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 A B S T R A C T

This paper introduces TranGDeepSC, a lightweight CNN-based deep semantic communication (DeepSC) system 
that leverages Vision Transformer (ViT) knowledge through co-training to enhance image transmission. 
Evaluated on CIFAR-100 across various SNRs, TranGDeepSC demonstrates competitive performance with 
ViTDeepSC, and outperforms SemViT and ADJSCC-V in image quality, particularly in low-SNR environments. 
Notably, it offers substantial gains in efficiency: 92.8% fewer parameters than ADJSCC-V, 72.0% lower 
energy use, and 48% faster processing than ViTDeepSC. These advantages make TranGDeepSC well-suited for 
resource-constrained applications in next-generation communication systems, including 6G, IoT, and real-time 
multimedia streaming.
1. Introduction

Semantic communication represents a paradigm shift from tradi-
tional bit-based transmission to meaning-focused data exchange. Con-
ventional systems often struggle with inefficient bandwidth usage, 
poor performance in noisy environments, and inability to capture nu-
anced meaning [1–3]. To address these limitations, deep learning-
based semantic communication (DeepSC) systems have emerged. These 
innovative approaches aim to bridge the gap between traditional com-
munication theory and semantic understanding, offering more efficient 
and reliable data transmission in complex environments. By prioritizing 
essential information and adapting to context, DeepSC systems have 
the potential to revolutionize fields such as wireless communication, 
Internet of Things (IoT), and multimedia streaming [4].

1.1. Related works

Initial research in this field primarily concentrated on unimodal 
data transmission. In the realm of text transmission, groundbreaking 
work such as DeepSC [5] introduced Transformer-based architectures 
that simultaneously optimize semantic and channel coding. Building on 
this foundation, Lite-DeepSC [6] proposed a more lightweight approach 
to address resource constraints in Internet of Things devices. Further 
advancements in text semantic communication systems include the 
work of Jia et al. [7], who developed a lightweight joint source-channel 
coding (JSCC) scheme. Their approach employs a DeLighT-based deep 
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neural network model, achieving comparable or superior communica-
tion reliability to Transformer-based JSCC schemes while significantly 
reducing computational requirements and parameter count.

Recent advancements in visual semantic communication have ad-
dressed various challenges in the field. Yoo et al. [8] introduced 
SemVit, integrating ViT and CNN architectures for enhanced perfor-
mance, while Ren et al. [9] developed an asymmetric system based 
on Diffusion models for edge devices. Zhang et al. [10] addressed 
the bandwidth efficiency challenge by proposing a predictive and 
adaptive deep coding (PADC) framework that enables flexible code 
rate optimization. Their approach combines a variable code length 
DeepJSCC model with an Oracle Network for PSNR prediction, achiev-
ing minimal bandwidth consumption while maintaining quality con-
straints. Ye et al. [11] proposed a robust codebook-based system with 
vector-to-index transformers to mitigate noise effects. Zhang et al. [12] 
introduced a multi-server framework using image-to-graph semantic 
similarity and multi-agent RL for efficient resource allocation. Address-
ing semantic noise, Hu et al. [13] developed a framework incorporating 
adversarial training, masked VQ-VAE, and feature importance modules. 
Lyu et al. [14] proposed a multi-task JSCC framework supporting both 
image recovery and classification, with a gated design for channel 
adaptation. Fu et al. [15] introduced VQ-DeepSC, a digital system em-
ploying CNN-based transceivers and multi-scale semantic embedding 
for robust image transmission which improve semantic fidelity, noise 
resistance, multi-task capabilities, and resource utilization in semantic 
communication systems.
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Fig. 1. The framework of the proposed TranGDeepSC includes semantic encoder, channel encoder, channel decoder and semantic decoder.
1.2. Motivations and contributions

Convolutional Neural Networks (CNNs) and Vision Transformers 
(ViTs) have emerged as powerful architectures for Deep Semantic 
Communication (DeepSC) systems, each with distinct strengths and 
limitations. CNNs excel at capturing local spatial patterns and hierar-
chical features, demonstrating robust performance even with limited 
datasets due to their spatial invariance and local representation learn-
ing. However, CNNs have inherent limitations that hinder their ability 
to capture long-range dependencies effectively. This is primarily due to 
their local receptive fields – the convolution kernels that only process 
small regions of the input data at a time. To capture distant relation-
ships, information has to be gradually propagated through multiple 
convolutional layers and a very deep network is required. This process 
is computationally inefficient and makes it challenging to directly cap-
ture long-range interactions. Furthermore, while CNNs are effective at 
hierarchical feature learning, they lack an explicit mechanism to model 
long-range spatial relationships effectively. Conversely, ViTs leverage 
self-attention mechanisms to model global relationships and long-range 
dependencies within images, exhibiting superior performance on large 
datasets.

