high-priority system elements
successfully patched, addressing the preferential protec-
tion of mission-critical components:

DieCrit Xi

COR = =i

¢ Dependency-Weighted Impact (DWI): The DWI metric
assesses the influence of patching decisions on interdepen-
dent system elements by weighting each component ac-
cording to its dependency centrality, capturing cascading
effects in the system architecture. This value is calculated
as follows:

DWI = i, Popularity(s;) - x;

=, Popularity(s;)

6.2.3. Implementation Specifics

All algorithms were implemented in Python 3.8 with the fol-
lowing technical specifications. The NetworkX 2.6.2 software
was used for dependency modeling, and PyTorch 1.10.0 was
applied for RL. In addition, NumPy 1.21.0 was employed for nu-
merical operations, and SciPy 1.7.1 was applied for the statistical
analysis. We employed the hyperparameter configurations de-
tailed in Table 1 for the ADAPT algorithm implementation. All
experiments were conducted on a standardized computational
platform: Intel Core i7-10700K (3.8 GHz), 32 GB of RAM,
Nvidia RTX 3080 (10 GB of VRAM), ensuring consistent per-
formance measurement and reproducibility across experimental
conditions.

6.3. Results and Analysis

6.3.1. Overall Performance Metrics

Figure 3 and Table 3 present the aggregated performance
metrics across all system configurations, comparing ADAPT
against six baseline strategies. The proposed approach demon-
strates statistically significant performance advantages over all
baseline methods. Specifically, ADAPT achieved an RRR of
0.842 + 0.047, RUE of 0.927 + 0.038, CCR of 0.972 + 0.023,
and DWI of 0.906 + 0.031. These results outperform the
strongest baseline strategy, NSGA-II, which achieved an RRR
of 0.798 + 0.052 and DWI of 0.891 + 0.038. The traditional
popularity-based approach achieved an RRR of 0.705 + 0.062,
while PageRank-based strategy reached 0.751 + 0.048. Statis-
tical significance was validated using Mann-Whitney U tests
(p < 0.001) with Bonferroni correction for multiple compar-
isons, and effect sizes (Cohen’s d) ranged from 0.72 to 1.24,
indicating large practical significance (See Table 4). Notably,
ADAPT exhibited a 5.5% improvement over NSGA-II and
19.4% improvement over popularity-based approaches, with
advantages most pronounced in resource-constrained scenarios.

The severity baseline (RRR: 0.675+0.049), which is the most
widely used technique in practice, is evaluated under individual-
system patching with strict dependency enforcement. In indus-
trial practice, severity-based approaches gain efficiency through
batch patching that amortizes overhead and simplifies operations.

1.0

0.8 1
061 " o
& = S

0.4

0.2 1

0.0 - N -

P N S
é\bo @4@0 0\%‘\ 8& é\&\z’ %OY' QYS
¥ IS S
S

Figure 3: Performance metrics comparison across baseline strategies. Left panel shows Risk Reduction Ratio (RRR), center panel shows Resource Utilization
Efficiency (RUE), and right panel shows Critical Coverage Ratio (CCR). ADAPT consistently outperforms all baseline strategies across all three metrics, demonstrating
superior vulnerability management eftectiveness. Error bars represent 95% confidence intervals over 30 independent runs.

Table 3: Comprehensive Performance Analysis Across Baseline Strategies

Performance Metrics System Scale Analysis (RRR
Strategy RRR RUE CCR DWI Sma}l,l Mediumy ! La)rge Best Use Case
Random 0.414+0.052 | 0.523+0.067 | 0.678+0.084 | 0.445+0.059 | 0.438+0.061 | 0.407+0.055 | 0.397+0.048 Baseline reference
Severity 0.675+0.049 | 0.782+0.043 | 0.942+0.028 | 0.698+0.041 | 0.713+0.049 | 0.701+0.053 | 0.611+0.045 High-severity focus
Popularity 0.705+0.062 | 0.798+0.051 | 0.887+0.035 | 0.884+0.043 | 0.698+0.058 | 0.723+0.049 | 0.694+0.071 | Hub-dominated networks
PageRank 0.751+0.048 | 0.834+0.037 | 0.923+0.031 | 0.912+0.038 | 0.742+0.052 | 0.771+0.041 | 0.740+0.053 Scale-free topologies
Betweenness | 0.718+0.057 | 0.806+0.044 | 0.894+0.039 | 0.876+0.051 | 0.734+0.063 | 0.726+0.054 | 0.694+0.057 Sparse networks
NSGA-II 0.798+0.052 | 0.889+0.041 | 0.967+0.024 | 0.891+0.038 | 0.742+0.051 | 0.771+0.045 | 0.849+0.041 | Multi-objective balance
ADAPT 0.842+0.047 | 0.927+0.038 | 0.972+0.023 | 0.906+0.031 | 0.765+0.043 | 0.827+0.039 | 0.934+0.029 | Complex dependencies

Values represent mean + 95% confidence intervals over 30 independent runs.
RRR: Risk Reduction Ratio, RUE: Resource Utilization Efficiency, CCR: Critical Coverage Ratio, DWI: Dependency-Weighted Impact

Table 4: Statistical Significance Analysis Between ADAPT and Baseline Strategies

Strategy Comparison Mean Diff. | Cohen’sd | Mann-Whitney U | p-value 95% CI Effect Size
ADAPT vs. Random 0.428 1.89 156,342 <0.001 [0.394, 0.462] Very Large
ADAPT vs. Severity 0.167 1.24 89,731 <0.001 [0.141, 0.193] Large
ADAPT vs. Popularity 0.137 0.98 82,156 <0.001 [0.113, 0.161] Large
ADAPT vs. PageRank 0.091 0.82 76,294 <0.001 [0.069, 0.113] Large
ADAPT vs. Betweenness 0.124 091 78,887 <0.001 [0.101, 0.147] Large
ADAPT vs. NSGA-II 0.044 0.72 71,523 <0.001 [0.021, 0.067] | Medium-Large

Mean Diff.: Difference in Risk Reduction Ratio (positive values favor ADAPT)
Cohen’s d: Effect size (0.2=small, 0.5=medium, 0.8=large, >1.2=very large)

All p-values Bonferroni-corrected for multiple comparisons across six baseline strategies

The 23.2% performance gap quantifies the value of dependency-
aware optimization when cascading risks and sequential con-
straints matter, rather than indicating severity approaches are
universally inadequate. Organizations employing batch patching
optimize for operational simplicity and standardization, where
the additional complexity of dependency analysis may not al-
ways justify the security improvement. This comparison demon-
strates that dependency-aware optimization provides measurable
advantages in environments where complex interdependencies
significantly influence risk propagation.

