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mISO: Incentivizing Demand-Agnostic
Microservices for Edge-Enabled IoT Networks

Amit Samanta, Quoc-Viet Pham, Nhu-Ngoc Dao, Ammar Muthanna, and Sungrae Cho

Abstract—The recent expansion of mobile IoT devices (MIoTDs) along with the exposure of many compute-intensive and
latency-critical applications, have given a step rise to the mobile edge computing (MEC) platform to process computational
microservices at the edge. The paramount importance of designing an effective incentive mechanism is a very important topic for such
systems to get a fair amount of resources and provide incentives to MIoDs. Hence, we design a MEC platform with heterogeneous
MIoTDs participating in a computational microservice offloading scheme. Here, we propose an incentive approach applying a double
auction mechanism to incentivize the involvement of MIoTDs. In practice, the incentive mechanism typically interacts with the demand
estimation scheme that estimates the demand profile of MIoTDs. As a result, we design a novel mechanism for microservices –
microservice Incentive Service Offloading (mISO), which comprises an incentive approach and a demand estimation scheme. The
mISO mechanism holds truthfulness, rationality, and low computational complexity while guaranteeing positive social welfare and
generating the optimal demand profiles for MIoTDs. Simulation results showed that mISO provides 18–21 % and 25–30 %

improvements in terms of average latency and resource utilization compared to existing works.

Index Terms—Auction game, edge computing, demand-agnostic, microservice offloading, incentive mechanism.

✦

1 INTRODUCTION

Mobile Edge Computing (MEC) [1]–[4] has been consid-
ered as an efficient and important paradigm for compute-
intensive and latency-stringent Internet of Things (IoT) ap-
plications [5]. Such kind of infrastructure incorporates sev-
eral advantages to edge devices, while offering distributed
decision-making and privacy-preserving mechanisms for
mobile IoT devices (MIoTDs). Here, the tasks (i.e., pro-
cessing and data-dependent tasks) and microservices are
transferred to the network edge [6], [7] in order to access
the edge servers by the MIoTDs [8], [9] through wireless
connections. The mobile devices offload their microservices
at the network edge, while maintaining low microservice
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latency. Since the edge servers are deployed on a small
scale at the network edge, the resource and computation
capabilities are typically limited compared to the central
cloud servers. The advancement of the MEC platform [10],
[11] provides the improvement of scalability, minimized mi-
croservice execution delay, and optimal resource utilization
over conventional cloud platforms. However, in real life, a
dedicated MEC platform is not alone sufficient to support
a variety of real-time mobile microservices [12]–[15]. Hence,
the edge computing platform was eventually supported by
a remote cloud computing platform via the Internet in order
to offload some of the applications to remote cloud servers
according to their application requirements. On the other
hand, the interactions between multiple MEC platforms
in order to help the MIoTDs to offload and share their
computation microservices with optimized microservice ex-
ecution delay, maximizing resource utilization, and network
throughput [16].

In MEC, a natural problem is deciding the location and
time to offload the microservices from MIoTDs. One may
offload their computational microservices either to an edge
server or remote cloud server based on their application
types. However, the MIoTDs need to choose between the
edge or remote cloud platform based on their application
requirements, such as, microservice execution delay, com-
putational power, and resource requirement. Along with
it, the edge and remote cloud servers need to identify,
which microservices should be offloaded and served first
from the microservice pool. In MEC, the microservices
are offloaded while following the First-Come-First-Serve
scheme. However, due to the resource-hungry characteris-
tics of the MIoTDs, it is necessary to provide fair resources
to them in order to process and offload the heterogeneous
microservice-based applications in real-time. In addition,
massive connectivity and emerging applications affect the
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data transmission process in MEC, which eventually makes
the edge devices* more resource-constrained in the era of
IoT [17], [18]. To offload the online microservices, MIoTDs
need to set a budget plan for resource allocation (e.g., radio
and computing resources) so as to migrate the computa-
tional tasks to the edge server. As a result, MIoTDs may
decide to process their tasks locally instead of remotely
processing if they do not gain enough utility from the
edge computing platform. Hence, it is highly requisite to
investigate an efficient incentive mechanism to persuade
increased participation of MIoTDs and to maximize the
achieved profit.

