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Learning-based Reconfigurable Intelligent
Surface-aided Rate-Splitting Multiple Access

Networks
Thien Duc Hua, Quang Tuan Do, Nhu-Ngoc Dao, The-Vi Nguyen, Demeke Shumeye Lakew, Sungrae Cho

Abstract—Rate-splitting multiple access (RSMA) and recon-
figurable intelligent surface (RIS) techniques show promise in
enhancing spectral efficiency in sixth-generation Internet of
Things (IoT) networks. However, optimizing the synergy between
these two methods is challenging due to the complex and dynamic
environment. This study focuses on maximizing the sum-rate
metric in RIS-assisted uplink multiantenna RSMA IoT networks
to address this problem. We jointly optimized the base station
beamforming design, power allocation, and RIS phase shifts to
enhance the spectral efficiency with multiple mobile IoT devices
present. The controlled parameters are continuous variables and
the mathematical problem is non-concave, Therefore, we formu-
lated the problem as a Markov decision process and used the deep
deterministic policy gradient (DDPG) to determine the optimal
joint actions. We proposed a safe action shaping process for the
decision-making actor network to address constraint violations.
Through a rigorous performance evaluation, we demonstrated
that the DDPG approach with action shaping outperforms the
current DDPG algorithm regarding the maximum achievable sum
rate.

Index Terms—Deep reinforcement learning, rate-splitting mul-
tiple access, reconfigurable intelligent surface.

I. INTRODUCTION

The rapid proliferation of Internet of Things (IoT) applica-
tions has created an urgent need for wireless communication
systems to support a diverse range of devices while simulta-
neously delivering high-bandwidth connectivity with minimal
latency [1]. This requirement is becoming increasingly critical
as IoT continues to expand into new domains and use cases,
necessitating wireless systems that can handle an increasing
number of connected devices and deliver reliable and respon-
sive data transfer. Nonorthogonal multiple access (NOMA) has
emerged as a technology for providing multiantenna network-
ing capability in the current wireless communication networks
[2]. However, increasing the number of devices in NOMA
systems may increase the computational burden, reduce the
degrees of freedom, and cause decoding latency due to the
need for multiple successive interference cancellation (SIC)
layers [3].
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In contrast, rate-splitting multiple access (RSMA) has been
developed as an effective approach to enhance the robustness,
energy, and spectrum of networks with higher flexibility and
lower complexity [4]. In addition, RSMA can generalize
between fully decoding interference (e.g., NOMA) and treating
all interference as noise (e.g., space-division multiple access)
[5], [6]. Previous studies have demonstrated that RSMA out-
performs NOMA, space-division multiple access, and time-
division multiple access in multiple antenna networks with
either perfect or imperfect channel state information (CSI) at
the transmitter [7]–[9]. Therefore, implementing the RSMA
concept instead of other multiple access schemes is vital in
uplink multiple antennae and dense mobile IoT user deploy-
ment systems. Thus, an optimum power allocation scheme can
be determined for the maximum sum-rate problem by taking
advantage of the rate-splitting characteristic of RSMA. With
an appropriate power allocation scheme, the RSMA technique
can flexibly alter the interference being decoded or treated as
noise according to the interference level when decoding the
following signal.

Despite the potential benefits of multiantenna networks,
several challenges must be addressed. As the number of
antennae and device nodes increases, computation and signal
processing become increasingly complex, leading to higher
energy consumption. Additionally, channel blocking caused
by urban buildings and infrastructure can decrease the prop-
agation distance and lower the likelihood of acquiring a
broad, high-speed bandwidth. Previous studies have deployed
reconfigurable intelligent surface (RIS), consisting of passive
programmable reflecting elements that can be configured to
add extra reflecting line of sight (LoS( paths from transmitters
to receivers to address these challenges [10]. Therefore, RIS
can effectively compensate for channel fading impairment and
significantly improve network performance.

The RIS-assisted systems have been a strong focus in recent
studies [11]–[16]. For instance, in [11], Cao et al. proposed
a RIS-assisted single input multiple output (SIMO) system
aimed at maintaining uplink milimeter wave (mmWave) prop-
agation. The transmit power of all users was jointly optimized
by adjusting the base station (BS) multiuser detector, total
transmit power, and passive beamformer. Similarly, Zeng et
al. developed a technique that minimizes energy consump-
tion by adjusting the RIS passive beamforming and other
variables in [12]. In [13], Zeng et al. used the RIS to
support uplink NOMA communication, where the reflecting
elements were optimized to maximize the achievable sum-
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rate of all users. In a multi-RIS multi-user system, Zhang
et al. optimized the weighted sum-rate (WSR) by jointly
optimizing the BS beamformer and RIS phase-shift matrix
using a manifold geometry approach [14]. In addition, Liu
et al. proposed transmit power optimization techniques in
[15], where they designed a penalty dual decomposition and
a nonlinear equality-constrained alternative direction method
of multipliers to handle objective constraints. All these studies
demonstrate the significant benefits of using RIS in a SIMO
system, particularly regarding the sum-rate and energy con-
sumption. However, the primary disadvantage of the previous
studies is the high computational complexity required while
training the conventional optimization methods. In constrast,
Truong et al. proposed a novel system called FlyReflect in
[16], involving mounting an RIS on an uncrewed aerial vehicle
(UAV) to maximize the achievable sum-rate in the wireless
communication network. They jointly optimized the movement
of the UAV and the passive beamforming of the RIS using
the deep deterministic policy gradient (DDPG) technique.
However, their study randomly generated the beamforming
vector at the BS instead of optimizing it.

In addition, we also provide the crucial motives for why
we synergize the RSMA concept and the energy-saving RIS
device. To this end, the IoT is an emerging technology that
connects numerous smart devices and sensors, enabling them
to exchange data and interact, resulting in an increase in
the number of wireless devices in the network, leading to
congestion and interference. Accordingly, the integrating RIS
and RSMA techniques provides several benefits in the IoT
network. First, RIS can modify the characteristics of the
wireless channel by reflecting the signals in a particular direc-
tion, enhancing the signal quality, reducing interference, and
extending the coverage range. Second, RSMA is an emerging
technique that efficiently uses wireless resources by splitting
the data into multiple streams and simultaneously assigning
them to different users. This technique can improve spectral
efficiency and reduce the IoT network latency [3]. Integrating
RIS and RSMA techniques in IoT networks offers a promising
solution to challenges, such as interference and congestion,
enabling high data rates and low latency. In particular, the
RIS optimizes wireless channel characteristics to enhance the
signal quality and reduce interference while RSMA efficiently
allocates wireless resources among multiple users [17]. In gen-
eral, integrating RIS and RSMA techniques can enhance IoT
network performance, making it more reliable, efficient, and
scalable, which is crucial for the success of IoT applications.

Recent studies have focused on the cooperation between the
RIS and RSMA technique. In [18], Yang et al. investigated the
power allocation for downlink RIS-aided RSMA networks,
where the power efficiency is maximized by adjusting the
passive and active beamforming matrix. Fang et al. proposed
an alternative scheme in which the sum-rate maximization
was considered by optimizing the beamforming and phase
shift [19]. The interaction of RSMA and RIS was further
investigated to improve user-fairness in [20]. Bansal et al.
analyzed the outage behavior of the RIS-assisted RSMA trans-
mission and demonstrated that it achieves superior outage per-
formance over an RIS-assisted NOMA transmission network

[17]. Their simulation results revealed that the rate-splitting
strategy asymptotically achieved maximum energy efficiency
and outperformed the orthogonal frequency-division multiple
access and NOMA schemes. Multiple RIS-assisted RSMA
systems were investigated in [21] and [22] considering the
mmWave channel model. In [21], a user-clustering scheme was
proposed to reduce inter-user interference, and the resource
allocation, beamforming, and decoding order were optimized
based on the sum-rate metric. Shambharkar et al. [22] studied
a multiple RIS-assisted RSMA downlink network concerning
the outage probability metrics. They introduced a closed-
form equation for the outage probability and enhanced the
phase-shift design of the RISs. However, the RIS phase-shift
design was studied in a discrete-valued fashion, and they
considered a quasi-static channel, which is an impractical
assumption. Zhang et al. [23] studied RSMA techniques to
achieve simultaneous wireless information and power transfer
using RIS to maximize energy efficiency. They proposed an
optimization problem with jointly optimized parameters, in-
cluding beamforming vectors, power splitting ratios, standard
message rates, and discrete phase shifts, using the proximal
policy optimization (PPO) framework to solve the non -convex
problem. However, the study used an outdated penalty score to
address constraint violations. In [24], Hieu et al. employed the
PPO approach to study the sum-rate maximization problem in
a downlink RSMA communication. However, their approach
had several limitations, such as using an outdated penalty
score to address constraint violations in the reward function,
ignoring the crucial BS beamforming design, not considering
dynamic channel models, and using discrete-valued actions
instead of continuous-valued actions.

Transceiver optimization is crucial for RIS-assisted RSMA
wireless communication systems. In [25], Vucic et al. pro-
posed a robust transceiver design optimization approach us-
ing semi-definite programming and mean squared error tech-
niques. Serbetli et al. also proposed an iterative algorithm for
joint optimization of transmit and receive filters in an uplink
transmission system [26]. However, both approaches suffered
from high design complexity. Alternatively, learning-based
methods, such as deep reinforcement learning (DRL), provide
potential advantages over conventional optimization methods.
First, DRL methods can provide good generalizability, which
is limited for conventional optimization methods due to their
case-by-case design. Second, DRL is a model-free learning
method, so there is no need to build the dedicated design mod-
els typically required for conventional methods. Third, DRL
methods can adapt to dynamic propagation environments,
given their learning capability, whereas conventional methods
have difficulties adapting to changing environments because
they require full knowledge of the problem formulation [27].
After the training process, a trained model can be used for
immediate decision-making in any network state.

Table II summarizes the approaches, performance metrics,
advantages, and disadvantages of the previous work. Except in
[16], [23], [24], none of the mentioned studies considered the
advanced learning-inspired approaches to optimize variables.
Furthermore, most studies considered simple settings regard-
ing the number of users and antennae for the simulation pro-
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cess. Motivated by the disadvantages of the related literature,
we investigate the dynamic wireless communication scenario
of the RIS-assisted RSMA uplink IoT network, considering the
user mobility functions. The DRL-inspired DDPG algorithm
is applied to learn the dynamic environment in real time and
jointly optimize the BS beamforming design, RIS phase-shift
matrix, and power allocation scheme in unison. Significantly,
the safe action shaping (SAS) process is proposed to ad-
dress the constraint violation issue without using the outdated
penalty function. The specific contributions of this study can
be summarized as follows.