However, CNNs may struggle to capture long-range dependencies 
without significant depth, while ViTs are computationally intensive 
due to complex attention computations. Given these complementary 
characteristics, we propose a novel approach combining CNNs and ViTs 
strengths in a CNN-based DeepSC systems. The main contributions of 
this research are:

• We introduce TranGDeepSC, a novel CNN-based semantic com-
munication architecture featuring global attention mechanisms. 
This lightweight design exhibits improved noise resilience while 
maintaining computational efficiency.

• We develop an innovative co-training algorithm that effectively 
transfers knowledge from ViT-based DeepSC to TranGDeepSC. 
This approach synergizes the local processing efficiency of CNNs 
with the global representation learning capabilities of ViTs, re-
sulting in a more robust and versatile CNN-based model.

• We conduct comprehensive experiments demonstrating that
TranGDeepSC achieves superior performance in terms of image 
reconstruction quality and computational efficiency compared 
to existing DeepSC models, particularly in challenging low-SNR 
environments.

The remainder of this paper is organized as follows: Section 2 
presents a comprehensive overview of the proposed TranGDeepSC sys-
tem, detailing its architecture and the novel co-training algorithm. 
Section 3 provides an in-depth analysis of the numerical results, demon-
strating the performance of TranGDeepSC across various metrics and 
comparing it with existing state-of-the-art DeepSC systems. Finally, 
Section 4 concludes the paper by summarizing the key findings, dis-
cussing the implications of this research for semantic communication, 
and suggesting directions for future work in this field.
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Fig. 2. The architecture of Residual Gated CNN (RG-CNN).

2. Proposed system

The section outlines the proposed TrangDeepSC system which in-
corporates joint semantic-channel encoder and decoder.

2.1. Residual Gated CNN

The Residual Gated CNN (RG-CNN), illustrated in Fig.  2 extends 
the Gated CNN [16] by incorporating residual connections. This ar-
chitecture enhances feature extraction and information flow while 
improving robustness to noise. The RG-CNN block can be described by 
the following equations: 
[𝐆, 𝐈,𝐂] = Split(FC1(𝐗))

𝐂conv = Conv2D(𝐂)
𝐆proj = 𝐹𝐶𝐺(𝐺)

𝐘 = FC2(𝐆proj ⊙ [𝐈,𝐂conv])
𝐗out = 𝐗 + 𝐘

(1)

where 𝐗 is the input tensor, FC1, FC2, FC𝐺 are fully connected layers, 
Split divides the output of FC  into three parts: 𝐆 (gate), 𝐈 (identity), 
1



ICT Express 11 (2025) 335–340T.S. Do et al.
and 𝐂 (convolution), and Conv2D is a 2D convolution operation. The 
RG-CNN block is first passed through a fully connected layer and 
split into three parts. The gating mechanism (𝐆) controls the flow 
of information, while the identity branch (𝐈) allows for direct feature 
propagation. The convolution branch (𝐂) applies a spatial convolution 
to capture local patterns. The gated output is then passed through 
another fully connected layer FC𝐺, and the result 𝐺proj is added to 
the original input via a residual connection. This structure allows the 
network to adaptively combine spatial and channel-wise information, 
leading to more effective feature extraction and improved performance 
in various computer vision tasks.

2.2. Proposed TranGDeepSC system

The proposed TranGDeepSC system illustrated in Fig.  1. For quick 
reference, Table  1 comprehensively lists the primary notations ap-
plied throughout this subsection. For image transmission tasks, the 
TranGDeepSC processing pipeline comprises the following stages:

1. Patch Embedding: The input image 𝐼 ∈ R𝐻×𝑊 ×𝐶 is processed us-
ing patch embedding to create a sequence of embedded patches 
𝐸 ∈ R𝑁×𝐷: 
𝐸 = PatchEmbed(𝐼) (2)

where 𝑁 represents the number of patches, and 𝐷 denotes the 
embedding dimension.