In real life, the computational microservices provided by
the mobile edge devices usually have different and resilient
resource demand requirements based on several aspects
(e.g., poor communication link, lack of optimal demand
estimator, external noise). Therefore, the microservice of-
floading process becomes quite unreliable and eventually
affects the network throughput along with the microservice
execution delay. Thus, it is extremely important to design
an optimal and resilient demand estimation scheme for
the proper estimation of resource demand requirements for
MIoTDs. The MEC platform utilizes the demand estimation
scheme in order to capture the demand-agnostic property
of each individual MIoTD, so that their dynamic and even
conflicting demands can be profitable for them. In the MEC
platform, the demand estimation and incentive microser-
vice offloading mechanism are eventually associated with
each other. Here, the resilient demand estimation scheme
generally communicates with the incentive microservice
offloading process, which inherently influences its design
specifications and model. Most likely, if the demand esti-
mation scheme approximates edge devices’ demand in a
truthful manner and the demand of each device is given
the same importance, then the incentive mechanism does
not require discriminating them based on their demands.

Due to the paramount significance of encouraging in-
volvement and profit level, we propose an incentive mech-
anism for microservice offloading in MEC. However, most
of the offloading mechanism in the existing literature does
not estimate and design any incentives for MIoTDs par-
ticipating in the offloading mechanism. Here, we consider
a situation, where multiple MIoTDs offload their compute
services to edge servers to increase the overall performance
of the MEC platform. In a practical scenario, there usually
exists multiple MIoTDs contending for available resources,
who usually offload computational power to edge servers
based on their demand requirements that have already
been estimated by using an optimal and resilient demand
estimator. Hence, in this paper, we concentrate on such a
MEC platform where three individual modules, including
the MIoTDs, a MEC platform, as well as an optimal and re-
silient demand estimator synchronized, and desire to design
an incentive mechanism that may determine which MIoTD
offloads their computational power to edge servers in what
price.

With regard to different existing work, [19]–[40], we
come up with a novel microservice Incentive Service Of-
floading (mISO) framework of MEC platform for multiple

*. We use MIoTD and edge devices interchangeably in the paper.

edge devices, which consists of a resilient demand estima-
tion scheme that takes into consideration of edge devices’
various demand. The proposed framework also includes
an incentive mechanism that offloads the computational
microservices of edge devices to edge servers. More impor-
tantly, mISO’s incentive mechanism is designed to apply the
double-auction mechanism [41]–[43]. Here, both the edge
devices and servers participate in the auction mechanism.
The primary contributions of this paper are listed below.

• Unlike the existing works, we propose a novel in-
tegrated framework for the MEC platform consid-
ering the participation of different users (i.e., edge
devices), named mISO, comprised of a demand es-
timation and an incentive mechanism. Such kind of
integrated mechanism design is very much more in-
tricate and challenging than modeling them individ-
ually, as it acquires the bilateral interaction between
the two individual mechanisms.

• mISO incorporates an incentive double auction-
based mechanism for MEC, which enables the in-
volvement of both mobile edge users and microser-
vice providers. It also follows several important and
essential features, such as, truthfulness, efficient com-
putational complexity, independent rationality, and
optimal social welfare.

• The demand estimation approach of mISO takes
into consideration the resource-agnostic behavior of
mobile edge devices, and provides higher accuracy
in results. We validate the efficiency of our mISO
framework through various simulation results and
evaluate the impact of resource allocation and mi-
croservice execution delay.