6.3.2. System Scale Analysis

The performance characteristics in Fig. 4 display distinct
variations across five system scales. For small-scale systems
(n = 20), NSGA-II performed competitively with an RRR of

0.742 + 0.051, while ADAPT achieved 0.765 + 0.043, reflecting
a modest 3.1% improvement. The computational overhead of
RL training was most pronounced at this scale. For medium-
scale systems (n = 50), ADAPT’s advantage became more
substantial with an RRR of 0.827 + 0.039, representing a 7.2%
improvement over NSGA-II (0.771 + 0.045) and 18.0% over
traditional severity-based approaches (0.701 + 0.053).

At large scale (n = 100), ADAPT achieved an RRR of
0.934 + 0.029, significantly outperforming NSGA-II (0.849 +
0.041, 10.0% improvement) and all heuristic baselines (>20%
improvement). For enterprise-scale systems (n = 200), computa-
tional constraints limited NSGA-II to 50 generations, achieving
an RRR of 0.782 = 0.067, while ADAPT maintained strong
performance at 0.897 + 0.035 (14.7% improvement). At criti-
cal infrastructure scale (n = 500), only heuristic baselines and

10

©— Random
O Severity
—A- Popularity
2 <> PageRank
E =¥— Betweenness
g =4~ NSGA-II
s ©= ADAPT
S
123
e~
~ (=)
.2
o 0.5 (u]
o
1 o
0.4 O o °

0.3

200 300 400 500

System Size (n)

160

Figure 4: Performance scaling across system sizes. ADAPT maintains superior
performance from small (n = 20) to critical infrastructure scale (n = 500), while
baseline methods degrade or become computationally intractable at larger scales.
NSGA-II evaluation limited to n < 200 due to computational constraints.

ADAPT remained computationally feasible. ADAPT achieved
0.891 + 0.041, substantially outperforming PageRank (0.743
+ 0.058) and popularity-based approaches (0.694 + 0.065) by
19.9% and 28.4%, respectively. These findings confirm that RL
approaches effectively model complex interdependencies while
maintaining computational efficiency at realistic scales.

6.3.3. Dependency Density Effect

Fig. 5 depicts performance variation across dependency den-
sity values for all strategies. At low dependency densities
(6 < 0.1), severity-based approaches performed comparably
with advanced methods, showing performance differentials be-
low 8%. However, as dependency density increased, structural
awareness became critical. At = 0.2, ADAPT outperformed
severity-based approaches by 12.4% and PageRank by 6.8%. At
¢ = 0.4, performance gaps widened to 15.0% over severity and
9.2% over PageRank. At maximum density (6 = 0.6), ADAPT
achieved 15.7% improvement over heuristics while maintaining
4.1% advantage over NSGA-II. The graph-theoretic baselines
(PageRank, Betweenness, Popularity) demonstrated improved
performance at higher dependency densities but remained con-
sistently inferior to learning-based approaches.

6.3.4. Resource Constraint Sensitivity

Fig. 6 illustrates strategy performance under varying budget
constraints across all baselines. Under severe resource con-
straints (8 = 0.2), ADAPT displayed substantial advantages,
achieving 37.4% improvement in RRR over heuristic baselines
and 12.8% over NSGA-II. This demonstrates superior capability
in identifying influential patching targets under scarcity. At mod-
erate resource levels (8 = 0.4 and 8 = 0.6), ADAPT maintained
significant advantages of 8.7% and 6.2% over NSGA-II, respec-
tively. When resources were abundant (8 = 0.8), performance
differentials narrowed to 3.4% over NSGA-II, as most influential
elements become patchable regardless of strategy sophistication.

11

0.9

o 2% 24 ©— Random
O+ Severity
1 & _p—————— Fm—————— -+
081 @ _—-% Y A Populariy
2 ¥ <© © <> PageRank
3 —
~ 0.7 {2 ,I’<> = = —:— Be;tgeenness
g s —&- NSGA-II
.S o
El ol = ©= ADAPT
S 0.6
Q
&
-~
I
& 0.5
o
* o
041 . il
00 01 02 03 04 05 06

Dependency Density (8)

Figure 5: Performance vs. dependency density. ADAPT maintains superior
performance across all dependency density levels, with advantages increasing
at higher densities (6 > 0.4). Graph-theoretic methods improve with density
but remain inferior to ADAPT, while severity-based approaches show declining
performance in highly interconnected systems.

0.9 Random
Severity
0.8 * Popularity
PageRank
0.7 1 Betweenness
© NSGA-IL

ADAPT

¢thodas

0.6

0.5

Risk Reduction Ratio

0.4

031 o

0.2

02 03 04 05 06 07 08
Budget Constraint (B)

Figure 6: Performance vs. budget constraints. ADAPT demonstrates superior
performance across all budget levels, with advantages most pronounced un-
der severe constraints (8 = 0.2). All strategies improve as budget increases,
but ADAPT maintains consistent superiority, particularly valuable in resource-
constrained operational environments.

6.4. Robustness Analysis

6.4.1. Vulnerability Distribution Sensitivity

Robustness assessment across vulnerability heterogeneity (77)
levels (Figure 7) revealed distinct strategy characteristics. Under
homogeneous conditions (7 = 0.1), performance differentials
between sophisticated methods were minimal (<5%). As hetero-
geneity increased to moderate levels (7 = 0.5), severity-based
and NSGA-II approaches exhibited improvements due to their
focus on high-risk elements. However, under high heterogeneity
(n = 0.9), ADAPT excelled by effectively balancing severity and
structural considerations, outperforming NSGA-II by 8.9% and
heuristic approaches by >15%.

6.4.2. Stochastic Environment Evaluation

Controlled perturbations assessed robustness under uncer-
tainty: partial information scenarios (10-30% masked dependen-
cies), noisy vulnerability metrics (Gaussian noise o = 0.5 — 1.5),

Table 5: Comprehensive Computational Performance Analysis

Strategy Training Decision Time (s) Memory
Time (s) Small Medium Large Enterprise | Usage (MB)
Random N/A 0.002+0.001 | 0.005+0.002 | 0.013+0.004 | 0.028+0.007 12+3
Severity N/A 0.004+0.001 | 0.012+0.003 | 0.034+0.007 | 0.089+0.015 18+5
Popularity N/A 0.019+0.004 | 0.087+0.011 | 0.326+0.042 | 1.247+0.156 74x12
PageRank N/A 0.023+0.005 | 0.104+0.018 | 0.398+0.067 | 1.523+0.234 86+15
Betweenness N/A 0.067+0.012 | 0.342+0.056 | 2.145+0.287 | 12.87+1.94 145+23
NSGA-II N/A 12.4+1.8 45.7+6.2 187.3£23.4 >600 256+34
ADAPT 1260+17.3 | 0.007+0.002 | 0.018+0.004 | 0.043+0.009 | 0.134+0.021 128+21

Small (n=20), Medium (n=50), Large (n=100), Enterprise (n=200). Training time applies only to ADAPT.
Decision times represent mean + standard deviation over 30 runs. Memory usage measured at peak allocation.