2. Semantic encoding: The embedded patches pass through a series 
of Residual Gated CNN (RG CNN) blocks to produce semantic 
encoded features 𝐹𝑆𝐸 ∈ R𝑁×𝐷: 
𝐹𝑆𝐸 = RGCNN3(RGCNN2(RGCNN1(𝐸))) (3)

where RGCNN𝑖 represents the 𝑖th Residual Gated CNN block.
3. Channel encoding: The semantic encoded features 𝐹𝑆𝐸 are trans-
formed into regulated transmitting symbols 𝑍 ∈ R𝐾 using a 
two-layer linear transformation:: 
𝑍 = Linear2(Linear1(𝐹𝑆𝐸 )) (4)

where 𝐾 denotes the number of transmitted symbols, Linear1
is the feature projection from R𝐷 to R256 and Linear2 acts as 
learned symbol modulator which maps the intermediate feature 
space R256 to the channel symbol space R𝐾

4. Channel transmission: The encoded symbols 𝑍 are transmit-
ted through a wireless channel, modeled as an Additive White 
Gaussian Noise (AWGN) channel: 
𝑌 = 𝑍 +𝑁 (5)

where 𝑁 represents the channel noise.
5. Channel decoding: At the receiver, the received features 𝑌 ∈ R𝐾

are processed via the channel decoder: 
𝐹𝐶𝐷 = Linear4(Linear3(𝑌 )) (6)

where Linear3 and Linear4 are linear transformation layers, 
which implements the inverse operations of channel encoding 
to mapping received symbols to channel decoded features.

6. Semantic decoding: The channel decoded features 𝐹𝐶𝐷 pass 
through a series of RG CNN blocks to reconstruct the embedded 
patches 𝐸′ ∈ R𝑁×𝐷: 
�̂� = RGCNN3(RGCNN2(RGCNN1(𝐹𝐶𝐷))) (7)

where RGCNN𝑖 represents the 𝑖th Residual Gated CNN block in 
the decoder.

7. Patch Unembedding: The reconstructed embedded patches �̂� are 
transformed back into the image domain 𝐼 ∈ R𝐻×𝑊 ×𝐶 : 
𝐼 = PatchUnembed(�̂�) (8)

The TranGDeepSC framework integrates semantic encoding and 
decoding with channel coding to achieve robust image transmission 
over noisy channels.
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Table 1
Table of proposed system’s notations.
 Symbol Description  
 𝐼 , 𝐼 Input image, Reconstructed image  
 𝐻 , 𝑊 Image height, Width  
 𝐶 Number of image channels  
 𝐸, 𝐸′ Embedded patches, Reconstructed patches  
 𝑁 , 𝐷 Number of patches, Embedding dimension  
 𝐹𝑆𝐸 , 𝐹𝐶𝐷 Semantic features, Channel decoded features  
 𝑍, 𝑌 Transmitting symbols, Received features  
 𝐾, 𝑁 Number of transmitted symbols, Channel noise 

2.3. Evaluation metrics

To assess TrangDeepSC’s performance in image transmission and 
reconstruction, we employ two complementary metrics: Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM).

2.3.1. Peak Signal-to-Noise Ratio (PSNR)
PSNR quantifies the ratio between the maximum possible signal 

power and the power of distorting noise. It is defined as: 

PSNR = 10 ⋅ log10

(

MAX2𝐼
MSE

)

(9)

where MAX𝐼  is the maximum possible pixel value and MSE is the Mean 
Squared Error between the original and reconstructed images. Higher 
PSNR values indicate better image quality.

2.3.2. Structural Similarity Index (SSIM)
SSIM measures the similarity of two images in terms of luminance, 

contrast, and structure. It is computed as: 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝑐1)(𝜎2𝑥 + 𝜎2𝑦 + 𝑐2)
(10)

where 𝜇𝑥, 𝜇𝑦 are the averages, 𝜎2𝑥, 𝜎2𝑦 are the variances, and 𝜎𝑥𝑦 is the 
covariance of image windows 𝑥 and 𝑦. SSIM values range from −1 to 
1, with 1 indicating perfect similarity. While PSNR provides a good 
measure of overall noise level, SSIM better captures the preservation 
of structural information and aligns more closely with human visual 
perception. Together, these metrics offer a comprehensive evaluation 
of TranGDeepSC’s performance in maintaining image quality across 
various channel conditions.

2.4. Co-training algorithm

The TranGDeepSC framework employs an innovative co-training 
algorithm that leverages the strengths of both CNN-based and ViT-
based models into TranGDeepSC. This algorithm aims to enhance the 
overall performance and robustness of the semantic communication 
system. To teach for TranGDeepSC, we initialized a ViT-based DeepSC 
which basically is TranGDeepSC but replace all RG CNN blocks to 
standard Transformer architecture.