We organize the paper into the following sections. Section 2
discusses the existing works on MEC and microservices,
followed by the problem statement and the system model
in Section 3. We formulate a demand-aware incentive mech-
anism for microservices in Section 4. Section 5 illustrates
the simulation results. Finally, we conclude this paper and
highlight some promising directions for future research in
Section 6.

2 RELATED WORK

2.1 Incentive and Offloading Mechanism at Edge
Due to the paramount importance of minimizing delay for
mobile edge devices, the research community has recently
developed various incentive and offloading mechanisms for
the MEC platform. Gao et al. [19] proposed a two-stage al-
gorithm for computation offloading in MEC systems. While
the first stage is to decide the offloading ratio of mobile
users, the latter stage is to find the optimal processing order
for the offloaded tasks, which is solved by an aggregative
game approach. In [20], a pricing framework was proposed
to allocate a set of heterogeneous computing resources to
different services. Both centralized and distributed solutions
are proposed, and all the solution approaches can converge
to a market equilibrium point. In [21], Zhang et al. adopted
the cooperation between cloud and edge computing to
devise a wholesale-buyback scheme. Similar to [20], two
scenarios are considered, one to optimize social welfare and
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Table 1: A synopsis of recent related works on edge computing and microservices

Work Demand-Agnostic Incentive Welfare Latency Profit Level
Samanta et al. [32], Nguyen et al. [20] ✗ ✓ ✓ ✓ ✗

Gao at al. [19], Zhang et al. [21], ✗ ✗ ✗ ✓ ✗

Ma et al. [22], Wang et al. [23], Liu et al. [24] ✗ ✓ ✓ ✗ ✗

Joseph et al. [33], Bao et al. [34] ✗ ✗ ✗ ✗ ✗

Wang et al. [35], Abdullah et al. [36], [37] ✗ ✗ ✗ ✓ ✓

Our Solution (mISO) ✓ ✓ ✓ ✓ ✓

the other to optimize the net profit. Another pricing scheme
for edge-cloud computing systems can be found in [22],
where a resource provisioning algorithm is proposed based
on the piecewise convex optimization technique. The use of
auction theory for incentive-based resource optimization in
MEC systems was investigated in [23]. In [24], the microe-
conomic theory was employed to design a low-complexity
pricing mechanism for MEC systems. In [25], Hou et al.
adopted a metaheuristic, namely particle swarm optimiza-
tion, to optimize the reliable computation offloading prob-
lem in edge computing and software-defined networking-
empowered IoV systems. Applications of game theoretic
approaches (matching theory and coalitional game) for com-
putation offloading in MEC systems were considered in [26],
[27]. Two problems of edge user allocation were studied in
[28]: one to maximize the number of satisfied users and
the other to minimize the number of edge servers. Due
to the NP-hardness of these problems, Lai et al. [28] pro-
posed heuristic approaches to obtain suboptimal solutions
with low computational complexity. In [29], the collabora-
tive caching problem in ultra-dense networks was studied,
which is solved by the graph coloring method and parallel
Gibbs sampling. Li et al. [30] used Lyapunov optimization to
solve the trusted computation offloading problem in MEC
systems. Samanta et al. [31] designed a delay-agnostic mi-
croservice offloading method for MEC systems to minimize
microservice latency.

2.2 Microservice Selection and Resource Allocation

Besides studies on incentive design and offloading deci-
sions, many have focused on the problem of microser-
vice selection and resource allocation in edge computing
systems. Samanta et al. [32] first considered a scenario in
which edge computing resources are not always available
and then devised an auction-based scheme to spare the
resources allocated to some microservices. Further, an online
incentive scheme was proposed to avoid dependency on
future bids and requests. The microservices allocation and
scheduling problems were studied in [33], [34], in which
several heuristic algorithms are proposed to obtain efficient
solutions. Exploiting the fact that the collaboration between
edge hosts can enhance microservices, a delay-aware coor-
dination problem was considered in [35]. To solve this prob-
lem, dynamic programming, and reinforcement learning are
used to achieve the optimal solution and online solution,
respectively. To better improve the quality of service (QoS)
of microservices, [36], [37] proposed predictive autoscaling
mechanisms by taking into account the busty particulari-
ties of dynamic computational tasks. Another autoscaling

method can be found in [38], where Bayesian optimization
is used jointly with a heuristic approach to obtain the
service scale solution. In [40], the microservice orchestra-
tion problem was studied under uncertainty, security, and
QoS requirement constraints. The proposed genetic method,
namely GA-Par, is shown to outperform a greedy method
42.34% while converging 4x times faster than an existing
genetic approach.