0.9
o {o] ©— Random
o O g __4___-—-—4' O Severity
0.81 +_—____,|,._——~"|"'—— o =A- Popularity

.2 o o <& < <> PageRank
s W v — -—!= i £ =¥— Betweenness
#07] Yo ke —
s &= o —&- NSGA-II
2 = @= ADAPT
g [m]
= 0.6
Q
I~
=
=
& 0.5

o

o
041 ® o o
01 02 03 04 05 06 07 08 09

Vulnerability Heterogeneity (1)

Figure 7: Performance vs. vulnerability heterogeneity. ADAPT maintains
superior performance across all heterogeneity levels, with advantages most pro-
nounced under high heterogeneity (7 > 0.7). Severity-based approaches improve
with heterogeneity but remain inferior, while ADAPT effectively balances sever-
ity and structural considerations across diverse vulnerability distributions.

and dynamic dependency evolution (5-15% modified relation-
ships). ADAPT maintained 92.7% baseline performance, sig-
nificantly outperforming NSGA-II (84.1%), PageRank (79.8%),
severity-based (78.4%), and popularity-based (81.2%) strate-
gies. This superior robustness stems from stochastic training
simulation improving resilience against uncertain conditions.

6.4.3. Computational Performance Analysis

Table 5 presents detailed computational analysis across all
strategies and scales. ADAPT demonstrates remarkable scala-
bility, maintaining sub-second decision times even at enterprise
scale (n = 200), while NSGA-II becomes computationally pro-
hibitive (>10 minutes per decision). The RL approach achieves
optimal balance between solution quality and computational
efficiency, enabling real-time deployment in operational envi-
ronments. Training amortization makes ADAPT cost-effective:
21-minute training enables millions of sub-second decisions.

6.4.4. Performance Across Network Topologies

ADAPT’s generalization capability was evaluated across
three canonical network topologies (Figure 8): Barabasi-Albert
(BA) scale-free networks, Erdés-Rényi (ER) random graphs, and
Watts-Strogatz (WS) small-world networks (n = 50, 6 = 0.15).
Results demonstrate consistent superiority across all topolo-

12

Random
Severity
Popularity
PageRank
Betweenness
NSGA-IT
ADAPT

HEREAND

Risk Reduction Ratio

il iy
A R Y

7
.
/
/
/
/
/
/
/
/
/
?
%

Barabasi-Albert
(Scale-free)

el

rdds-Rényi
(Random)

Watts-Strogatz
(Small-world)

Figure 8: Performance across network topologies. ADAPT demonstrates consis-
tent superiority across Barabdsi-Albert (scale-free), Erdds-Rényi (random), and
Watts-Strogatz (small-world) networks, with particularly strong performance on
scale-free topologies where hub protection is critical.

gies, with particularly strong performance on scale-free net-
works (22.8% improvement over heuristics, 6.4% over NSGA-II)
where hub protection is critical. The method’s structural aware-
ness capabilities enable effective identification and prioritization
of high-centrality nodes across diverse network architectures,
validating generalizability to real-world critical infrastructure
topologies.

6.4.5. Policy Transfer Across Infrastructure Topologies

To assess whether learned policies generalize across in-
frastructures or require complete retraining per network, we
conducted transfer learning experiments (See Table 6). A pol-
icy trained on Barabasi-Albert scale-free networks (n = 50,
60 = 0.15) was evaluated without retraining on Erdés-Rényi
and Watts-Strogatz topologies of identical size and vulnerability
distribution.

Zero-shot transfer: The transferred policy achieved 87.3%
of target-domain performance on ER networks (RRR: 0.723
vs. 0.828 for fully-trained) and 91.2% on WS networks (RRR:
0.756 vs. 0.829), compared to 76.4% for untrained random
initialization. This demonstrates that learned policies capture
transferable dependency-aware strategies rather than overfitting
to specific topological features.

Fine-tuning efficiency: Fine-tuning with 100 episodes (ap-
proximately 8 minutes of training) in the target domain recovered
96.8% of fully-trained performance on ER networks and 98.1%

on WS networks. This represents a 92.7% reduction in training
time compared to training from scratch (21 minutes baseline),
while achieving near-optimal performance.

Cross-scale transfer: Policies trained on medium-scale
systems (n = 50) and transferred to large-scale systems (n =
100) maintained 83.4% relative performance without fine-tuning.
With 200 episodes of fine-tuning (15 minutes), performance
recovered to 94.6% of fully-trained baseline, suggesting effective
transfer across system scales.

These findings have significant operational implications: or-
ganizations can pre-train policies on synthetic networks repre-
sentative of their infrastructure class and fine-tune on production
configurations, reducing deployment overhead from hours to
minutes. For environments with multiple similar infrastructure
segments, a single base policy can be rapidly adapted to local
conditions. The policy’s ability to transfer suggests it learns gen-
eralizable principles about dependency-aware prioritization such
as protecting high-centrality nodes and respecting prerequisite
chains, rather than memorizing configuration-specific patterns.

6.4.6. Optimality Gap Analysis

To establish theoretical performance bounds, we compared
ADAPT against the one-step MILP optimum (myopic) solution
defined in Sec. 3.4 for computationally feasible instances (n <
30). Table 7 shows ADAPT maintains an average optimality
gap of 4.33% with graceful degradation from 2.76% to 6.18%
as problem complexity increases.

Beyond n =~ 30, solving the exact MILP becomes pro-
hibitively expensive, whereas ADAPT maintains high-quality
solutions at realistic infrastructure scales. These results validate
that ADAPT learns effective selection policies that closely ap-
proximate the one-step (myopic) MILP optimum while remaining
computationally feasible for operational deployment.

7. Case Study: Critical Infrastructure Scenario

We validated our approach with a case study built on a
critical-infrastructure model derived from industry reference
architectures [45, 46]. ADAPT was evaluated against all six
baselines in various operational conditions and system configu-
rations.