The co-training process utilizes the Mean Squared Error (MSE) 
as the primary loss function. MSE is a widely used loss function in 
regression tasks and image reconstruction problems. For two tensors 
𝐴 and 𝐵 of the same shape, the MSE is defined as: 

MSE(𝐴,𝐵) = 1
𝑛

𝑛
∑

𝑖=1
(𝐴𝑖 − 𝐵𝑖)2 (11)

where 𝑛 is the total number of elements in each tensor. In our con-
text, MSE measures the average squared difference between the pixel 
values of the original image and the reconstructed image, providing a 
measure of reconstruction quality. Lower MSE values indicate better 
reconstruction.
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Fig. 3. Results of the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of TranGDeepSC versus comparison baselines.
Algorithm 1 TrangDeepSC Co-training Algorithm
Require: Training data 𝑋, TranGDeepSC Learning rate 𝜂𝑇 𝑟𝑎𝑛𝐺, ViT-

DeepSC Learning rate 𝜂𝑉 𝑖𝑇 , Number of epochs 𝑁𝐸
Ensure: Trained TranGDeepSC
1: Initialize TranGDeepSC and ViTDeepSC models
2: for epoch = 1 to 𝑁𝐸 do
3:  for each minibatch 𝑥 in 𝑋 do
4:  𝑦𝑇 𝑟𝑎𝑛𝐺 ← TranGDeepSC(𝑥)
5:  𝑦𝑉 𝑖𝑇 ← ViTDeepSC(𝑥)
6:  𝐿𝑇 𝑟𝑎𝑛𝐺 ← MSE(𝑦𝑇 𝑟𝑎𝑛𝐺 , 𝑥)
7:  𝐿𝑉 𝑖𝑇 ← MSE(𝑦𝑉 𝑖𝑇 , 𝑥)
8:  𝜃𝑉 𝑖𝑇 ← 𝜃𝑉 𝑖𝑇 − 𝜂𝑉 𝑖𝑇∇𝐿𝑉 𝑖𝑇
9:  𝜃𝑇 𝑟𝑎𝑛𝐺 ← 𝜃𝑇 𝑟𝑎𝑛𝐺 − 𝜂𝑇 𝑟𝑎𝑛𝐺∇𝐿𝑇 𝑟𝑎𝑛𝐺
10:  𝐿𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 ← MSE(𝑦𝑇 𝑟𝑎𝑛𝐺 , 𝑦𝑉 𝑖𝑇 )
11:  𝜃𝑇 𝑟𝑎𝑛𝐺 ← 𝜃𝑇 𝑟𝑎𝑛𝐺 − 𝜂𝑇 𝑟𝑎𝑛𝐺∇𝐿𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦
12:  end for
13: end for
14: return Trained TranGDeepSC with optimized 𝜃𝑇 𝑟𝑎𝑛𝐺

The co-training process can be described as Algorithm 1.

The co-training algorithm leverages mutual learning and knowl-
edge transfer between the CNN-based TranGDeepSC and the ViT-based 
DeepSC models. In each iteration, both models process the same input 
batch, but their parameter updates differ. TranGDeepSC is optimized to 
minimize both its own reconstruction error (𝐿𝑇 𝑟𝑎𝑛𝐺) and the disparity 
(𝐿𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦) between its output and that of ViTDeepSC. This disparity 
loss enables TranGDeepSC to learn from the global semantic features 
captured by the ViT architecture. ViTDeepSC, acting as a teacher 
model, is updated based solely on its own reconstruction error (𝐿𝑉 𝑖𝑇 ). 
This approach allows TranGDeepSC to benefit from the complementary 
strengths of both CNN and ViT architectures, potentially enhancing its 
performance and generalization in semantic communication tasks.
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Table 2
Distribution of CIFAR-100 dataset.
 Set Total images Images per class 
 Training 50,000 500  
 Testing 10,000 100  

3. Numerical results

3.1. Dataset

In this study, we adopted CIFAR-100 dataset [17] which is a widely 
used computer vision dataset consisting of 60,000 32 × 32 color im-
ages in 100 classes. The Table  2 show the distributions of CIFAR-100 
dataset. This standard split allows for consistent model evaluation and 
comparison across different machine learning approaches.