Figure 1: Basic MEC architecture with mISO components.

Synthesis. Unlike most of the aforementioned existing
works, which only concentrated on minimizing microser-
vice execution delay and energy consumption for offloading
mechanism. These existing works are not deemed to fit for
microservice-enabled edge platforms, as microservice have
different unique characteristics than normal monolithic ser-
vices. For easier understanding, we provide a comparative
study with different existing works in Table 1. In this work,
we come up with a novel double auction-based incentive
mechanism for the MEC platform in the presence of hetero-
geneous edge devices and edge servers, which participate in
the process of getting a fair amount of resources. This is one
of the preliminary works to design and model an incentive
mechanism for the MEC platform. In addition, existing
works also did not consider any resilient demand estimation
and incentive microservice offloading scheme, which is very
tough to model efficiently while maximizing the network
performance. Our work considers integrating these two
modules, demand estimation and incentive scheme, into
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a holistic framework. Here, we consider multiple devices
that try to migrate their computational tasks to edge servers
based on their demand requirements.

3 SYSTEM MODEL

3.1 High-Level Scenario
At a high level, this paper addressed the problem of of-
floading microservices to edge servers through MEC ar-
chitecture. The microservice offloading is modeled using
the double-auction theory to design an incentive mecha-
nism to provide optimal profits to both the MEC platform
and edge users. To design such an intensive mechanism,
first, we identify the types of microservices at the edge
platforms and then estimate the demands to execute the
microservices after offloading to edge servers. Then, we
design offloading algorithms to provide better scalability,
utilization, and profit level. mISO has two main components
– (a) a demand estimation scheme and (b) an incentive
approach to provide profit to edge devices. Referring to Fig.
1, the system includes a MEC server located at the MEC
gateway that gathers data from all IoT devices. Here, the
proposed algorithm is implemented at the MEC gateway
as a function. For example, if the MEC gateway is an SDN
switch, the proposed algorithm can be deployed as a third-
party application running on the controller. To estimate the
demand for microservices, we need to know what kind of
microservices (critical or non-critical) need to be offloaded
to edge servers. To identify that, we propose a microservice
identification mechanism described in Section 3.3. Then, we
have a demand estimator (in Section 4.1), which is responsi-
ble for estimating the resources to offload the microservices
to edge servers. After that, we present an incentive approach
(in Section 4.2), which provides a profitable microservice
offloading mechanism to improve performance in terms of
latency and social welfare.

3.2 Problem Statement
Here, we discuss the proposed system model, offloading
mechanism, auction model, and main design objectives. We
have listed important parameters in Table 2. We design
an mISO scheme consisting of a MEC platform, a set of
edge devices, M = {M1,M2, · · · ,MK} and a set of edge
servers, F = {F1, F2, · · · , FN}. Each MIoTD Mj ∈ M has
a computational microservice λj to be executed by the edge
servers. Each of the servers is designed to serve a set of
microservices. The set of microservices from all MIoTDs
is denoted by λ̄ = {λ1, λ2, · · · , λK}. The MIoTDs release
the real-time microservices following Poisson’s distribution
in different time instants. Here, we consider tj as the of-
floading time of the microservice λj . The edge device will
dispatch microservice to an edge server immediately after
its release. We assume that the servers are not allowed to
migrate a microservice from one server to another server in
order to overcome the system and migration overhead. We
consider a scenario in which each MIoTD is comprised of a
set of different binary computational microservices C, where
first we need to identify the microservice classes locally, and
then we need to offload the microservices to edge servers.