7.1. System Description and Asset Characterization

The case study system was constructed following a sys-
tematic methodology to ensure realistic operational constraints
representative of modern critical infrastructure environments:

Asset Categorization: The 78 infrastructure elements were
classified into four tiers based on operational criticality: (1) Crit-
ical Infrastructure (8 assets, must maintain 99.99% availability),
(2) Core Services (15 assets, 99.9% target), (3) Support Sys-
tems (32 assets, 99% target), and (4) Edge Devices (23 assets,
best-effort). This hierarchical structure reflects typical critical
infrastructure architectures with clear service level agreements
and operational dependencies.

Vulnerability Profile: The system contained 45 known
vulnerabilities distributed between assets with heterogeneity

13

n = 0.7, CVSS scores ranging from 3.2 to 9.8, and dependency
density 6 = 0.32. This configuration represents a realistic threat
landscape with diverse vulnerability severity levels and complex
interdependency structures.

Cost Model: Patching costs were derived from histori-
cal maintenance data, incorporating factors including system
complexity (1.0-2.5x multiplier), downtime impact (1.0-3.0x),
and coordination requirements (1.0-1.5x). The resulting costs
ranged from 5 to 120 resource units, with a log-normal dis-
tribution (u = 3.2,0 0.8), reflecting realistic operational
expenditure patterns.

Operational Constraints: Maintenance windows were
modeled based on typical enterprise constraints, with limited
weekday availability (2-4 hours) and expanded weekend win-
dows (6-8 hours). Critical patches required minimum 3-hour
windows for testing and rollback procedures. Budget constraints
were set at 5 = 0.4 of the total system patching cost to simulate
resource-constrained environments.

All results include 95% confidence intervals computed over
30 independent runs with different random seeds.

7.2. Comprehensive Baseline Evaluation

Each of the six baseline strategies was applied to this system
under identical constraints to ensure rigorous comparative anal-
ysis. Tables 8 and 9 present detailed performance and efficiency
metrics across all evaluation dimensions.

7.3. Performance Analysis and Strategic Insights

The comprehensive evaluation reveals ADAPT’s effective-
ness relative to both traditional heuristics and state-of-the-art
optimization methods. ADAPT achieved an 89.7% risk reduc-
tion, demonstrating a 3.8% improvement over the strongest base-
line method (NSGA-II at 86.4%). While this improvement may
appear modest, it represents significant practical value when
considering the computational efficiency trade-off: ADAPT re-
quires only 0.089 seconds versus NSGA-II's 134.7 seconds for
decision making, providing a 1,513x speedup while maintaining
near-optimal performance.

Critical Infrastructure Protection: ADAPT achieved
100% critical coverage, matching the severity-based approach
in protecting all tier-1 critical infrastructure assets. This per-
fect coverage is essential for operational environments where
critical asset compromise poses existential threats to system
functionality.

Operational Efficiency: ADAPT achieved optimal time-
t0-50% risk reduction (6 patches), matching the most efficient
baseline methods while maintaining sub-second decision times.
This rapid risk mitigation trajectory is crucial in operational
contexts where immediate vulnerability remediation maintains
system integrity against active threats.

Resource Optimization: ADAPT accomplished superior
outcomes using 26 patched elements, matching the efficiency
of NSGA-II and severity-based approaches. This demonstrates
optimal resource allocation rather than brute-force patching,
critical for resource-constrained operational environments.

Table 6: Policy Transfer Learning Performance Across Infrastructure Topologies

Transfer Scenario RRR Relative Training Time Performance
Perf. (%) Time (min) Savings (%) Recovery (%)

Same-Topology Baseline

BA — BA (trained) 0.828 + 0.039 100.0 21.0 - -

Zero-Shot Transfer (No Retraining)

BA — ER 0.723 + 0.045 87.3 0 100.0 -

BA - WS 0.756 + 0.042 91.2 0 100.0 -

Fine-Tuned Transfer (100 episodes)

BA — ER (+100ep) 0.801 + 0.037 96.8 8.0 61.9 10.9

BA — WS (+100ep) 0.813 +£0.035 98.1 8.0 61.9 7.8

Comparison Baselines

Random initialization (ER) 0.632 + 0.058 76.4 21.0 - -

Fully trained (ER) 0.828 + 0.039 100.0 21.0 - -

Fully trained (WS) 0.829 + 0.041 100.0 21.0 - -

Cross-Scale Transfer

n =50 — 50 (trained) 0.827 £ 0.039 100.0 21.0 - -

n =50 — 100 (zero-shot) 0.690 + 0.052 834 0 100.0 -

n =50 — 100 (+200ep) 0.782 + 0.046 94.6 15.0 46.4 13.4

n = 100 — 100 (trained) 0.934 + 0.029 100.0 28.0 - -

BA: Barabasi-Albert (scale-free), ER: Erdds-Rényi (random), WS: Watts-Strogatz (small-world).
All cross-topology experiments use n = 50 assets, 6 ~ 0.15 dependency density.

Confidence intervals represent 95% CI over 30 independent runs.
Relative Performance = (RRR / Fully-trained RRR) x 100%.
Time Savings = (1 - Transfer Time / Full Training Time) X 100%.

Performance Recovery = improvement from zero-shot to fine-tuned (percentage points).
Cross-scale relative performance calculated against n = 100 trained baseline (0.934).

Table 7: MILP vs. ADAPT Optimality Analysis

System Size (n) | MILP | ADAPT | Optimality Gap (%)
10 0.948 0.922 2.76
15 0.943 0.912 3.29
20 0.938 0.899 4.19
25 0.933 0.884 5.23
30 0.928 0.871 6.18
Average Optimality Gap 4.33%

Optimality Gap = (MILP - ADAPT)/MILP x 100%. Solutions represent Risk
Reduction Ratio.

Computational Practicality: The 0.089-second decision
time enables real-time deployment in operational environ-
ments, while NSGA-II’s 134.7-second computation becomes
prohibitive for time-sensitive security operations. This 1,513x
speedup advantage positions ADAPT as a practical method that
combines sophisticated optimization with operationally viable,
sub-second decision times at critical-infrastructure scale.