3.2. Simualation setup

This experiment is conducted using a system equipped with an Intel 
Core I7-14700 with 2.1 GHz and an NVIDIA GeForce RTX 4070Ti Super 
with 16 GB DRAM. Table  3 lists the other simulation setups

3.3. Comparison baselines

For comparison, the following models are considered

• ViTDeepSC: This model serves as the teacher in our co-training 
framework and represents a purely Vision Transformer-based ap-
proach to semantic communication. This baseline establishes the 
upper performance bound for semantic feature extraction and 
global dependency modeling in deep semantic communication 
systems.
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Table 3
Simulation setups.
 Parameter name Value  
 Batch size 64  
 ViTDeepSC learning rate 1.00E−03 
 TranGDeepSC learning rate 1.00E−04 
 Optimizer AdamW  
 Training SNR 12  
 Training epoch 60  
 Model hidden size 128  
 Number of transmitted symbols 16  
 Patch size 2  

• SemViT [8]: A hybrid semantic communication system that inte-
grates both Vision Transformer and CNN architectures to leverage 
their respective strengths. SemViT semantic encoder/decoder sec-
tions adopt 2 CNN layers followed by 1 ViT layers to take the 
advantages of two architectures. This baseline provides a di-
rect comparison between architectural fusion and our proposed 
knowledge transfer approach in combining CNN and ViT capabil-
ities.

• ADJSCC-V [10]: An adaptive deep joint source-channel coding 
framework that enables flexible code rate optimization based 
on channel conditions and image content. It uses a variable 
code length enabled DeepJSCC model combined with an Ora-
cle Network for PSNR prediction and code rate optimization. 
This baseline evaluates the performance trade-offs between our 
fixed-rate transmission strategy and state-of-the-art adaptive rate 
optimization methods.

• TranGDeepSC (single training): This variant of our proposed 
model is trained independently, without the co-training algo-
rithm. This baseline demonstrates the performance impact of 
our co-training strategy through direct ablation comparison with 
conventional single-model training.

3.4. Image quality results

The Fig.  3 illustrates the image quality in PSNR and SSIM met-
rics. The proposed TranGDeepSC with co-training demonstrates re-
markable performance improvements over its single training coun-
terpart across all SNR levels, as evidenced by both PSNR and SSIM 
metrics. While ViTDeepSC remains the top performer in most sce-
narios, TranGDeepSC (co-training) shows competitive results, particu-
larly at higher SNR levels. In terms of PSNR, although not surpassing 
ViTDeepSC, the proposed method exhibits substantial improvements 
over other approaches, including SemViT and the single-training ver-
sion of TranGDeepSC. At 18 dB SNR, ViTDeepSC achieved 54.92 dB, 
while TranGDeepSC reached a competitive 51.06 dB, surpassing both 
SemViT’s 36.24 dB and ADJSCC-V’s 32.18 dB by significant margins. 
Notably, ADJSCC-V’s adaptive rate strategy, while offering flexibility in 
bandwidth usage, demonstrates lower reconstruction quality compared 
to our fixed-rate approach across all SNR regimes. The SSIM results 
are particularly impressive, with TranGDeepSC (co-training) reaching 
convergence as quickly as ViTDeepSC at 6 dB SNR. At this critical 
SNR point of 6 dB, TranGDeepSC achieves an SSIM of 0.92, outper-
forming ADJSCC-V’s 0.85 and demonstrating superior robustness in 
challenging channel conditions. In contrast, the version without co-
training only approached convergence at 18 dB SNR, and SemViT 
maxed out at 0.9775 SSIM at 18 dB SNR. The performance gap between 
our proposed method and ADJSCC-V becomes particularly pronounced 
in the high SNR regime (15–18 dB), where TranGDeepSC maintains 
consistent high-quality reconstruction while ADJSCC-V shows limited 
improvement despite its rate adaptation capabilities. These results un-
derscore the effectiveness of the co-training approach in TranGDeepSC, 
positioning it as a highly competitive method in the field.
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Table 4
Model size and Energy consumption per image (in mJ) of models.
 Model Paramters Energy consumption  
 per image (mJ)  
 ViTDeepSC 1,300,508 147.676  
 SemViT 8,696,343 138.272  
 ADJSCC-V 12,757,579 310.382  
 TranGDeepSC (proposed) 908,047 86.816  