• First, we investigated an RIS-assisted uplink multiantenna
multi-user RSMA system, where mobile IoT devices
simultaneously transmit their messages. These messages
are reflected via an RIS to a multi-antenna BS . The
system considers end-to-end wireless transmission and
mobility functions of IoT devices. Additionally, we con-
structed mathematical expressions and the corresponding
quality-of-service constraints to express the problem of
maximizing the sum-rate. This approach involves jointly
optimizing the power allocation scheme, BS beamforming
matrix, and phase-shift design.

• Second, we transformed the problem of maximizing the
sum- rate into a Markov decision process (MDP) frame-
work, which involved developing a policy network that in-
teracts, observes, and determines optimal solutions using
a combination of the actor-critic scheme and deep neural
network (DNN) approximators in the DDPG algorithm.
However, the additive action noise from the Ornstein–
Uhlenbeck (OU) process can cause joint actions to violate
the problem constraints. To address this, we derived the
rigorous SAS process, addressing the problem of out-of-
range constraint values.

• Third, we conducted simulation-based analyses to quan-
titatively compare the performance of the RIS-assisted
RSMA system using a DRL-based approach with other
benchmark schemes. Specifically, we considered a sce-
nario that includes RSMA and NOMA techniques to
emphasize the superior spectral efficiency enhancement of
the rate-splitting scheme. We also simulated systems with
and without RIS assistance to highlight the significance
of the RIS device. The numerical results demonstrate the
effectiveness of this approach, which outperforms other
benchmarks in terms of achievable sum-rate metrics.

The remainder of this paper is organized as follows. Sec-
tion II-A describes the RIS-assisted uplink RSMA system
model, and mathematical expressions of the problem statement
are formulated in Section II-B. The proposed DDPG algorithm
and shaping function are presented in Section III, and the
simulation results and analysis are presented in the subsequent
section. Finally, Section V concludes the paper.

Notation: Both lowercase (𝑎) and uppercase letters (𝐴)
denote scalar quantities. , Lowercase boldface letters (𝒂)
denote vector quantities, and uppercase boldface letters (𝑨)
denote matrix quantities, where 𝑎𝑖, 𝑗 is the element in the 𝑖-th
row and 𝑗-th column of matrix 𝑨. In addition, |𝒂 |2 indicates
the Euclidean norm of 𝒂, whereas diag (𝑎1, ..., 𝑎𝑁 ) is an

𝑁 × 𝑁 diagonal matrix, where each diagonal entry is 𝑎𝑛.
The calligraphic capital A describes a set, whereas C and
C𝑀×𝑁 denote the complex number and 𝑀×𝑁 complex matrix
spaces, respectively. Moreover, |𝑎 | represents the modulus of
𝑎, and 𝑗 =

√
−1 is the complex imaginary unit. In terms of

matrix 𝑨, 𝑨−1, 𝑨𝑇 , and 𝑨𝐻 indicate the inverse, transpose,
and conjugate transpose of matrix 𝑨, respectively. In addition,
𝑰𝑁 is written as an 𝑁 × 𝑁 identity matrix and CN(𝝁,𝚺) as
a complex Gaussian distribution with the mean vector 𝝁 and
covariance matrix 𝚺. Additionally, ℜ(C) and ℑ(C) denote the
real and imaginary parts, respectively, of a complex number
C. In addition, Table I summarizes the abbreviations in this
paper.

Table I: Abbreviation List

Abbreviation Description
AoA/AoD Angle of Arrival/Angle of Departure
BS Base Station
CE Cross Entropy
CSI Channel State Information
DDPG Deep Deterministic Policy Gradient
DNN Deep Neural Network
DQN Deep Q Network
DRL Deep Reinforcement Learning
IoTs Internet of Things
RIS Reconfigurable Intelligent Surface
LoS Line of Sight
Ls Local Search
MDP Markov Decision Process
NLoS Non Line of Sight
NOMA Nonorthogonal Multiple Access
OU Ornstein—Uhlenbeck
ReLU Rectified Linear Unit
RSMA Rate-splitting Multiple Access
SAS Safe Action Shaping
SIC Successive Interference Cancellation
SIMO Single Input Multiple Output
SINR Signal-to-Interference-Noise Ratio Ratio
WSR Weighted Sum-Rate

II. PROBLEM STATEMENT

This section, we explores the RIS-assisted uplink multi-
ple antenna RSMA communication system and formulates
the maximum sum-rate objective function with constraints.
Table III summarizes the mathematical notation used in this
study.

A. System Model

We commence by studying the RIS-assisted uplink RSMA
transmission model, in which a set K ≜ 1, ..., 𝑘, ..., 𝐾 of 𝐾
single-antenna IoT users with different rate requirements send
intended messages to the BS with a set M ≜ 1, ..., 𝑚, ..., 𝑀
of 𝑀 antennae via a common frequency band. The primary
difference between uplink RSMA and NOMA is that, on the
user side, messages from user 𝑘 are divided into two submes-
sages [9]. Two different transmitted powers are allocated to
these two submessages for rate-splitting. Each submessage is
decoded using SIC. In particular, the transmitted message to
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Table II: Summary of Related Work

Ref. Techniques Performance
Metrics

Advantages Disadvantages

[7] SCA & geometric program-
ming

Max-min rate Proposed cooperative RSMA scheme and
optimized transmit power-allocation scheme
for two users

High complexity approach & considered
only two users in the simulation.

[8] Closed-form solution Achievable sum-
rate

Optimized the power allocation scheme High complexity approach & optimized only
one variable in a low settings

[9] Exhaustive search Maximum sum-
rate

Jointly optimized power allocation and de-
coding order

High complexity approach with computa-
tional resource burden & proposed only for
𝐾 = {1, 2} settings

[11] Alternating optimization Total transmit
power

Jointly optimized transmit power, user detec-
tor and RIS beamformer

High complexity approach & proposed only
for 𝐾 = {1, 2} settings

[12] Alternating optimization Energy consump-
tion

Jointly optimized transmit power, BS beam-
former and RIS beamformer

High complexity approach & proposed only
for simple and low-dimensional environmen-
tal settings

[13] Alternating optimization Max sum-rate Optimized the RIS beamformer High complexity approach & only one vari-
able was optimized

[14] Manifold optimization WSR maximiza-
tion

Considered multiple RIS cooperation High complexity approach with computa-
tional resource burden

[15] Relaxation optimization &
penalty-based method

WSR maximiza-
tion

Considered both perfect and imperfect CSI Proposed only for simple and low-
dimensional environmental settings

[18] SCA Energy efficiency Considered multiple RIS cooperation &
jointly optimized the BS beamformer,
RIS beamformer, and minimum quality-of-
service rate

Proposed only for simple and low-
dimensional environmental settings &
insufficient simulation analysis

[19] Alternative optimization Energy efficiency Studied both cases of fully connected and
single-connected RISs

High complexity approach

[20] Iterative optimization MMF rate Jointly optimized power allocation, BS
beamformer, and RIS beamformer

High complexity approach & insufficient
simulation analysis

[17] Iterative optimization Outage probabil-
ity analysis

Studied the case of cell-edge users and near
users with its outage probability

High complexity approach

[21] SCA, Riemannian manifold
& fractional programming
techniques

Achievable sum-
rate

Jointly optimized user clustering power al-
locations, decoding orders, BS beamforming
design, and RIS phase-shift design

High complexity approach & only supopti-
mal solution is achieved

[22] Alternative optimization Outage probabil-
ity

closed-form equation of the outage probabil-
ity with phase-shift variable

proposed only for simple and low-
dimensional environmental settings & lack
of insight on the evaluation performance

[24] PPO Achievable sum-
rate

Jointly optimized the common rate and
power allocation scheme

Importance of BS beamforming was ignored
& lack of insight evaluation performance
& using outdated penalty reward to address
constraint violation

[16] DDPG Achievable sum-
rate

Jointly optimize the UAV trajectory and RIS
phase-shift

The BS beamforming vector was randomly
generated

[23] PPO Energy efficiency Jointly optimized the beamforming vectors,
the power splitting ratios, the common mes-
sage rates, and the RIS phase-shifts

Used outdated penalty reward to address
constraint violation.

Ref. = Reference, RIS = reconfigurable intelligent surface, SCA = successive convex approximation, WSR = weighted sum rate, PPO = proximal policy
optimization, UAV = uncrewed aerial vehicle , DDPG = deep deterministic policy gradient, BS = base station, CSI = channel state information

the BS of user 𝑠𝑘 is divided into two submessages, 𝑠𝑘1 and
𝑠𝑘2, expressed as follows:

𝑠𝑘 =

2∑︁
𝑣=1

√
𝑝𝑘𝑣𝑠𝑘𝑣 , ∀𝑘 ∈ K, (1)

where 𝑝𝑘𝑣 is the transmit power intended for the submessage
𝑠𝑘𝑣 . The transmitted message is split into two submessages
leading to two split transmit powers. Thus, we consider that the
transmit power of the k-th user intended for each submessage
is allocated according to a power allocation weight factor:
𝑝𝑘 ≥ 𝛼𝑘 𝑝𝑘1 + (1 − 𝛼𝑘)𝑝𝑘2 with 𝛼𝑘 ∈ [0, 1]. In addition, we
define a power allocation vector 𝜶 = [𝛼1, ..., 𝛼𝑘 , ..., 𝛼𝐾 ]𝑇 such
that 𝑝𝑘1 = 𝛼𝑘 𝑝𝑘 and 𝑝𝑘2 = (1−𝛼𝑘)𝑝𝑘 . To reap the advantage
of the rate-splitting characteristic of the RSMA, the power
allocation scheme 𝛼 is jointly optimized for spectral efficiency
enhancement. In addition, the total transmit power of each
submessage cannot exceed the original transmit power of its

user, and the power value must be positive (i.e., 𝑝𝑘1+𝑝𝑘2 ≤ 𝑝𝑘
and 𝑝𝑘𝑣 > 0 for all 𝑘 ∈ K and 𝑣 ∈ V, respectively).