Each microservice λj is associated with a unique criti-
cality tag hj ∈ {+O,−O}, which is unknown to the edge

Table 2: Table of Notations

Parameters Values
M Set of edge devices
F Set of edge servers
λ̄ Set of microservices
Sj Offloading cost
βi Edge servers bidding price
O Criticality index of microservices
Θ Label to identify the microservices
G Demand of edge devices
I Capacity of edge servers
α Bidding profile of edge devices
β Bidding profile of edge servers
UM
j Utility function for edge device

UF
i Utility function for edge server

Plev Profit level
Wj Offloading decision metric
YM Winning edge device set
YF Winning edge server set

devices, the designed platform, and the edge servers. O
represents the critically index of microservices, where +O
denotes the microservice with maximized resources and
−O denotes the microservice with limited resources. If an
edge device selects a microservice λj to offload it to edge
servers, then the edge device will provide a tag hij to
the designed platform. We design a matrix H = [hij ] ∈
{+O,−O,Θ}N×M , which contains all the labels of edge
devices. Here, hij = Θ denotes the label to identify that
microservice λj is not offloaded by edge device Mj . Each
device Mj has a different and unique demand Dj to offload
their microservices optimally. For each microservice λj , the
designed platform accumulates the labels of different edge
devices into an accumulated result denoted as h̄j . In Fig-

Figure 2: Detailed functionalities of mISO framework and
its components.

ure 1, we have an overall infrastructure of an edge comput-
ing platform with the main components of mISO, and the
overall architectural view of mISO is shown in Figure 2. In
Figure 2, we have detailed functionalities and components
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of mISO, where the numbers define the occurrence of corre-
sponding events. In the figure, the rectangular color boxes
represent the different layers, such as light blue representing
the edge servers layer, light yellow representing the edge
platform layer, and light orange color representing the edge
devices layer. They interact with each other through the
components in each layer. At first, the demand for edge
devices is estimated to know the resource requirements
of microservices. Then, the edge devices submit their bids
to offload the microservices to edge servers. The incentive
mechanism provides a profitable microservice offloading
mechanism to improve the overall performance in terms of
latency and social welfare.

Resilient Demand Estimation. The demand response of
edge devices is very important to estimate the demand pro-
file of different microservices. As the demand response of
edge devices changes frequently; therefore, we consider this
as demand-agnostic property. The demand response of edge
devices is dependent on the packet processing demands
and also the capacity of edge servers. The demand of edge
devices is denoted as G = {G1, G2, · · · , GK} and also the
capacity of edge servers is denoted as I = {I1, I2, · · · , IN}.
We estimate the demand response of edge devices and also
the capacity of edge servers in (Section 4.1).

Incentive Mechanism. At first, in a double-auction mech-
anism, each edge device Mj provides the corresponding
microservice λj to the designed platform for efficient mi-
croservice offloading, and a bid αj , the amount which is to
be paid if a microservice is offloaded efficiently. Thereafter,
the designed platform reports the set of microservices λ̄ to
edge servers. After getting the set of microservices λ̄, each
edge server Fi collects the set of microservices from the
designed platform in order to execute them, such as, γi ∈ λ̄.
The edge servers also submit a bid βi to execute the mi-
croservices efficiently. After receiving the bids, the incentive
module in the designed platform decides the set of success-
ful edge devices YM, set of successful edge servers YF , the
remittance pMj charged from each successful edge devices
Mj , and the payment pFi paid to each successful edge
server Fi. The unsuccessful edge devices’ microservices do
not get executed, hence they do not submit any payment.
Likewise, unsuccessful edge servers do not get any pay-
ment, as the edge devices do not offload any microservice.
Thereafter, the designed platform accumulates the executed
microservices submitted by the edge devices and collects
the accumulated results. Then, the accumulated results are
sent to the successful edge devices for further process-
ing. Here, we consider two different bidding profiles for
edge devices and servers denoted as α = {α1, α2, · · · αK}
and β = {β1, β2, · · · βN}. Further, we also consider two
payment profiles for edge devices and servers denoted as
pM = {pM1 , pM2 , · · · pMN } and pF = {pF1 , pF2 , · · · pFK}.