Table 5
Processing latency versus methods (in ms).
 Model Mean ± Std Min Max Median P95  
 ViTDeepSC 3.1088 ± 0.9525 1.8461 9.2952 2.6907 5.5911  
 SemViT 4.2965 ± 1.5452 2.7361 13.9055 3.538 8.2072  
 ADJSCC-V 8.3387 ± 1.8763 6.6035 16.9727 7.5762 12.3093 
 TrangDeepSC (proposed) 1.6042 ± 0.4298 1.2732 3.8979 1.4476 2.3817  

3.5. Models’ size and energy consumption

TranGDeepSC demonstrates impressive efficiency in both model 
size and energy consumption. With only 908,047 parameters, it is 
significantly more compact than its competitors. This parameter count 
is approximately 30% smaller than ViTDeepSC (1,300,508 parameters), 
92.8% smaller than ADJSCC-V (12,757,579 parameters), and dramat-
ically less than SemViT (8,696,343 parameters). The compact nature 
of TranGDeepSC suggests it could be more suitable for deployment in 
resource-constrained environments or devices with limited memory. In 
terms of energy efficiency, TranGDeepSC also shows remarkable perfor-
mance. It consumes only 86.816 mJ per image, which is substantially 
lower than both ViTDeepSC (147.676 mJ) and SemViT (138.272 mJ). 
Most notably, it achieves a 72.0% reduction in energy consumption 
compared to ADJSCC-V (310.382 mJ), despite ADJSCC-V’s adaptive 
rate optimization capabilities. Specifically, TranGDeepSC uses about 
41% less energy than ViTDeepSC and 37% less than SemViT per im-
age processed. This significant reduction in energy consumption could 
translate to longer battery life in mobile devices or reduced operational 
costs in large-scale deployments. TranGDeepSC strikes an optimal bal-
ance between performance and efficiency, offering competitive or su-
perior results despite its smaller size and lower energy consumption. 
This makes it particularly well-suited for applications with limited 
computational resources or energy constraints (see Table  4).

3.6. Models’ latency analysis

TranGDeepSC demonstrates superior performance in terms of pro-
cessing latency across all measured indicators. With a mean latency 
of 1.6042 ms (±0.4298), it significantly outpaces both ViTDeepSC 
(3.1088 ± 0.9525 ms) and SemViT (4.2965 ± 1.5452 ms). The proposed 
model achieves an 80.8% reduction in mean processing time compared 
to ADJSCC-V (8.3387 ± 1.8763 ms), demonstrating the computational 
efficiency of our fixed-rate approach over adaptive rate optimization 
strategies. This represents a reduction in average processing time of 
about 48% compared to ViTDeepSC and 63% compared to SemViT (see 
Table  5).

The proposed model also shows consistency in its performance. 
TranGDeepSC’s minimum latency (1.2732 ms) is lower than the other 
models, and its maximum latency (3.8979 ms) is significantly less 
than ViTDeepSC (9.2952 ms), ADJSCC-V (16.9727 ms) and SemViT 
(13.9055 ms). This suggests that TranGDeepSC not only processes faster 
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on average but also maintains more stable performance under varying 
conditions.

The median latency for TranGDeepSC (1.4476 ms) further under-
scores its efficiency, being nearly half that of ViTDeepSC (2.6907 ms), 
less than half of SemViT (3.538 ms) and a fifth of ADJSCC-V (7.5762 
ms). Additionally, the 95th percentile (P95) latency for TranGDeepSC is 
only 2.3817 ms, compared to 5.5911 ms for ViTDeepSC and 8.2072 ms 
for SemViT, with ADJSCC-V exhibiting the highest P95 latency at 
12.3093 ms, highlighting our model’s robust worst-case performance 
characteristics.

These latency metrics, combined with the previously discussed 
model size and energy efficiency, position TranGDeepSC as a highly 
efficient model. Its ability to process images quickly and consistently 
makes it particularly suitable for real-time applications or scenarios 
where rapid response times are crucial.

4. Conclusion

We presented TranGDeepSC, a CNN-based semantic communication 
system that effectively incorporates ViT strengths through co-training. 
Our approach demonstrates marked improvements in image trans-
mission over noisy channels, showing competitive performance with 
ViT-based methods across all SNR levels. Compared to current state-of-
the-art approaches, TranGDeepSC achieves remarkable efficiency gains 
with 92.8% fewer parameters and 72.0% lower energy consumption 
than ADJSCC-V, while offering 48% faster processing than ViTDeepSC, 
highlighting its potential for resource-constrained and real-time ap-
plications. Future work could explore multi-modal applications and 
further optimizations of the co-training process.
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