An RIS can be deployed to assist the uplink propagation
by establishing a multi-reflection signal path to mitigate se-
vere blockage situations, as illustrated in Fig. 1. Without
loss of generality, we index the reflecting elements of the
RIS using set N ≜ 1, ..., 𝑛, ..., 𝑁 . Consequently, the re-
flection coefficient vector of the RIS is denoted as 𝚯 =

diag(𝑒 𝑗 𝜙1 , ..., 𝑒 𝑗 𝜙𝑛 , ..., 𝑒 𝑗 𝜙𝑁 ), where 𝜙𝑛 represents the phase
shift of the 𝑛th element of the RIS, and the number of elements
in each horizontal and vertical direction is 𝑁ℎ × 𝑁𝑣 = 𝑁 . Due
to the passive reflecting nature of the RIS, we assume that the
BS controls the phase shifts of each passive element through
a dedicated control channel.

For notational simplicity, we set 0 and 𝐼 as the indicators of
the RIS and the BS, respectively. Multiple links exist from the
𝐾 users to the BS without any distinct dominant path; thus,
we consider the Rayleigh fading channel to be the baseband
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Table III: Notation List

Notation Description
𝐾 /K Number of users/set of users
𝑀/M Number of BS antennae/set of BS antennae
𝑁 /N Number of RIS elements/set of RIS elements
𝑉 /V Number of submessages/set of submessages
𝑁ℎ/𝑁𝑣 Number of RIS horizontal/vertical element
𝑠𝑘 Message transmitted from the 𝑘th user
𝑠𝑘𝑣 𝑣-th submessage transmitted from the 𝑘th user
𝑝𝑘𝑣 Transmit power intended for 𝑣-th submessage
𝚯 Phase-shift matrix
𝜃𝑛 Phase-shift value of the 𝑛-th RIS element
g𝑘 Baseband equivalent channels from the 𝑘th user

to the BS
h𝑘 Baseband equivalent channels from the 𝑘th user

to the RIS
hLoS
𝑘

/hNLoS
𝑘

LoS/NLoS components of the channels h𝑘

G Baseband equivalent channels from the RIS to the
BS

GLoS/GNLoS LoS/NLoS components of the channels G
𝜅 Rician factor
𝐿
𝑔𝑘
0,𝑘 /𝐿ℎ𝑘 /𝐿𝐺 Distance-dependent large-scale path losses of the

channels g𝑘 /h𝑘multiantennaG
𝒂𝑅 ( ·) Arrival array response of components at the RIS
𝒂𝐵𝑆 ( ·) Received array response at the BS
𝜑𝑎
𝐼,𝑘

multiantenna𝜑𝑒
𝐼,𝑘

Azimuth/elevation angle of departure at the RIS
from the 𝑘th user

𝜑𝑎
0,𝐼 /𝜑𝑒

0,𝐼 Azimuth/elevation angle of arrival at the BS from
the RIS

𝜗𝑎
𝐼,0/𝜗𝑒

𝐼,0 Azimuth/elevation AoD at the BS from the RIS
𝑑𝑅𝐼𝑆 Distance between two adjacent RIS elements
𝑑𝐵𝑆 Distance between two adjacent BS antennae
𝜆 Wavelength
𝑖1 (𝑛)/𝑖2 (𝑛) index of the 𝑛-th horizontal/vertical RIS element
𝑑𝐼𝑈
𝑘

Norm distance from the RIS to the 𝑘th user
𝑑0𝐼 Norm distance from the BS to the RIS
𝑦 Received message at the BS
𝒏 Circularly symmetric complex Gaussian random

noise
𝒘𝑘 Beamforming vector to the detect the message of

𝑘th user
𝑆𝐼𝑁𝑅𝑘𝑣 SINR for decoding the 𝑣-th message of the 𝑘th

user
𝜎2 Power spectral density
Π Set of pre-determined decoding order
𝜋𝑘𝑣 decoding order for the 𝑣-th message of the 𝑘th

user
𝑟𝑘𝑣 Achievable rate for decoding the 𝑣-th message of

the 𝑘th user
𝛼𝑘 Power allocation weight factor

equivalent channels from user 𝑘 to the BS, as in [28]. We
define g𝑘 ∈ C𝑀×1 as the direct channel from the 𝑘-th user to
the BS, and mathematically express it as follows:

g𝑘 = 𝐿𝑔𝑘0,𝑘 g̃𝑘 , (2)

where g̃𝑘 and 𝐿
𝑔𝑘
0,𝑘 are the non-line-of-sight (NLoS) channel

coefficient and distance-dependent large-scale path loss of
the channel, respectively. In addition, the baseband equivalent
channels from user 𝑘 to the RIS, from the RIS to the BS, and
from user 𝑘 to the BS, are denoted as h𝑘 ∈ C𝑁×1, G ∈ C𝑀×𝑁 ,
and H𝑘 ∈ C𝑀×1, respectively. Due to the existence of both LoS
and NLoS components in practice, we model a well-known
block-fading Rician model [29] to capture these reflection

Controller

BS-RIS control channel
LoS mmW uplink

௞
ே×ଵ

M-antenna BS
l-th sensor

N-element RIS

k-th IoT user

j-th GPS tracker

Figure 1: Reconfigurable intelligent surface (RIS)-aided uplink
rate-splitting multiple access (RSMA) transmission from a
group of moving Internet of Things (IoT) users, reflected via
the RIS to a multiantenna base station.

channels:

h𝑘 =𝐿ℎ𝑘
(√︂

𝜅1
𝜅1 + 1

hLoS
𝑘 +

√︂
1

𝜅1 + 1
hNLoS
𝑘

)
, (3)

G =𝐿𝐺

(√︂
𝜅2

𝜅2 + 1
GLoS +

√︂
1

𝜅2 + 1
GNLoS

)
, (4)

where 𝜅1 and 𝜅2 are the Rician factors indicating the power ra-
tio between the corresponding links, respectively. In addition,
𝐿ℎ𝑘 and 𝐿𝐺 are the distance-dependent large-scale path losses,
and h𝑘LoS and GLoS are the LoS components of the channel. In
contrast, h𝑘NLoS and GNLoS

𝑗 ,𝑖
are the NLoS components of the

channels, respectively, modeled as complex Gaussian random
variables with zero mean and unit variance (∼ CN(0, 1)).

Regarding the LoS components, we assume that a uniform
rectangular array and uniform linear array are applied at each
RIS reflector and the BS, respectively, as in [30]. The LoS
component for the user-RIS link is expressed as follows:

hLoS
𝑘 = 𝒂𝑅 (𝜑𝑎𝐼,𝑘 , 𝜑

𝑒
𝐼,𝑘), (5)

where 𝒂𝑅 (𝜑𝑎𝐼,𝑘 , 𝜑
𝑒
𝐼,𝑘
) ∈ C𝑁×1 is the arrival array response. In(

𝒂𝑅 (𝜑𝑎𝐼,𝑘 , 𝜑
𝑒
𝐼,𝑘
)
)
𝑛
, 𝜑𝑎

𝐼,𝑘
and 𝜑𝑒

𝐼,𝑘
are the azimuth and elevation

angle of arrival at the reflector from the 𝑘th user, respectively.
In addition, we define the 𝑛-th steering vector as

(𝒂𝑅 (𝜑𝑎𝐼,𝑘 , 𝜑
𝑒
𝐼,𝑘))𝑛 = 𝑒

𝑗 2𝜋𝑑𝑅𝐼𝑆

𝜆
𝑖1 (𝑛)𝑠𝑖𝑛(𝜑𝑎

𝐼,𝑘
)𝑐𝑜𝑠 (𝜑𝑒

𝐼,𝑘
)+𝑖2 (𝑛)𝑠𝑖𝑛(𝜑𝑒

𝐼,𝑘
)
,

(6)
where 𝑑𝑅𝐼𝑆 is the distance between two adjacent RIS ele-
ments, 𝜆 is the wavelength, 𝑖1 (𝑛) = (𝑛 − 1) mod 𝑁𝑥 , and
𝑖2 (𝑛) = ⌊(𝑛 − 1)/𝑁𝑥⌋. Without loss of generality, we assume
2𝑑𝑅𝐼𝑆

𝜆
= 1. Given the location of user 𝑘 as (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) and the

location of the RIS as (𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼 ), we can calculate

𝑠𝑖𝑛(𝜑𝑎𝐼,𝑘)𝑐𝑜𝑠(𝜑
𝑒
𝐼,𝑘) =

𝑦𝑘 − 𝑦𝐼
𝑑𝐼𝑈
𝑘

, (7)

𝑠𝑖𝑛(𝜑𝑒𝐼,𝑘) =
𝑧𝑘 − 𝑧𝐼
𝑑𝐼𝑈
𝑘

, (8)

Where 𝑑𝐼𝑈𝑘 is the norm distance in meters from



6

the passive reflector to the 𝑘th user, calculated as√︁
(𝑥𝑘 − 𝑥𝐼 )2 + (𝑦𝑘 − 𝑦𝐼 )2 + (𝑧𝑘 − 𝑧𝐼 )2.