3.3 Microservice Identification

Before edge devices Mj submit their available microservice
λj to a designed platform, the microservices are associated
with a random variable Cj in order to identify their classes.
Here, we consider three kinds of microservice classes -

critical, normal, and background†. Hence, we define the mi-
croservice label for each microservice of an edge device in
Def. 1.

Definition 1. (Microservice Label). An edge device Mj ’s mi-
croservice label Θj of microservice λj for edge server Fi is defined
as the probability that an edge device is associated with a correct
criticality label for a microservice. Mathematically,

Φij = Pr[Hij = hj ] ∈ [0, 1]. (1)

Here, we define a microservice label matrix for edge server denoted
as Φ = [Φij ] ∈ [0, 1]K×N .

Here, the platform could obtain microservice classes by
following the discussed approach. If the value of Φij is
closer to 1, i.e., Φij ≈ 1, then the microservice class is
associated with the critical microservice class. Similarly, if
the value of Φij is closer to 0.5, i.e., Φij ≈ 0.5, then the mi-
croservice class is associated with the normal microservice
class; otherwise, it is associated to the background microser-
vice class. We modeled our platform in a way that after
edge devices submit their microservices to the platform, the
platform perceives the microservice label matrix a priori and
also stores the previous values in the record. In practice,
edge devices tend to have similar microservice labels for
similar kind of microservices, the platform provides this
information to edge servers for different microservices with
different unique microservice labels, and consider edge
devices’ identities to calculate their microservice labels of
similar microservices.

3.4 Double-Auction Mechanism

In this paper, we set to design a framework where both
the edge devices and servers are considered to be strate-
gic, which focuses on the maximization of their individual
utility values. mISO considers a double-auction mechanism,
where both the edge devices and microservices are involved
in this process. We employ the double-auction mechanism,
as defined in the following definition.

Definition 2. For the double-auction mechanism of our MEC
platform, edge device Mj gets a value Rj if a microservice
λj is successfully offloaded and bids to the designed platform
αj . αj is the amount that the edge device is willing to pay
for a successful microservice offloading. Each edge server Fi is
interested in offloading one subset of the microservices γi ∈ λ̄,
and bids to the designed platform βi. βi is the edge server bidding
price for offloading all the microservices. The real offloading cost
for offloading to the servers γi is denoted as Si (calculated using
the formulation in [18]). Here, in mISO, both the edge devices’
and servers’ bids are hidden from the designed platform.

Here, we consider the utility functions for edge devices
and servers. Also, we define the profit level of a designed
platform in Def. 3, 4, and 5.

†. Some of the examples of different microservices: critical (i.e., aug-
mented reality (AR)), normal (general sensor data), and background
(updates).
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Definition 3. (Device Utility). The utility function UM
j for an

edge device Mj is defined as:

UM
j =

{
Rj − pMj , Mj ∈ YM,

0, otherwise.
(2)

Definition 4. (Server Utility). The utility function UF
i for an

edge server Fi is defined as:

UF
i =

{
pFi − Si, Fi ∈ YF ,

0, otherwise.
(3)

Definition 5. (MEC Platform Profit). The profit level for the
designed MEC platform is defined as:

Plev =
∑

j:Mj∈YM

pMj −
∑

i:Fi∈YF

pFi . (4)

Depending on the above definitions, we formulate the
social welfare of MEC platform.