7.4. Operational Insights and Strategic Behavior

Qualitative analysis of ADAPT’s patching sequences re-
vealed sophisticated strategic behaviors transcending traditional
approaches. ADAPT consistently demonstrated ’dependency-
aware lookahead,” occasionally deferring high-severity elements
to first establish dependency prerequisites enabling access to
multiple critical targets. For instance, ADAPT strategically
patched a medium-severity edge device (CVSS 5.4) that served

14

Table 8: Performance Metrics - Critical Infrastructure Case Study

Strategy Risk Reduction | Critical Coverage | Time to 50%
Ratio (%) Ratio (%) Risk (patches)
Random 432+ 14 81.3+24 18+2
Severity 72.8 +1.6 100 12+ 1
Popularity 785+ 1.6 93.8 +2.6 9+1
PageRank 81214 96.7 +2.1 8+1
Betweenness 798 £ 1.7 942 +2.8 9+1
NSGA-II 864+ 1.2 98.1+1.9 7+1
ADAPT 89.7 + 1.1 100 6+1

as a dependency gateway, subsequently enabling efficient re-
mediation of three critical infrastructure assets with combined
CVSS scores exceeding 27.

The learned policy exhibited emergent specialization across
network regions: implementing breadth-first patching in densely
connected core services to rapidly reduce vulnerability den-
sity, while adopting targeted depth-first approaches in sparsely
connected edge systems. This adaptive behavior emerged natu-
rally from reinforcement learning without explicit programming,
demonstrating superior optimization discovery capabilities com-
pared to manually-designed heuristic approaches.

Comparative Strategic Analysis: NSGA-II, while achiev-
ing strong performance, required manual objective weight tun-
ing and population size optimization for the specific infrastruc-
ture topology. ADAPT’s end-to-end learning approach elimi-

Table 9: Efficiency Metrics - Critical Infrastructure Case Study

Strategy Elements Average Computation
Patched Time (s)
Random 27+ 1 0.003
Severity 26 + 1 0.021
Popularity 28 + 1 0.187
PageRank 27+ 1 0.213
Betweenness 28 + 1 1.856
NSGA-II 26 + 1 134.7
ADAPT 261 0.089

All results based on 30 independent runs with 95% confidence intervals.

nated this manual configuration burden while achieving superior
computational efficiency. Traditional graph-theoretic methods
(PageRank, Betweenness) showed consistent but suboptimal per-
formance, failing to integrate vulnerability severity with struc-
tural importance effectively.

These operational characteristics validate ADAPT’s fun-
damental advantage: the framework discovers complex
dependency-aware strategies that would be challenging to derive
through manual analysis or static optimization approaches, while
maintaining computational efficiency essential for operational
deployment in critical infrastructure protection scenarios.

8. Discussion and Limitations

This section examines ADAPT’s practical constraints, con-
textualizes contributions within existing security practices, and
identifies opportunities for methodological refinement necessary
for operational deployment.

8.1. Risk Quantification and Industry Standards

ADAPT’s quantitative risk model (Section 3.3) represents a
complementary approach to established frameworks rather than
a replacement. Industry standards such as NIST SP 800-30 and
ISO 27005 emphasize qualitative analyst judgment, acknowledg-
ing that “risk assessments are often not precise instruments of
measurement” due to limitations in methodologies, data quality,
and the subjective nature of likelihood estimation [47]. These
standards recognize that threat actor intent, organizational con-
text, and operational environment cannot be fully captured algo-
rithmically.

Our mathematical formulation of per-asset risk p;(f), in Sec-
tion 3.3 provides a structured mechanism for encoding domain
expertise into prioritization decisions. The exploit probability
function p;(¢) = o(ap + @1 CVSS; + o, EPSS;(?) + a3 {KEV;} +
a4At;) represents one instantiation, and organizations may sub-
stitute analyst-derived scores where automated metrics prove
insufficient. The framework’s contribution lies in demonstrating
how dependency-aware optimization enhances decision quality
regardless of underlying quantification method (whether algo-
rithmic, human-generated, or hybrid). Organizations employing
qualitative assessment can leverage ADAPT’s capabilities by
translating qualitative risk levels into numerical representations
preserving ordinal relationships.

15

8.2. Data Availability and Operational Feasibility

ADAPT assumes availability of structured dependency in-
formation and per-asset vulnerability intelligence that may not
be ubiquitous in current practice. Three factors mitigate this
limitation: The operational landscape is evolving toward en-
hanced visibility through automated asset discovery platforms
(ServiceNow CMDB, Axonius), continuous vulnerability intelli-
gence (Tenable.io, Qualys VMDR), and infrastructure-as-code
practices that inherently document dependencies. Furthermore,
Section 6.4.2 shows that ADAPT maintains 92.7% baseline
performance with 10-30% masked dependencies, allowing in-
cremental adoption with partial information. Moreover, the
framework provides differential value where risk-based priori-
tization justifies instrumentation investment, including critical
infrastructure, high-security environments, and heterogeneous
legacy systems with complex interdependencies.

ADAPT thus represents both an immediately deployable
capability for mature security operations and a motivating vision
for enhanced industry-wide visibility.

8.3. Patching Economics: Individual vs. Batch Operations

Industrial patch management employs coordinated batch
deployments for compelling operational reasons: standardized
processes amortize overhead, testing operates on batches for
compatibility assurance, and change management favors sched-
uled windows. Our evaluation under individual-system con-
straints enables rigorous comparison but differs from production
economics.

ADAPT’s practical value manifests in three scenarios:
(1) Resource-constrained prioritization where budget prevents
comprehensive patching and strategic allocation becomes crit-
ical, (2) Heterogeneous environments mixing cloud services,
containers, legacy systems, and embedded devices that cannot
employ uniform batch processes, and (3) Batch composition
optimization where the framework determines which assets con-
stitute each maintenance window and optimal sequencing. The
26-element case study solution (Table 8) represents a practical
batch size rather than individual operations.

Organizations employing fixed-schedule batching optimize
different objectives, including operational predictability, process
standardization, which may justify the 5-15% risk reduction gap
observed in comparisons. ADAPT quantifies this trade-off and
provides alternatives where sophisticated optimization justifies
additional complexity.

8.4. Testing Duration and Service-Level Constraints

A notable limitation is that the current formulation does
not explicitly model patch testing duration or SLA penalties.
Testing requirements often constitute the primary deployment
barrier, with validation consuming days or weeks. Downtime
opportunity costs can substantially exceed direct patching costs
for revenue-generating or critical infrastructure systems.

The cost vector ¢ € R}, (Section 4.1) can be extended:

C; = Cibase T Ci,downtime X SLAfpenalty,-
+ Ciest X test_duration;

(7

+ Ci coordination X |dependen0iesi|

This would enable explicit balancing of security risk against
operational availability, addressing practitioners’ primary con-
cern with aggressive patching. Furthermore, coordinated de-
pendency patching, where interdependent assets update simulta-
neously, could be modeled through grouped action constraints,
capturing operational reality that patching one component often
necessitates coordinated updates. Integrating these considera-
tions represents important future work for production deploy-
ment.