Similarly, the LoS component for the RIS-BS channel is
expressed as follows:

G𝐿𝑜𝑆 = 𝒂𝐵𝑆 (𝜑𝑎0,𝐼 , 𝜑
𝑒
0,𝐼 )𝒂

𝐻
𝑅 (𝜗𝑎𝐼,0, 𝜗

𝑒
𝐼,0), (9)

where the received array response at the BS, denoted by
𝒂𝐵𝑆 (𝜑𝑎0,𝐼 , 𝜑

𝑒
0,𝐼 ) ∈ C

𝑀×1, is defined as follows:

[1, 𝑒 𝑗
2𝜋𝑑𝐵𝑆

𝜆
𝑐𝑜𝑠 (𝜑𝑎

0,𝐼 )𝑐𝑜𝑠 (𝜑
𝑒
0,𝐼 ) , ..., 𝑒 𝑗

2𝜋𝑑𝐵𝑆

𝜆
(𝑀−1)𝑐𝑜𝑠 (𝜑𝑎

0,𝐼 )𝑐𝑜𝑠 (𝜑
𝑒
0,𝐼 ) ]
(10)

where 𝑑𝐵𝑆 is the distance between two adjacent BS antennae,
and 𝜑𝑎0,𝐼 and 𝜑𝑒0,𝐼 denote the respective azimuth and elevation
angles of arrival. We also assume 2𝑑𝐵𝑆

𝜆
= 1. Similar to (6), the

𝑛-th element of the transmitted steering vector is expressed as
follows:

[(𝒂𝑅 (𝜗𝑎𝐼,0, 𝜗
𝑒
𝐼,0))]𝑛 = 𝑒

𝑗 2𝜋𝑑𝑅𝐼𝑆

𝜆
𝑖1 (𝑛)𝑠𝑖𝑛(𝜗𝑎

𝐼,0 )𝑐𝑜𝑠 (𝜗
𝑒
𝐼,0 )+𝑖2 (𝑛)𝑠𝑖𝑛(𝜗

𝑒
𝐼,0 ) ,

(11)
where 𝜗𝑎

𝐼,0 and 𝜗𝑒
𝐼,0 are the azimuth and elevation angles of de-

parture from the RIS to the BS. Given (𝑥0, 𝑦0, 𝑧0) as the loca-
tion of the BS and 𝑑0𝐼 =

√︁
(𝑥0 − 𝑥𝐼 )2 + (𝑦0 − 𝑦𝐼 )2 + (𝑧0 − 𝑧𝐼 )2

as the norm distance from the BS to the RIS, we compute the
following:

𝑐𝑜𝑠(𝜑𝑎0,𝐼 )𝑐𝑜𝑠(𝜑
𝑒
0,𝐼 ) =

𝑥0 − 𝑥𝐼
𝑑0𝐼 , (12)

𝑠𝑖𝑛(𝜗𝑎𝐼,0)𝑐𝑜𝑠(𝜗
𝑒
𝐼,0) =

𝑦0 − 𝑦𝐼
𝑑0𝐼 , (13)

𝑠𝑖𝑛(𝜗𝑒𝐼,0) =
𝑧0 − 𝑧𝐼
𝑑0𝐼 . (14)

The total received message 𝑦 at the BS reflected through
the RIS is given by:

𝒚 =

𝐾∑︁
𝑘=1
(G𝚯h𝑘 + g𝑘)𝑠𝑘 + 𝒏

=

𝐾∑︁
𝑘=1

2∑︁
𝑣=1
(G𝚯h𝑘 + g𝑘)

√
𝑝𝑘𝑣𝑠𝑘𝑣 + 𝒏, (15)

where 𝑛 ∼ CN(0, 𝜎2𝑰𝑀 ) is circularly symmetric complex
Gaussian random noise at the receiver, and 𝜎2 is the power
spectral density. As in [11], we applied the beamforming ma-
trix 𝑾 = [𝒘1, ...𝒘𝑘 , ..., 𝒘𝐾 ] ∈ C𝐾×𝑀 , where 𝒘𝑘 ∈ C𝑀 , to de-
tect the 𝑘th user’s message at the stationary BS. In particular,
the complex value 𝑤𝑘,𝑚 is defined as a combination of a real
number and imaginary number (i.e., 𝑤𝑘,𝑚 = ℜ𝑘,𝑚 + ℑ𝑘,𝑚𝑖).
Accordingly, we obtain the following:

𝒘𝐻𝑘 𝒚 = 𝒘𝐻𝑘

𝐾∑︁
𝑘=1

2∑︁
𝑣=1
(G𝚯h𝑘 + g𝑘)

√
𝑝𝑘𝑣𝑠𝑘𝑣 + 𝒘𝐻𝑘 𝒏, (16)

Using the RSMA principle at the BS, all submessages
𝑠𝑘𝑣 are decoded using SIC, as described in [9]. For ease of
interpretation, we let Π be the pre-determined decoding order
set and 𝜋𝑘𝑣 be the decoding order of submessage 𝑠𝑘𝑣 . Ac-
cordingly, the SINR of submessage 𝑠𝑘𝑣 can be mathematically

expressed as follows:

𝑆𝐼𝑁𝑅𝑘𝑣 =
|𝒘𝐻
𝑘
(G𝚯h𝑘 + g𝑘) |2𝑝𝑘𝑣∑

Ψ(𝜒) |𝒘𝐻𝑘 (G𝚯h𝑙 + g𝑙) |2𝑝𝑙𝑚 + 𝜎2 | |𝒘𝐻
𝑘
| |2
, (17)

where the set Ψ(𝜒) denotes the set of submessages 𝑠𝑙𝑚 of
user 𝑙 decoded after 𝑠𝑘𝑣 of user 𝑘 , and 𝜋𝑙𝑚 is the decoding
order of submessage 𝑠𝑙𝑚. In particular, we consider that the
distinct channel gains of the 𝐾 ×2 submessages are calculated
at the stationary BS, sorted, and ranked in a descending order.
As in [31], a signal with stronger channel gain in order 𝜋𝑘𝑣 is
decoded and canceled before decoding the consecutive weaker
channel gain in order 𝜋𝑙𝑚.

The achievable data rate for decoding submessage 𝑠𝑘𝑣 can
be given by:

𝑟𝑘𝑣 = log2 (1 + 𝑆𝐼𝑁𝑅𝑘𝑣) . (18)

B. Problem Formulation
This section formulates the mathematical problem of max-

imizing the sum-rate. Specifically, we jointly optimize the BS
beamforming matrix 𝑾 with 𝑾 = [𝒘1, ..., 𝒘𝐾 ], the phase
shift 𝜽 , and the power allocation vector 𝜶 with respect to the
achievable sum-rate metric. Therefore, the objective problem
can be expressed as follows:

(P1) : max
𝑾 ,𝚯,𝜶

𝐾∑︁
𝑘=1

2∑︁
𝑣=1

𝑟𝑘𝑣 (19a)

𝑠.𝑡. 𝛼𝑘 ∈ 𝜶, ∀𝑘 ∈ K, (19b)
0 ≤ 𝜙𝑛 ≤ 2𝜋, ,∀𝑛 ∈ N , (19c)
| |𝒘𝑘 | |2 = 1, ∀𝑘 ∈ K, (19d)

where (19b) represents the power allocation constraint, which
we clarify in Section II-A. Additionally, the passive beamform-
ing element and the active beamforming receiver constraints
are given by (19c) and (19d), respectively. We follow the BS
beamforming constraints from [32] in (19d).

Solving (19) is computationally burdensome due to the non-
concave objective function and high-dimensional value sets of
the optimized variables. Previous studies have attempted to
solve the problem using traditional optimization algorithms.
For instance, semi-definite programming was used to optimize
only the RIS phase-shift design. However, with the size of
the RIS device increasing, the required computing resources
and optimization time also significantly increase. Furthermore,
traditional optimization algorithms assume quasi-static CSI,
whereas this study considers dynamic time-varying chan-
nels caused by user mobility. Therefore, using traditional
optimization algorithms to determine optimal solutions and
constraints in the proposed scenario is considerably complex.
To overcome this challenge, we reformulated (19) as an MDP-
based problem. Then, we used the low-complexity design of
the DDPG algorithm to learn the BS active beamforming, RIS
phase-shift design, and power allocation scheme in unison.

III. PROPOSED APPROACH

A. Markov Decision Process Framework
This section transforms the proposed system into a task

for a reinforcement learning agent. The RIS is a passive
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device without an on-board controller, and the mobile user
has moderate computing resources. Thus, a stationary BS,
which is considered to have powerful computational resources,
is considered the agent. In particular, the agent progres-
sively interacts with the environmental system, representing
the entire uplink transmission system. To achieve this, we
reformulated the sum-rate maximization problem (19) using an
MDP framework and defined a tuple (S,A, 𝑟, 𝛾) consisting of
the state space, action space, reward function (𝑟 : S×A → R),
and discount factor (𝜏 ∈ (0, 1)).

At each time step 𝑡, the agent collects state information
through interaction. The agent selects an action set 𝑎(𝑡)
according to the policy 𝜇 and immediately observes the reward
for the next time step 𝑟 (𝑡) and the next state 𝑠(𝑡 + 1). The
actions are real-valued; therefore, the state space, action space,
and reward function can be defined as follows.

1) State space: In the MDP framework, at each time step,
the agent observes the environment, which is the current 𝑥, 𝑦-
coordinates of the 𝐾 users as described in [16], [33]. Given the
observed locations, the channel gains of the BS-RIS, RIS-user,
and BS-user paths can be computed and sorted for decoding
order, mathematically described as follows:

𝑠(𝑡) = vec( [𝑥1 (𝑡), 𝑦1 (𝑡), ..., 𝑥𝑘 (𝑡), 𝑦𝑘 (𝑡), ..., 𝑥𝐾 (𝑡), 𝑦𝐾 (𝑡)]).
(20)

2) Action space: Given the state 𝑠(𝑡), the agent observes
and determines a joint action comprising the beamforming
receiver, phase-shift adjustment, and transmit power allocation
for each submessage. In particular, the 𝑚-th element of the
active beamforming matrix 𝑾 detecting the 𝑘th user is a
complex number with a real part ℜ(𝑤𝑚𝑘) and imaginary part
ℑ(𝑤𝑚𝑘). Therefore, the action 𝑎(𝑡) at time step 𝑡 can be
formulated as follows:

𝑎(𝑡) = {ℜ(𝑤11) (𝑡),ℑ(𝑤11) (𝑡), . . . ,ℜ(𝑤𝑀𝐾 ) (𝑡),ℑ(𝑤𝑀𝐾 ) (𝑡),
𝛼1 (𝑡), . . . , 𝛼𝑘 (𝑡), . . . , 𝛼𝐾 (𝑡), 𝜙1 (𝑡), . . . , 𝜙𝑛 (𝑡), . . . , 𝜙𝑁 (𝑡)}.

(21)

3) Reward function: In the proposed system, we employ
the achievable sum-rate as a metric to evaluate the action that
creates performance. Therefore, the reward function 𝑟 (𝑡) is
defined as follows:

𝑟 (𝑡) =
𝐾∑︁
𝑘=1

2∑︁
𝑣=1

𝑟𝑘𝑣 (𝑡). (22)

In each time step, the agent interacts with the environment and
selects an action based on a policy 𝝁 : S → A to maximize
the expected discounted reward, given by

𝑄(𝑠, 𝜇(𝑠)) = E

[
𝑇∑︁
𝑡=1

𝛾𝑡−1𝑟 (𝑡) (𝑠(𝑡)𝑎(𝑡))
]
, (23)

where 𝑇 is the terminal step, and 𝛾 is the discount factor, de-
termining the importance of future rewards. Thus, the optimal
policy 𝝁∗ aims to maximize the expected long-term reward
by jointly optimizing the BS beamforming, RIS phase shift,
and rate-splitting allocation, which can be mathematically
expressed as follows:

𝝁∗ = arg max
𝝁
𝑄(𝑠, 𝜇(𝑠)), 𝑠 ∈ S. (24)

B. Preliminaries

To address the proposed optimization problem (19), we
introduced a DDPG algorithm. Like the deep Q network
(DQN), DDPG allows the model to use a neural network
function approximator to learn the large, complex state space.
This scheme adapts the implementation of the policy gra-
dient algorithm to handle policies in the real-valued high-
dimensional action space. Additionally, the actor-critic-based
algorithm specifies the policy by maintaining an actor network
𝜇(𝑠 |𝜃𝜇) with 𝜃𝜇 as the weight parameter set, mapping each
state into a specific action in each time slot. Furthermore,
the parameterized critic network 𝑄(𝑠, 𝑎 |𝜃𝑄) is responsible for
estimating the performance of the determined action.

We also introduced a replay buffer 𝐷, in which the expe-
rience samples comprising the state 𝑠(𝑡), action 𝑎(𝑡), reward
𝑟 (𝑡), and next state 𝑠(𝑡+1) at each time step 𝑡 are stored. Then,
a batch of samples comprising < 𝑠𝑠 (𝑡), 𝑎𝑠 (𝑡), 𝑟𝑠 (𝑡), 𝑠𝑠 (𝑡 +1) >
is uniformly sampled and input into the networks for training.
Due to the utility of the replay buffer, we can address the
data correlation issue [34]. Accordingly, the critic function is
optimized by minimizing the overall Q-value loss 𝐿 (𝜃𝑄) based
on the overall action, given as

𝐿 (𝜃𝑄) = E𝑠𝑠 (𝑡 ) ,𝑎𝑠 (𝑡 ) ,𝑟𝑠 (𝑡 )∼𝐷
[
(𝑄(𝑠𝑠 (𝑡), 𝑎𝑠 (𝑡) |𝜃𝑄) − 𝑦(𝑡))2

]
,

(25)
where 𝑄(𝑠𝑠 (𝑡), 𝑎𝑠 (𝑡) |𝜃𝑄) is the value of the chosen action
𝑎𝑠 (𝑡) at state 𝑠𝑠 (𝑡), and 𝑦(𝑡) is defined as:

𝑦(𝑡) = 𝑟𝑠 (𝑡) + 𝛾𝑄
(
𝑠𝑠 (𝑡 + 1), 𝜇(𝑠𝑠 (𝑡 + 1)) |𝜃𝑄

)
. (26)

However, directly implementing (25) may introduce insta-
bility because the value 𝑄(𝑠(𝑡), 𝑎(𝑡) |𝜃𝑄) being updated is
also used in calculating (26), which can make the algorithm
susceptible to divergence. To improve stability in learning,
we introduce target actor and critic networks, 𝜇′ (𝑠 |𝜃𝜇′ ) and
𝑄′

(
𝑠(𝑡), 𝑎(𝑡) |𝜃𝑄′

)
, respectively. Then, we redefined the value

𝑦(𝑡):

𝑦(𝑡) = 𝑟𝑠 (𝑡) + 𝛾𝑄′
(
𝑠𝑠 (𝑡 + 1), 𝜇′ (𝑠𝑠 (𝑡 + 1) |𝜃𝜇′ ) |𝜃𝑄′

)
. (27)

Moreover, the continuous policy 𝜇(𝑠(𝑡) |𝜃𝜇) is modified as
follows to enhance the exploration of the training sample:

𝑎(𝑡) = 𝜇(𝑠(𝑡) |𝜃𝜇) + N (𝑡), N(𝑡) ∼ N (0, 𝜎2), (28)

where N(𝑡) is added noise to ensure the exploration of the
current policy. Such noise is generated based on the OU
process (i.e., 𝑑N = V(𝜈−N(𝑡))𝑑𝑡 +𝜎𝑑𝑊 (𝑡), where V is the
mean reversion, 𝜈 is the long-term value of the process mean,
and 𝜎 is the average magnitude of the standard Wiener process
𝑊 (𝑡) [35]). Nevertheless, as the OU process induces the action
value range of [0, 1] to expand to the range of [−1, 2], it can
violate the constraints (19c) and (19b). In particular, Fig.2
depicts the probability density function of the original action
and the action with the OU noise. The SAS process is proposed
to address the constraint violation issue in Section III-C.

Then, we constructed the policy gradient method to update
the parameter sets of the actor model. Due to the continuous
action space, the Q-network is differentiable with respect to the
deterministic action. Hence, in the actor updating process, we
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Figure 2: Probability density function of the value range of
the original action and the action with OU noise.

calculated the gradient ascent on the critic network as follows:

∇𝜃𝜇 𝐽 (𝜃𝜇) = E[∇𝜃𝜇𝑄(𝑠(𝑡), 𝑎(𝑡) |𝜃𝑄)]
= E[∇𝑎 (𝑡 )𝑄(𝑠(𝑡), 𝑎(𝑡) |𝜃𝑄)∇𝜃𝜇 (𝑎(𝑡))]
= E[∇𝑎 (𝑡 )𝑄(𝑠(𝑡), 𝑎(𝑡) |𝜃𝑄)∇𝜃𝜇 (𝜇(𝑠(𝑡) |𝜃𝜇) + N (𝑡))] .

(29)

In addition, the policy loss 𝐿 (𝜃𝜇) which is a scalar value
assessing the quality of the action performed by the actor
network is mathematically expressed as:

𝐿 (𝜃𝜇) = − 1
|𝐵 |

∑︁
𝑠∈𝐵

𝑄(𝑠, 𝜇(𝑠 |𝜃𝜇)) (30)

The weights of the two target networks are updated using
a “soft” target update with a constant ℸ << 1, expressed as

𝜃𝑄
′ ← ℸ𝜃 + (1 − ℸ)𝜃𝑄′ ,

𝜃𝜇
′ ← ℸ𝜃 + (1 − ℸ)𝜃𝜇′ .

(31)

C. Constraint-Satisfied Safe Action Shaping

This section proposes constraint-satisfied SAS functions
that enable the actor to determine optimal solutions while
satisfying the constraints of the formulated problem (19). For
the activation function of the actor network, we introduced
sigmoid activation to satisfy the value range of the power allo-
cation scheme constraint in (19b). Additionally, we performed
normalization on the phase-shift action, as 𝜙(𝑡) = 2𝜋𝛿𝜙𝑛 (𝑡),
where 𝛿𝜙𝑛 ∈ [0, 1], to map the action with the activation
layer and to satisfy the constraints (19c). Thus, the RIS phase-
shifting and power allocation actions are rewritten as follows:

{𝛼1 (𝑡), . . . , 𝛼𝑘 (𝑡), . . . , 𝛼𝐾 (𝑡), 𝛿1 (𝑡), . . . , 𝛿𝑛 (𝑡), . . . , 𝛿𝑁 (𝑡)}.
(32)

Regarding the BS beamforming constraint described as
(19d), we propose the following proposition to be applied
to the output value of the actor policy to satisfy the BS
beamforming constraint (19d). The constraint on the receiver
beamforming is | |w𝑘 | |2 = 1 (i.e., the sum of all 𝑀 squared
values of ℜ(𝑤𝑚) elements and 𝑀 squared values of ℑ(𝑤𝑚)

elements must equal 1. Given W = [w1,w2, ...,w𝐾 ], we pre-
define the 𝑘th BS beamforming vector w𝑘 ∈ C𝑀 as f𝑘 ∈ R2𝑀 ,
where f𝑘 = [ 𝑓𝑘,1, 𝑓𝑘,2, 𝑓𝑘,3, 𝑓𝑘,4, ..., 𝑓𝑘,2𝑀−1, 𝑓𝑘,2𝑀 ]𝑇 with F =

[f1, f2, ..., f𝐾 ].

Proposition 1. Given that f𝑘 ∈ F originally outputs from the
actor model and Υ𝑘 = | |f𝑘 | |2 ≠ 1 is the constraint-violated
value, the desired element of the 𝑘th BS beamforming vector
𝑓 ∗
𝑘,𝑚

where 𝑓 ∗
𝑘,𝑚
∈ f∗

𝑘
= [ 𝑓 ∗11, 𝑓

∗
12, . . . , 𝑓

∗
𝐾,2𝑀−1, 𝑓

∗
𝐾,2𝑀 ]

𝑇 ∈
R2𝑀 , is mapped as 𝑓 ∗

𝑘,𝑚
= 1√

Υ𝑘
𝑓𝑘,𝑚, so that | |f∗

𝑘
| |2 = 1,

satisfying the constraint (19d).

Proof. At each time step, the policy 𝜇(𝑠 |𝜃𝜇) directly
generates (2𝑀 × 𝐾)-dimensional BS beamforming actions
{ 𝑓11, 𝑓12, . . . , 𝑓𝐾,2𝑀−1, 𝑓2𝑀,𝐾 }. We can compute the constraint
| |f𝑘 | |2 as follows:

| |f𝑘 | |2 =

√︃
𝑓 2
𝑘,1 + 𝑓

2
𝑘,2 + ... + 𝑓

2
𝑘,2𝑀 = Υ𝑘 , (33)

where Υ𝑘 ≠ 1 is the constraint-violated value, which does not
satisfy the constraint (19d). To shape the value of | |f𝑘 | |2 = Υ𝑘
into | |f𝑘 | |2 = 1, we normalize (33) as follows:√︂

1
Υ𝑘

𝑓 2
𝑘,1 +

1
Υ𝑘

𝑓 2
𝑘,2 + ... +

1
Υ𝑘

𝑓 2
𝑘,2𝑀 =

√︂
1
Υ𝑘

Υ𝑘 = 1. (34)

Therefore, the constraint (19d) is satisfied if and only if all 2𝑀
element of vector f∗

𝑘
are mapped as 𝑓 ∗2

𝑘,𝑚
= 1

Υ𝑘
𝑓 2
𝑘,𝑚

. In addition,
given that the value of 𝑓𝑘,𝑚 is positive, the constraint-satisfying
beamforming element 𝑓 ∗

𝑘,𝑚
can be reformed as follows:

𝑓 ∗𝑘,𝑚 =
1
√
Υ𝑘

𝑓𝑘,𝑚. (35)

Given the value reformation (35), the desired 𝑘th BS beam-
forming action to satisfy (19d) is given as follows:

| |f∗𝑘 | | =
√︃
𝑓 ∗2
𝑘,1 + 𝑓

∗2
𝑘,2 + ... + 𝑓

∗2
𝑘,2𝑀 = 1. (36)

□

In each training step, we applied the shaping process for all
f𝑘 ∈ F. Thus, the original step action (32) is re written into
the safe constraint-satisfied action space 𝑎̄(𝑡) as follows:

𝑎̄(𝑡) = { 𝑓 ∗11 (𝑡), 𝑓
∗
12 (𝑡), . . . , 𝑓

∗
𝐾,2𝑀−1 (𝑡), 𝑓

∗
𝐾,2𝑀 (𝑡),

𝛼1 (𝑡), . . . , 𝛼𝐾 (𝑡), 𝛿1 (𝑡), . . . , 𝛿𝑁 (𝑡)}.
(37)

We depicted the proposed actor network modified with the
safe constraint-satisfied action shaping functions in Fig. 3.