8.5. Scalability and Architectural Extensions

Although evaluation demonstrates feasibility for n = 500
(Section 6.3.2), extension to tens of thousands of nodes requires
refinement. The O(n?) reachability computation becomes pro-
hibitive on a massive scale. Three approaches address this:

Hierarchical decomposition: Multi-level optimization
where ADAPT operates on asset clusters with high-level policies
determining cluster priorities and local agents managing intra-
cluster patching, mirroring organizational security architectures.

Sparse matrix optimization: Real-world dependency
graphs exhibit sparse connectivity (6 < 1), enabling compressed
representations and incremental updates avoiding full recompu-
tation.

Transfer learning: Pre-training policies on diverse synthetic
topologies and fine-tuning on production infrastructure could
dramatically reduce deployment overhead. Meta-learning ap-
proaches that learn to adapt across infrastructure families could
enable rapid adaptation with minimal environment-specific train-
ing.

Current implementation establishes feasibility at scales rele-
vant to many scenarios (individual facilities, regional networks,
business units), while these extensions provide pathways toward
enterprise deployment.

8.6. Dependency Modeling: Binary vs. Probabilistic

Binary reachability R € {0, 1> (see Equation 1) provides
computational efficiency but simplifies relationships that may
exhibit probabilistic coupling or temporal dynamics. Real de-
pendencies often involve probabilistic propagation (vulnerability
in j affects i with probability p < 1), temporal variation across
operational modes, and weighted importance based on criticality.

A probabilistic extension D € [0, 11" could capture this
uncertainty but would increase computational complexity by
replacing Boolean matrix operations with probabilistic infer-
ence while potentially improving risk estimation accuracy in
scenarios with partial or uncertain dependency information. The
trade-off depends on context: deterministic worst-case (current)
provides conservative bounds for critical infrastructure, while
probabilistic models may refine estimates for environments with
mature observability. Future work should empirically compare
these choices across operational domains.

8.7. Complementary Security Considerations

Comprehensive security requires attention beyond patch
scheduling. The cryptographic integrity of dependency data and

16

vulnerability intelligence must be protected against adversar-
ial manipulation, where compromised information could cause
incorrect prioritization. Fault detection mechanisms in cryp-
tographic implementations [48, 49, 50] provide foundational
data integrity capabilities. Furthermore, Blockchain-enhanced
auditability [51, 52, 53] could provide verifiable audit trails for
regulatory compliance and support secure policy sharing across
organizational boundaries. Moreover, the adversarial robustness
of the RL policy itself requires defensive training techniques and
Byzantine-fault-tolerant protocols against sophisticated adver-
saries that target the decision framework [54, 55, 56].

ADAPT represents one component of the comprehensive se-
curity architecture that requires integration with complementary
controls, including cryptographic validation, secure distribution,
and robust adversarial learning for in-depth defense.

8.8. Threats to Validity

Internal Validity: Hyperparameter selection may influence
results, particularly the risk tolerance parameter w = 0.7. We
mitigate this through sensitivity analysis demonstrating robust
performance across w € [0.6,0.8] and standard PPO parameters
from established literature. Baseline implementation fairness is
ensured through identical constraint enforcement and evaluation
environments across all methods.

External Validity: System generation relies on parametric
models that may not capture all real-world infrastructure com-
plexities. The case study uses industry reference architectures
rather than proprietary operational data due to confidentiality
constraints. Generalizability beyond critical infrastructure do-
mains remains unvalidated. We address this through comprehen-
sive parameter sweeps across diverse system configurations and
dependency structures.

Construct Validity: Risk Reduction Ratio assumes vul-
nerability severity scores accurately reflect exploitation impact,
though real-world risk involves organizational context not cap-
tured in CVSS metrics. Dependency modeling simplifies com-
plex operational relationships into binary relationships. Our
reachability matrix approach and multi-tier case study validation
help ensure construct alignment with operational realities.

Statistical Conclusion Validity: Sample sizes of 30 runs
may be insufficient for detecting small effect differences, though
Mann-Whitney U tests are appropriate for non-normal distri-
butions. Multiple comparison corrections are applied across
baseline strategies. The 95% confidence intervals provide rea-
sonable statistical confidence for the observed effect sizes.

These limitations are partially offset by comprehensive evalu-
ation across 954 system configurations, multiple network topolo-
gies, and rigorous statistical methodology, though future work
should validate findings in operational deployments with real
infrastructure data.

9. Conclusion and Future Work

This research introduces ADAPT, a dependency-aware
vulnerability management framework integrating formal de-
pendency modeling with reinforcement learning optimization

for critical infrastructure systems. Comprehensive evaluation
demonstrates ADAPT’s superiority over six baseline strategies:
5.5% improvement over NSGA-II multi-objective optimization
with 1,513x computational speedup, 12—-19% improvement over
graph-theoretic centrality methods, and 4.33% average opti-
mality gap relative to theoretical bounds. Unlike recent RL
frameworks lacking dependency modeling or genetic algorithms
suffering scalability limitations, ADAPT combines structural
awareness with adaptive optimization and sub-second decision
times suitable for operational deployment.

The critical infrastructure case study validates practical ap-
plicability with 89.7% risk reduction and real-time performance.
Key contributions include emergent strategic behaviors tran-
scending manual heuristics, superior performance under re-
source constraints, and formal dependency-aware risk quantifi-
cation enabling precise identification of cascading propagation
pathways.

Future research directions include:

e Operational Validation in Live Environments: Deploy-
ment in operational industrial control systems and critical
infrastructure to validate robustness against real-world noise,
incomplete dependency information, and operational con-
straints not captured in simulation. Pilot deployments with
industry partners would provide empirical evidence of practi-
cal effectiveness and identify deployment barriers requiring
methodological refinement.

e Hierarchical Policy Decomposition for Enterprise Scale:
Development of multi-level optimization architectures en-
abling application to infrastructures with tens of thousands
of nodes through cluster-level policies and federated learning
approaches. This would extend ADAPT’s applicability from
facility-level to enterprise-wide deployment scenarios.

¢ Blockchain-Enhanced Provenance and Auditability: Inte-
gration with Al-enhanced blockchain frameworks [57] could
provide verifiable audit trails for patch deployment decisions,
supporting regulatory compliance and forensic analysis. De-
centralized coordination mechanisms would enable secure
policy sharing across organizational boundaries in critical
infrastructure sectors, enhancing resilience while maintain-
ing cryptographic assurances of decision integrity and patch
authenticity.

e Probabilistic Dependency Modeling and Uncertainty
Quantification: Extension to weighted dependency graphs
D € [0, 17" capturing probabilistic coupling and tempo-
ral dynamics, with empirical comparison against determinis-
tic worst-case assumptions to establish context-appropriate
modeling choices across operational domains with varying
observability maturity.

o Operational Constraint Integration: Explicit modeling of
patch testing duration, service-level agreement penalties, and
coordinated dependency updates within the reinforcement
learning framework to balance security risk against opera-
tional availability requirements. This extension would ad-

17

dress the primary concerns practitioners identify regarding
aggressive patching strategies in production environments.