𝑠(
𝑡)

de
fi

ne
d 

as
 (

27
)

Actor network

Sigmoid 
fuction 

activation

𝑎
(𝑡

)
de

fi
ne

d 
as

 (
28

)

𝑓௞,௠
∗ =

1 

Υ௞

𝑓௞,௠

𝑎ത(𝑡) defined as (37)

Reforming 𝐅 into 𝐖

Figure 3: Proposed actor network modified with safe
constraint-satisfied action shaping.
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Thus, the formulated problem (19) is reformulated into the
constraint-free MDP problem, written as follows:

(P2) : max
𝑎̄ (𝑡 )

E

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟 (𝑡)
]
. (38)

In general, the SAS-DDPG algorithm for solving the maxi-
mum sum-rate problem in (19) is provided in Algorithm 1 and
depicted in Fig. 4. First, the communication system, network
parameters, and replay buffer are initialized. In the interaction
process, the agent observes the initial state at the first step
of each episode (Step 1⃝). Based on the observation 𝑠(𝑡)
at each interaction step, the action 𝑎(𝑡) is performed, and the
additive OU noise is added to increase the exploration manner
of the agent (Step 2⃝). Then, the SAS process is applied
according to (32) and (35) to address the constraint violation
(Step 3⃝). After the environment interaction, the state, action,
reward 𝑟 (𝑡), and next state 𝑠(𝑡) are collected (Step 4⃝) and
stored in the buffer 𝐷 for training (Step 5⃝). During training,
experiences are randomly sampled from 𝐷 (Step 6⃝) and
input into the DNN models (Step 7⃝). Afterward , the
Q-value loss and policy gradient are respectively computed
according to (27) (Step 8⃝) and (29) (Step 9⃝), followed by
the respective updating process of the primary critic model
(Step 10⃝) and primary actor model (Step 11⃝). At the end of
the updating process, the target actor and critic models are
updated according to the soft rule (31) (Step 12⃝). Once the
maximum number of episodes is reached, the trained model
is employed for the real-time channel inference and decision-
making process.

Algorithm 1 Safe action shaping deep deterministic policy
gradient algorithm

1: Initialize the network model
2: Initialize the critic network 𝑄 (𝑠, 𝑎 | 𝜃𝑄 ) and actor network 𝜇 (𝑠 | 𝜃𝜇 )

with weights 𝜃𝑄 and 𝜃𝜇

3: Initialize the target network 𝑄′ and 𝜇′ with weights 𝜃𝑄
′ ← 𝜃𝑄 and

𝜃𝜇
′ ← 𝜃𝜇

4: Initialize the replay buffer 𝐷
5: for episode = 1...𝐸 do
6: Observe the initial state 𝑠 (1)
7: Inference of the channel from the 𝐾 users to the BS according to (2)

8: Inference of the channel from the 𝐾 users to the RIS according to
(4)

9: Inference of the channel from the RIS to BS according to (3)
10: Compute the decoding order
11: while not being the last step do
12: # Interacting:
13: Observe state 𝑠 (𝑡 )
14: Determine and execute overall action 𝜇 (𝑠 (𝑡 ) | 𝜃𝜇 ) + N(𝑡 ) accord-

ing to (28)
15: Operate the SAS process for the output 𝑎 (𝑡 ) and re-formulate into

𝑎̄ (𝑡 ) according to (32), (35), and (37)
16: Compute the reward 𝑟 (𝑡 ) according to (38); and observe the next

state 𝑠 (𝑡 + 1)
17: Store experience tuple < 𝑠 (𝑡 ) , 𝑎 (𝑡 ) , 𝑟 (𝑡 ) , 𝑠 (𝑡 + 1) > into buffer

𝐷

18: # Training:
19: Uniformly sample experiences from 𝐷

20: Update parameter 𝜃𝑄 by minimizing the loss according to (25)
21: Update parameter 𝜃𝜇 using the policy gradient according to (29)
22: ”Soft” update the target networks according to (31)
23: end while
24: end for
25: return trained model 𝜃𝜇∗.

D. Complexity Analysis

This section explores the complexity of the SAS-DDPG
algorithm. In the proposed DRL-inspired approach, the space
and time complexity is derived based on the workload of the
DNN models. We define S = 2𝐾 , A = 2𝑀𝐾 + 𝑁 + 𝐾 , and
𝑛 as the number of identical layer nodes of the hidden layers
in the prroposed RIS-assisted RSMA system. In particular,
the dominant complexity derives from the backpropagation in
the training process and forward propagation to determine the
|A|-dimensional action with any particular |S|-dimensional
state. The complexity of the proposed algorithm is provided
as follows.
• The complexity of the training process: For each training

step 𝑡, the agent performs the sampled gradient descent
at the critic model over the samples in the mini-batch
with size 𝐵. In particular, the complexity of one back
propagation process at the critic model is 𝑂 ( |A| ∗ |S| ∗
𝑛). Thus, the complexity of the training process for 𝐸
episodes with 𝑇 steps per episode is 𝑂 (𝐸 ∗𝑇 ∗𝐵∗ (2𝑀𝐾+
𝑁 + 𝐾) ∗ (2𝐾) ∗ 𝑛).

• The complexity of the decision-making process: To de-
termine the joint action 𝑎̄(𝑡) at any particular state 𝑠(𝑡),
the complexity depends on the structure of the policy
network. For a two-layer policy network, the complexity
of decision-making is 𝑂 ( |S| ∗𝑛+𝑛∗𝑛+ |A| ∗𝑛). Thus, re-
garding all actions with continuous values, the complexity
of a single decision-making process is 𝑂 (2(2𝑀𝐾 + 𝑁 +
3𝐾) ∗ 𝑛 + 𝑛2).

The complexity of the proposed algorithm is polynomial.
Therefore, the proposed DRL actor-critic-based algorithm is
practical in scenarios where the system model settings can be
dynamically scaled up. For instance, considering only the 𝑁-
dimensional RIS phase shift, the complexity of a traditional
optimization approach, such as semi-definite programming,
is 𝑂 ((𝑁 + 1)6), leading to an enormous execution time per
iteration [36]–[38].

Remark I: After training, the policy network determines the
optimal joint action sets for the BS beamforming matrix, RIS
phase-shift design, and power allocation scheme at any given
environmental state.

IV. PERFORMANCE EVALUATION

This section evaluates and compares the performance of the
proposed SAS-DDPG algorithm to other benchmark schemes
in different system scenarios through simulations. The simula-
tions are conducted using the Python programming language
and PyTorch on a server powered by an Intel(R) Core(TM)
i5-7500 CPU @ 3.40 GHz and 15.9 GB of memory.

A. Simulation Settings

This section lists the settings for the learning model hyper-
parameters and the system-level simulation. Regarding the
SAS-DDPG algorithm hyper-parameters, the critic network
consists of two hidden layers (with 512 and 254 nodes), and
the actor network includes a 256-connected node layer and
128-connected node layer. The rectified linear unit (ReLU) is
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Figure 4: Safe action shaping (SAS) deep deterministic policy gradient framework, including the SAS process, primary networks,
and target networks.

the activation function for the network’s hidden layers. The
value of the critic network is also linearly obtained through
ReLU, whereas the action value is in the range of [0,1] due
to the sigmoid function activation. Table IV summarizes the
DNN hyperparameter settings.

We built an RIS-assisted uplink multiantenna multiuser
RSMA system environment to validate the proposed algorithm.
We recorded the simulation settings. The fixed Descartes
coordinates of the BS and RIS (in meters) are set as (100, -
100, 15) and (0, 0, 15), respectively. Additionally, we supplied
the mobility functions of the IoT user as follows. At each
time step, the locations of 𝐾 users are randomly changed
in a designated [5, 35] × [-35, 35] area according to the
normal distribution, simulating the dynamic characteristics of
the environment. Given Δ𝑥𝑘 and Δ𝑦𝑘 as the traveling distance
in the 𝑥- and 𝑦-directions , respectively, in one interval of time,
the moving range of the 𝑘-th user is mathematically expressed
as follows:

Δ𝑥𝑘 (𝑡 + 1) = 𝑉𝑘 𝑡𝑘 (𝑡) cos(𝜔𝑘 (𝑡)), (39)
Δ𝑦𝑘 (𝑡 + 1) = 𝑉𝑘 𝑡𝑘 (𝑡) sin(𝜔𝑘 (𝑡)), (40)

where 𝑉𝑘 represents the fixed value of the user velocity, 𝑡𝑘
indicates the interval time that the user travels in time step
𝑡, and 𝜔𝑘 denotes the traveling oriented angle. The oriented
angle vectors 𝝎 = [𝜔1, ..., 𝜔𝑘]𝑇 ∈ R𝐾 are uniformly generated
from CN(𝜇𝜔 , 𝜎𝜔). Thus, the next 𝑥, 𝑦 coordination of the 𝑘-
th user at the next time step is defined as

𝑥𝑘 (𝑡 + 1) = 𝑥𝑘 (𝑡) + Δ𝑥𝑘 (𝑡 + 1), (41)

𝑦𝑘 (𝑡 + 1) = 𝑦𝑘 (𝑡) + Δ𝑦𝑘 (𝑡 + 1). (42)

In addition, the large-scale pathloss 𝐿𝑔𝑘 is 32.6 +
36.7𝑙𝑜𝑔(𝑑0𝑘), whereas path losses 𝐿𝐺 and 𝐿ℎ𝑘 in (3) and
(4) are respectively modeled as 30 + 22𝑙𝑜𝑔(𝑑0𝐼 ) and 30 +
22𝑙𝑜𝑔(𝑑𝐼𝑈

𝑘
), where 𝑑𝐵𝐼 and 𝑑𝐼𝑈

𝑘
are the lengths of the BS-RIS

and RIS-user paths. The Rician factor 𝜅 is set as 10 dB. The
transmit powers of the ground users are randomly generated
in the range of 10-15 dBm, and the noise variance 𝜎 at the
stationary BS is -94 dBm/Hz. We depicted the simulation set-
tings of the uplink RSMA communication system in Fig. (5),
and Table V summarizes the simulation settings.