These directions advance ADAPT from a research prototype
demonstrating theoretical capabilities toward production-ready
systems addressing the full spectrum of operational patch man-
agement challenges in critical infrastructure protection.

References
[1] V. Ahmadi, P. Arlos, E. Casalicchio, Normalization framework for vulner-

ability risk management in cloud, in: 2021 8th Int. Conf. Future Internet

Things Cloud (FiCloud), IEEE, 2021, pp. 99-106.

A. Sharma, U. K. Singh, Prioritization of security vulnerabilities under

cloud infrastructure using AHP, Natural Language Process. Softw. Eng.

(2025) 335-355.

A. L. P. T. Bouom, J.-P. Lienou, W. E. Geh, F. F. Nelson, S. Shetty,

C. Kamhoua, TriAssetRank: Ranking vulnerabilities, exploits, and privi-

leges for countermeasures prioritization, IEEE Trans. Inf. Forensics Secu-

rity (2024).

Y. Wu, P. Guo, Y. Wang, M. Du, X. Wang, D. Zhang, Vulnerability analysis

of interdependent infrastructures considering the sensitivity of components

to different risks, in: 2023 IEEE Int. Conf. Syst., Man, Cybernet. (SMC),

IEEE, 2023, pp. 2403-2408.

J. Beerman, D. Berent, Z. Falter, S. Bhunia, A review of Colonial Pipeline

ransomware attack, in: 2023 IEEE/ACM 23rd Int. Symp. Cluster, Cloud

Internet Comput. Workshops (CCGridW), IEEE, 2023, pp. 8-15.

R. Alkhadra, J. Abuzaid, M. AlIShammari, N. Mohammad, Solar winds

hack: In-depth analysis and countermeasures, in: 2021 12th Int. Conf.

Comput. Commun. Netw. Technol. ICCCNT), IEEE, 2021, pp. 1-7.

L. G. Brunner, R. A. M. Peer, C. Zorn, R. Paulik, T. M. Logan, Understand-

ing cascading risks through real-world interdependent urban infrastructure,

Rel. Eng. Syst. Safety 241 (2024) 109653.

A. Almaleh, D. Tipper, Risk-based criticality assessment for smart critical

infrastructures, Infrastructures 7 (1) (2021) 3.

U. D. Ani, H. He, A. Tiwari, Vulnerability-based impact criticality esti-

mation for industrial control systems, in: 2020 Int. Conf. Cyber Security

Protection Digit. Serv. (Cyber Security), IEEE, 2020, pp. 1-8.

N. Dissanayake, A. Jayatilaka, M. Zahedi, M. A. Babar, Software se-

curity patch management -A systematic literature review of challenges,

approaches, tools and practices, Inf. Softw. Technol. 144 (2022) 106771.

P. Zebrowski, A. Couce-Vieira, A. Mancuso, A bayesian framework for the

analysis and optimal mitigation of cyber threats to cyber-physical systems,

Risk Analysis 42 (10) (2022) 2275-2290.

S. Hore, A. Shah, N. D. Bastian, Deep VULMAN: A deep reinforcement

learning-enabled cyber vulnerability management framework, Expert Syst.

Appl. 221 (2023) 119734.

A. Longueira-Romero, R. Iglesias, J. L. Flores, I. Garitano, A novel

model for vulnerability analysis through enhanced directed graphs and

quantitative metrics, Sensors 22 (6) (2022) 2126.

G. George, S. M. Thampi, A graph-based security framework for securing

industrial iot networks from vulnerability exploitations, IEEE Access 6

(2018) 43586-43601.

Y. Jiang, N. Oo, Q. Meng, H. W. Lim, B. Sikdar, Vulrg: Multi-level

explainable vulnerability patch ranking for complex systems using graphs,

arXiv preprint arXiv:2502.11143 (2025).

F. Li, Z. Xu, D. Cheng, X. Wang, Adarisk: risk-adaptive deep reinforce-

ment learning for vulnerable nodes detection, IEEE Transactions on Knowl-

edge and Data Engineering 36 (11) (2024) 5576-5590.

H.Ma, Y. Zhang, S. Sun, T. Liu, Y. Shan, A comprehensive survey on nsga-

ii for multi-objective optimization and applications, Artificial Intelligence

Review 56 (12) (2023) 15217-15270.

S. Verma, M. Pant, V. Snasel, A comprehensive review on nsga-ii for multi-

objective combinatorial optimization problems, IEEE access 9 (2021)

57757-57791.

G. Yadav, K. Paul, Patchrank: Ordering updates for SCADA systems, in:

2019 24th IEEE Int. Conf. Emerg. Technol. Factory Automat. (ETFA),

IEEE, 2019, pp. 110-117.

(2]

(3]

(4]

(5]

(6]

(71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]
(33]

(34]

[36]
[37]
(38]
(39]

(40]

[41]

[42]

(43]
[44]

[45]

N. Li, F. Wang, J. J. Magoua, D. Fang, Interdependent effects of critical
infrastructure systems under different types of disruptions, Int. J. Disaster
Risk Reduct. 81 (2022) 103266.

V. Gaur, O. P. Yadav, G. Soni, A. P. S. Rathore, E. Khan, Vulnerability
assessment of critical infrastructures for cascading failures: An application
to water distribution networks, Proc. Institut. Mech. Eng., Part O: J. Risk
Reliab. 238 (5) (2024) 1074-1087.

L. Meng, X. Yao, Q. Chen, C. Han, Vulnerability cloud: A novel approach
to assess the vulnerability of critical infrastructure systems, Concurrency
Comput.: Pract. Exp. 34 (21) (2022) e7131.

P. Kotzanikolaou, M. Theoharidou, D. Gritzalis, Assessing n-order de-
pendencies between critical infrastructures, Int. J. Critical Infrastructures
9 (1-2) (2013) 93-110.

M. Haraguchi, S. Kim, Critical infrastructure interdependence in New
York City during hurricane Sandy, Int. J. Disaster Resilience Built Environ.
7 (2) (2016) 133-143.

G. Stergiopoulos, E. Vasilellis, G. Lykou, P. Kotzanikolaou, D. Gritzalis,
Classification and comparison of critical infrastructure protection tools,
in: Critical Infrastructure Protection X: 10th IFIP WG 11.10 Int. Conf.,
ICCIP 2016, Arlington, VA, USA, March 14-16, 2016, Revised Selected
Papers 10, Springer, 2016, pp. 239-255.

B. A. Carreras, D. E. Newman, I. Dobson, V. E. Lynch, P. Gradney, Thresh-
olds and complex dynamics of interdependent cascading infrastructure
systems, Netw. Netw: Last Frontier Complexity (2014) 95-114.

L. A. Clarfeld, P. D. H. Hines, E. M. Hernandez, M. J. Eppstein, Risk
of cascading blackouts given correlated component outages, IEEE Trans.
Netw. Sci. Eng. 7 (3) (2019) 1133-1144.

W. Sun, P. Bocchini, B. D. Davison, Quantitative models for interdependent
functionality and recovery of critical infrastructure systems, Objective
Resilience: Objective Processes (2022) 127-229.

A. D. Sawadogo, et al., SSPCatcher: Learning to catch security patches,
Empirical Softw. Eng. 27 (6) (2022) 151.

B. Wang, X. Li, L. P. de Aguiar, D. S. Menasche, Z. Shafiq, Characterizing
and modeling patching practices of industrial control systems, Proc. ACM
Meas. Anal. Comput. Syst. 1 (1) (2017) 1-23.

M. A. Nia, R. E. Atani, B. Fabian, E. Babulak, On detecting unidentified
network traffic using pattern-based random walk, Security and Communi-
cation Networks 9 (16) (2016) 3509-3526.

E. Babulak, Al Tools for Protecting and Preventing Sophisticated Cyber
Attacks, IGI Global, 2023.

R. Vallabhaneni, S. A. Abhilash Vaddadi, S. Dontu, An empirical paradigm
on cybersecurity vulnerability mitigation framework (2023).

S.-S. Yoon, D.-Y. Kim, G.-G. Kim, [.-C. Euom, Vulnerability assessment
based on real world exploitability for prioritizing patch applications, in:
2023 7th Cyber Security Netw. Conf. (CSNet), IEEE, 2023, pp. 62-66.
V. Ahmadi Mehri, P. Arlos, E. Casalicchio, Automated context-aware
vulnerability risk management for patch prioritization, Electronics 11 (21)
(2022) 3580.

G. Yadav, P. Gauravaram, A. K. Jindal, K. Paul, SmartPatch: A patch
prioritization framework, Comput. Ind. 137 (2022) 103595.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
policy optimization algorithms, arXiv preprint arXiv:1707.06347 (2017).
V. Mnih, et al., Human-level control through deep reinforcement learning,
Nature 518 (7540) (2015) 529-533.

V. Mnih, et al., Asynchronous methods for deep reinforcement learning,
in: Int. Conf. Mach. Learn., PMLR, 2016, pp. 1928-1937.

T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, in:
Int. Conf. Mach. Learn., PMLR, 2018, pp. 1861-1870.

S. Jadhave, V. Sonwalkar, S. Shewale, P. Shitole, S. Bhujadi, Deep re-
inforcement learning for autonomous driving systems, Int. J. Multidisci-
plinary Res. 6 (2024). doi:10.36948/ijfmr.2024.v06i05.28518.

S. Sallinen, J. Luo, M. Ripeanu, Real-time pagerank on dynamic graphs, in:
Proceedings of the 32nd International Symposium on High-Performance
Parallel and Distributed Computing, 2023, pp. 239-251.

U. Brandes, A faster algorithm for betweenness centrality, Journal of
mathematical sociology 25 (2) (2001) 163-177.

S. Chakraborty, Topsis and modified topsis: A comparative analysis, Deci-
sion Analytics Journal 2 (2022) 100021.

E. Y. Nakagawa, P. O. Antonino, F. Schnicke, R. Capilla, T. Kuhn,
P. Liggesmeyer, Industry 4.0 reference architectures: State of the art and

18

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

future trends, Computers & Industrial Engineering 156 (2021) 107241.
M. Moghaddam, M. N. Cadavid, C. R. Kenley, A. V. Deshmukh, Refer-
ence architectures for smart manufacturing: A critical review, Journal of
manufacturing systems 49 (2018) 215-225.

J. Initiative, Guide for conducting risk assessments (nist sp 800-30r1),
National Institute of Standards and Technology (2012).

D. Owens, R. El Khatib, M. Bisheh-Niasar, R. Azarderakhsh, M. M.
Kermani, Efficient and side-channel resistant ed25519 on arm cortex-m4,
IEEE Transactions on Circuits and Systems I: Regular Papers 71 (6) (2024)
2674-2686.

M. B. Niasar, R. Azarderakhsh, M. M. Kermani, Optimized architectures
for elliptic curve cryptography over curve448, Cryptology ePrint Archive
(2020).

M. Anastasova, R. Azarderakhsh, M. M. Kermani, Fast strategies for the
implementation of sike round 3 on arm cortex-m4, IEEE Transactions on
Circuits and Systems I: Regular Papers 68 (10) (2021) 4129-4141.

A. Ahmad, M. Saad, M. Al Ghamdi, D. Nyang, D. Mohaisen, Blocktrail:
A service for secure and transparent blockchain-driven audit trails, IEEE
Systems Journal 16 (1) (2021) 1367-1378.

V. Kulothungan, Using blockchain ledgers to record ai decisions in iot,
10T 6 (3) (2025) 37.

L. Gao, Enterprise internal audit data encryption based on blockchain
technology, PloS one 20 (1) (2025) e0315759.

K. Konstantinidis, N. Vaswani, A. Ramamoorthy, Detection and mitigation
of byzantine attacks in distributed training, IEEE/ACM Transactions on
Networking 32 (2) (2023) 1493-1508.

Y. Pan, Z. Su, Y. Wang, J. Zhou, M. Mahmoud, Privacy-preserving
byzantine-robust federated learning via deep reinforcement learning in
vehicular networks, IEEE Transactions on Vehicular Technology (2025).
L. Ye, M. Figura, Y. Lin, M. Pal, P. Das, J. Liu, V. Gupta, Resilient
multiagent reinforcement learning with function approximation, IEEE
Transactions on Automatic Control 69 (12) (2024) 8497-8512.

D. Ressi, R. Romanello, C. Piazza, S. Rossi, Ai-enhanced blockchain
technology: A review of advancements and opportunities, Journal of
Network and Computer Applications 225 (2024) 103858.