Table IV: Learning Hyperparameters

Hyper-parameter Value
Critic network - Hidden Layer 1 512 nodes
Critic network - Hidden Layer 2 254 nodes
Actor network - Hidden Layer 1 256 nodes
Actor network - Hidden Layer 2 128 nodes
Target network update rate, ℸ 1e-3
Epsilon decay rate, 𝜖 1e-3
Training steps, 𝑆 500
Training episodes, 𝐸 2500

B. Convergence Evaluation

This section analyzes the convergence pattern of the DNNs
by determining the sets of hyper-parameters for the training
model. Regarding the environmental settings for the conver-
gence scrutiny, we simulated a scenario where four users trans-
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Figure 5: Simulation settings of the reconfigurable intelligent surface (RIS)-assisted uplink multiantenna multiuser rate-splitting
multiple access (RSMA) transmission system model.

Table V: System-Level Simulation Parameters

Parameter Value
Bandwidth of BS 𝐵 1 MHz
Large-scale pathloss 𝐿𝑔𝑘

0,𝑘 32.6 + 36.7 log(𝑑0𝑘 )
Large-scale pathloss 𝐿ℎ𝑘 30 + 22𝑙𝑜𝑔 (𝑑𝐼𝑈

𝑘
)

Large-scale pathloss 𝐿𝐺 30 + 22 log(𝑑0𝐼 )
NLoS channel coefficient g̃𝑘 CN(0, I)
Initial location of BS (100,-100,20)
Initial location of RIS (0,0,20)
Noise variance at BS -94 dBm/Hz
Rician factor 𝜅 10
User velocity 1.5 m/s
User moving angle 𝜔𝑘 ∼ N(𝜋, 1)

mit their messages to a four-antenna BS with the assistance
of an RIS with 36 elements.

Learning rates control the degree of change in the DNN
approximators in response to the estimated errors each time
𝜃𝑄 and 𝜃𝜇 are updated. If the learning rates are too high, the
resulting learning can be brittle, resulting in suboptimal values
for 𝜃𝑄 and 𝜃𝜇. Conversely, using a learning rate that is too
low can result in an excessively long training process [16]. We
selected the best learning rate pair (𝑙𝑟𝜇, 𝑙𝑟𝑄) from five cases:
(5𝑒−4, 5𝑒−4), (5𝑒−3, 5𝑒−3), (1𝑒−4, 5𝑒−4), (1𝑒−4, 1𝑒−4),
and (1𝑒−4, 5𝑒−3). Fig. 6(a) illustrates that the episode reward
increases, and the model converges within a specific range
after a certain number of training steps. Furthermore, the set
(1𝑒 − 4, 1𝑒 − 4) offers more stable growth in rewards than the
others. Thus, we chose (1𝑒−4, 1𝑒−4) as the learning rate set
due to its better performance.

Second, we determined the batch size, which refers to the
number of samples used in each gradient update process.
The off-policy algorithm collects samples, which are used to

train the DNNs, uniformly at each step until the number of
samples equals the batch size . The batch size is a crucial
hyper-parameter affecting the stability and learning speed of
the algorithm. We considered five cases for batch size 𝐵:
{8, 16, 32, 64, 128}. The results are presented in Fig. 6(b).
The model trained with a batch size of 16 has the fastest
convergence speed with the highest reward. The large batch
size identifies noise in the training data in such a dynamic
environment, leading to slow convergence. Therefore, we used
the batch size of 16.

Third, the discount factor determines how much the actor
focuses on obtaining future rewards. With an appropriate
discount factor, the learning algorithm can output an optimal
policy to maximize global rewards rather than local rewards
[16]. We choose the best discount factor 𝛾 from three possible
values: 0.1, 0.9, and 0.999. As presented in Fig. 6(c), after
2500 episodes, the reward trend increases the most when
using 𝛾 = 0.9, indicating that this value is the best choice.
This outcome can be explained by the fact that the algorithm
places little emphasis on future cumulative rewards when
𝛾 = 0.1, and the reward for taking action based on an
observed state is unlikely to improve. In contrast, the learning
process is unlikely to converge when 𝛾 = 0.999 because the
agent prioritizes long-term rewards too much over immediate
rewards. Therefore, we choose 𝛾 = 0.9 as the discount factor
for the rest of the experiments.

Fourth, we considered the buffer capacity 𝐷, which deter-
mines the storage size for experienced tuples. Old tuples are
removed to accommodate new ones as the buffer fills . The
size of the buffer has a significant effect on the stability of
the DNN training process, with larger buffers resulting in less
correlated samples and more stable learning [34]. However,
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excessively large buffers can lead to memory overload and
slow the training process. We studied four cases for buffer
capacity 𝐷: 5×104, 105, 106, and 2×106. It is anticipated that
the execution time also increases with the size of the buffer
capacity. In particular, the execution time for 𝐷 = 5 × 104,
𝐷 = 105, 𝐷 = 106, and 𝐷 = 2 × 106 is 143.71 iterations per
second (it/s), 85.80 it/s, 60.36 it/s, and 5.62 it/s, respectively.
Based on the stability and reward performance in Fig. 6(d),
we choose a buffer capacity of 𝐷 = 106.

We compared the proposed constraint-satisfied SAS-DDPG
with the original DDPG [39] and the recent PPO [40] regard-
ing the identical hyper-parameter set: 𝑙𝑟𝜇 = 1𝑒−4, 𝑙𝑟𝑄 = 1𝑒−4,
𝐵 = 16, 𝛾 = 0.9, 𝐷 = 1𝑒6, 𝐸 = 2500, and 𝑡 = 500. In
the original DDPG, the issue of an out-of-range action value
is addressed using the clip function, and the action shaping
process is not executed. Fig. 7 depicts the reward-wise perfor-
mance of the proposed SAS-DDPG compared to the original
DDPG and PPO. After 2500 training episodes, the total reward
performed by SAS-DDPG is 20.23 % and 21.61 % greater
than the total reward performed by the original DDPG and
PPO, respectively. Moreover, the 𝐿 (𝜃𝜇) performed by SAS-
DDPG is remarkably lower than that performed by the original
DDPG. This outcome could be explained by the fact that
the clipping process without SAS induces the action value to
continuously approach 1 or 0 at the output activation, leading
to a high variance in gradient computation. Furthermore, the
exploration characteristic of the original DDPG is remarkably
limited, causing the original DDPG algorithm to encounter
difficulties in reaching the global optimum solutions.

C. Performance Evaluation

This section compares the performance of the proposed al-
gorithm with two machine learning-inspired schemes and one
exhaustive search method. We recorded the optimal weights
𝜃𝜇 of the actor DNNs of the reconfigured DDPG approach,
which selects action sets that offer the highest reward for
each determined system setting, after being trained for 2500
episodes, with 500 steps per episode. Then, we compared it
with the following existing schemes.
• Cross-entropy (CE)-based Scheme: This approach is

based on a CE framework. Gaussian distribution algo-
rithms P(·; 𝝁,𝝈) with independent mean {𝝁𝑙}𝐿𝑙=1 and
standard deviation vectors {𝝈𝑙}𝐿𝑙=1 for different actions
are used for sampling 𝐿 continuous-valued candidate ac-
tion sets, and the 𝐿𝑒𝑙𝑖𝑡𝑒 < 𝐿 ”elite action” sets are sorted,
ranked, and selected. The tilted parameters of the pre-
designed sampling probability distributions that generated
𝐿𝑒𝑙𝑖𝑡𝑒 elite sets are explicitly optimized by calculating the
Kullback–Leiber distance with a smoothing parameter.
The learning process is repeated until the best action set
is generated using the optimal 𝝁 and 𝝈 . The details of
the CE-based algorithm are described in [41].

• Proximal Policy Optimization Scheme: Similar to the
DDPG, this approach is a DRL-based policy gradient
algorithm applicable to discrete and continuous action
values. Generally , the PPO algorithm has three neu-
ral networks: the new policy network generating the

probability distribution, the old policy network limiting
the alteration of the new policy network, and the critic
network calculating a given state value and evaluating the
policy network. The details of the PPO algorithm were
proposed in [40].

• Local Search (LS) Scheme for Discrete RIS Phase Shifts:
In this approach, the continuous-valued RIS phase-shift
actions are equally quantized into discrete levels, and a
sum-rate value is calculated for each generated candidate
solution. An exhaustive LS method determines the sub-
optimal actions yielding the best reward at each test step.
The detailed procedure of the LS scheme is proposed and
applied as described in [42].

• Non-RIS scheme: In this approach, we excluded the
consideration of the continuous-valued phase shifts of
the RIS in the system to compare the achievable sum-
rate performance between the RIS-assisted and non-RIS-
assisted systems, highlighting the significance of the
RIS device in a communication network with varying
channels.

The proposed reconfigured DDPG, CE-based, and DQN
approaches are simulated in RSMA and NOMA settings
to emphasize the beneficial dominance of the rate-splitting
technique over its opponent in maximizing the uplink sum-
rate. Unlike RSMA, where 𝐾 users split their messages into
sub-messages, in NOMA, 𝐾 users transmit their messages to
the BS without splitting them. The BS performs SIC to decode
all messages to mitigate interference . The SINR, data rate, and
objective function of the NOMA scenario can be formulated
as described in [13].

First, we assessed the time complexity of the approaches
regarding the it/s . The proposed algorithm is designed to
interact and train online; thus, we considered the learning
speed and computation delay for practical scenarios. Regard-
ing DRL-based algorithms, such as the SAS-DDPG, original
DDPG, and DQNs, it/s represents the interval of observing the
state, executing subsequent actions , and receiving a reward per
training step. For the CE-based and LS schemes, the execution
time represents the number of processing loops executed in 1 s
of that algorithm. We executed the simulation in scenarios with
different numbers of RIS elements, which act for the disparate
dimensional complexities of the desired output action to obtain
noticeable differentiation between the schemes.

The inspection of the execution time among the consid-
ered methods is described in detail in Table VI, reveal-
ing that DNN-based approaches are significantly superior to
machine-learning-inspired ones in terms of execution speed.
In particular, the proposed SAS-DDPG outperforms other
benchmark schemes and is approximately 111.29, 1.67, and
1.9 times faster than the CE-based, DQN-based, and LS
schemes, respectively. However, the original DDPG is about
1.03 times faster than the SAS-DDPG because SAS-DDPG
has an additional SAS process. In addition, to train the model
for 2500 episodes with 500 steps per episode in the scenario
where 𝐾 = 4, 𝑀 = 4, and 𝑁 = 100, it took 5 h, 26 min,
and 11 s and 08 h, 34 min, and 40 s to train the reconfigured
DDPG and DQN-based schemes, respectively. In contrast, 1
h, 22 min, and 17 s and 1 min and 9 s were spent executing
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Figure 6: Monte-Carlo simulations for different hyperparameter sets in the simulation settings: 𝐸 = 2500, 𝑡 = 500, 𝐾 = 4,
𝑀 = 4, and 𝑁 = 36.
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Figure 7: Convergence comparison between the proposed
safe action shaping (SAS)-deep deterministic policy gradient
(DDPG), original DDPG, and proximal policy optimization
(PPO) in the simulation setting: 𝐸 = 2500, 𝑡 = 500, 𝐾 = 4,
𝑀 = 4, and 𝑁 = 36.

Table VI: Execution Time of the Schemes (iteration/s)

Approach Number of RIS elements
50 100 150 200

SAS-DDPG 64.61 63.93 60.70 58.74
Original DDPG 68.02 67.75 62.88 60.32
CE-based 0.94 0.66 0.37 0.26
PPO 81.88 79.07 68.49 62.23
LS 39.71 36.03 30.25 23.41

2500 steps for the CE-based and LS algorithms, respectively.
Second, we aimed to observe the influence of various system

model settings on the sum-rate maximization performance
of the considered algorithms. Fig. 8 presents the sum rate
versus the number of RIS elements under various schemes,
ranging from 36 to 196. The changing number of RIS elements
(𝑁) has a gradual influence because the maximum sum rate
linearly increases as log(𝑁) increases. In the RSMA scenario,
the proposed configured-DDPG algorithm outperforms the
others, with approximately 16.77%, 11.66%, and 71.49%
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better performance than CE-based, PPO, and LS algorithms,
respectively. Nevertheless, the upward trend of the sum-rate
value nearly stalls under larger values of 𝑁 (from 121 to 196)
due to the characteristics of the logarithmic function. As the
number of elements increases, the magnitude of the phase-
shift action grows, causing the CE-based and LS schemes
to perform poorly at the local optimum with a much longer
execution time. However, the reconfigured DDPG scheme
overcomes the high complexity of the action space with a
stable, rapid training time, verifying the superiority of the
proposed method over the others. A similar maximum sum-
rate performance pattern can be observed in NOMA settings.
The proposed SAS-DDPG yields 10.12%, 8.30%, and 56.47%
higher achievable sum rates than the CE-based, PPO, and LS
schemes, respectively. The achievable sum-rate value range is
much lower in NOMA settings, indicating that the NOMA
technique is notably inferior to the rate-splitting technique.
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Figure 8: Achievable sum-rate versus the number of reconfig-
urable intelligent surface (RIS) elements (𝑁) in the scenario
of 𝐾 = 4 and 𝑁 = 4.

Fig. 9 presents the achievable sum-rate comparison accord-
ing to the changing number of ground users. We set up a
scenario with 100 RIS elements and 10 BS antennae, changing
the number of users from six to 30 to investigate the pattern of
the maximum sum-rate value. The achievable sum- rate of all
considered schemes remarkably increases with the increased
number of ground users. However, the SAS-DDPG combined
with the RSMA technique obtains sum-rate gains of more than
26.77%, 19.80%, and 50.55% compared with the CE-based,
PPO, and LS schemes, respectively. In the NOMA setting,
the achievable sum-rate values achieved by the CE-based,
PPO, and LS approaches are 15.84%, 7.3%, and 33.93%
lower than the proposed method. The experiment demonstrates
that the proposed approach can achieve the best achievable
sum-rate value as 𝐾 increases. Otherwise, the multi-user gain
is more noticeable for the RSMA technique than NOMA,
demonstrating that RSMA is suitable for multiple device sce-
narios. This finding could be explained by the fact that RSMA
efficiently determines each user’s power splitting to achieve

the theoretically maximum rate region, whereas NOMA has
no power splitting. Furthermore, the sum-rate value is 50.20%
lower without the assistance of the RIS element, signifying the
importance of the RIS technique in the environment settings.

Figure 9: Achievable sum-rate versus the number of users (𝐾)
in the scenario of 𝑁 = 100, 𝑀 = 10.

Fig. 10 presents the effect of different numbers of BS
antennae on the sum-rate maximization performance. Given
the scenario of 𝑁 = 100 and 𝐾 = 10, we altered the number
of antennae from four to 20. Like the settings for varying
the amount of RIS phase shift and number of IoT users, the
achievable sum-rate value steadily increases as the antenna
number increases under the SAS-DDPG, CE-based, and PPO
approaches, whereas sum-rate maximization under the LS
scheme almost levels off as 𝑀 gradually increases (from 24
to 30 users). As expected, for the RSMA scenario, SAS-
DDPG yields the greatest maximum sum-rate performance,
with 23.52%, 18.77%, and 56.93% higher sum-rate levels
compared to the CE-based, PPO, and LS methods, respec-
tively. In the case of the NOMA technique, the achievable
sum-rate value obtained by the proposed algorithm is 26.68%,
24.43%, and 48.16% higher than the CE-based, PPO, and
LS methods, respectively. This result implies that the active
beamforming at the BS can also affect the performance of
sum-rate maximization.

However, increasing 𝑁 provides a much higher sum- rate
than increasing 𝑀 . The reason for such a phenomenon could
be that equipping more passive elements has notably affected
both the channel from the BS to RIS and from RIS to mobile
users, whereas the BS beamforming only affects the BS-
RIS path 𝑮. In addition, with RIS assistance, the achievable
sum- rate increases by 51.19% compared to the non-RIS
scheme. Thus, implementing RIS in the proposed scenario can
significantly enhance the LoS) probability of the propagation
channels.

Fig. 11 depicts the influence of various Rician factors on the
sum-rate maximization performance. The parameter 𝜅 is the
ratio of the channel power of the specular path to the channel
power of scattered paths. Thus, a greater value of 𝜅 results
in a higher deterministic nature of the wireless channel. In
contrast, a smaller value of 𝜅 produces a higher probability
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Figure 10: Achievable sum-rate versus the number of base
station antennae (𝑀) in the scenario of 𝑁 = 100, and 𝐾 = 10.

of an NLoS channel occurring [29]. Given the scenario of
𝐾 = 10 and 𝑀 = 10, we varied the Rician factor in five cases:
10−1, 100, 101, 102,∞, where ∞ denotes an immensely high
probability of an LoS channel. We also simulated the case
where 𝑁 = 50, 100 is alternatively combined with the average
transmit power of 𝐾 users 𝑃𝑘 = 10, 15 dBm. As anticipated,
the achievable maximum sum- rate performs best when more
RIS elements are implemented to improve the LoS channel
probability and a higher transmit power is provided to the
users. By doubling the number of RIS elements, the achievable
sum rate increases by approximately 2.73% and 5.81% for
𝑃𝑘 = 15 dBm and 𝑃𝑘 = 10 dBm, respectively. In contrast,
when increasing 𝑃𝑘 from 10 to 15 dBm , the achievable sum
rate increases by about 16.93% and 20.41% for the cases of
𝑁 = 100 and 𝑁 = 50, respectively. In addition, the achievable
sum- rate increases correspondingly with an increasing Rician
factor. Specifically, in the case of 𝑁 = 100 and 𝑃𝑘 = 15 dBm,
the achievable sum-rate value obtained at 𝜅 = ∞ is 44.37%,
38.34%, 13.08%, and 2.1% higher than 𝜅 = 10−1, 𝜅 = 100,
𝜅 = 101, and 𝜅 = 102, respectively. A fading environment
with a low LoS probability could be detrimental to system
performance. However, the proposed SAS-DDPG approach
can still effectively learn and predict the LoS channels to
address this issue and select an appropriate action set for each
time step.

V. CONCLUSION

This study investigated the sum-rate maximization prob-
lem in an RIS-assisted uplink multiantenna multiuser RSMA
system. The system model considered the mobility functions
of IoT users to express a practical dynamic communication
system. The problem involved joint optimization of active
beamforming at the BS, passive beamforming at the RIS,
and the power allocation scheme. To address the non-concave
formulation, we transformed the problem into an MDP frame-
work and solved it using a DRL-based algorithm. The DDPG
framework was used to learn real-time CSI and achieve long-
term maximum sum-rate performance. We also proposed an
SAS to satisfy the constraints of the objective function. We
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Figure 11: Achievable sum-rate performance of the safe action
shaping (SAS) deep deterministic policy gradient (DDPG)
approach in a fading environment simulated in the scenario
of 𝐾 = 10, and 𝑀 = 10.

analyzed and compared the performance of the proposed
SAS-DDPG algorithm with the original DDPG approach.
The results demonstrated that SAS-DDPG outperformed the
original DDPG approach regarding reward and policy loss.
We also compared SAS-DDPG with machine learning-based
approaches under various settings of RSMA and NOMA
concepts and levels of fading channels. Numerical simulation
results validated the superiority of the proposed method over
the considered benchmark schemes. It was also observed
that the sum- rates increase linearly with 𝑙𝑜𝑔(𝑁), indicating
the effectiveness of the proposed algorithm for RIS-assisted
multiantenna dynamic uplink communication networks.
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