Definition 6. The social welfare of the MEC platform is expressed
as:

Swel = Plev +
∑

j:Mj∈M
UM
j +

∑
i:Fi∈F

UF
i (5)

=
∑

j:Mj∈M
Rj −

∑
i:Fi∈F

Si. (6)

Here, social welfare is defined as the summation of the
designed MEC platform’s profit levels and all edge devices’
and servers’ utility values.

3.5 Design Goals

Here, we design mISO in such a way that it carries the
following beneficial properties. As the edge devices are
selfish and strategic for mISO, hence it is considered that
every edge deviceMj provides a bid αj that differs fromRj ,
which is the actual value for the microservice λj . Further-
more, edge server Fi may also send a bid βi that is different
from Si which is the total cost of offloading and executing
all the microservices γi. Hence, the main goal is to construct
an incentive mechanism explained in Def. 7.

Definition 7. The mISO double-auction mechanism can be
considered to be truthful as long as the bidding Rj and Si is
a dominant strategy for edge device Mj and server Fi, i.e., the
bidding strategies Rj and Si, maximize the utility of edge device
Mj and server Fi, nevertheless of other edge devices’ and servers’
bids.

Using the formation definition, we focus on securing
truthful bids to the designed platform from both edge
devices and servers. Along with truthfulness, another im-
portant goal is individual rationality, as discussed in Def.
8.

Definition 8. The mISO double-auction mechanism is considered
to be individually rational, if and only if none of the edge devices or
servers acquire any kind of negative utility values, i.e., UM

j ≥ 0,
and UF

i ≥ 0, for each edge device Mj and server Fi, respectively.

To encourage the participation of both the edge devices
and servers in the auction mechanism, individual rationality
is a powerful property as it guarantees that the bill to an

edge device is smaller than its submitted bid, and an edge
server’s offloading price is also articulately remunerated.
As the edge servers aggregate their microservice labels to
secure the accumulated results so that they can be consid-
ered to be accurate in the edge platform, discussed in Def.
9.

Definition 9. A microservice λj is offloaded with Kj-accuracy
given the condition Pr[H̄j ̸= hj ] ≤ Kj , where Kj ∈ (0, 1), and
H̄j defines the arbitrary value denoting the accumulated outcome
for microservice λj .

From the Def. 9, Kj-accuracy provides the accumulated
outcome equivalent to the true microservice label with the
higher probabilistic value. For each edge microservice, λj ,
Kj is a parameter selected by the designed platform, and
a small value of Kj signifies an important specification
of the accuracy level. Briefly, here the main goal is to
provide adequate microservice labels to edge servers with
higher accuracy for all offloaded edge microservices and
also encourage involvement in the incentive mechanism for
both edge devices and servers while considering individual
rationality and truthfulness.

4 MATHEMATICAL FRAMEWORK

In this section, mathematical models for the resilient de-
mand and incentive mechanism of mISO are discussed.

4.1 Resilient Demand Estimation
This section introduces a resilient demand estimation ap-
proach and also analyzes its theoretical aspects.

4.1.1 Proposed Approach
The resource demand vector for edge device Mj is obtained
by multiplying its bandwidth demand (in packets/s) by
per-packet processing demands (in resource/packet) and
is denoted as < DR1,V1

, DR2,V2
, · · · , DRj ,Vj

>, where Rj

denotes the bandwidth demand of microservice λj and Vj
denotes the processing demand of microservice λj .

Definition 10. The demand response Gj of edge device Mj is
mathematically expressed as:

Gj =
F∑

q=1

hRjDRj ,VjZfqLfq

Cfq

. (7)

where hRj
denotes the resource flow for microservice λj , Zfq

denotes the microservice flow constraint, Lfq denotes the weight of
a microservice flow fq , and Cfq denotes the total resource capacity
of a microservice flow fq .

The capacity vector for edge server Fi is defined as <
I1, I2, · · · , IF >. The capacity of a server is depended on the
initial load of the server and the total allocated bandwidth to
the virtual machine (VM) for in and out microservice flows.

Definition 11. The capacity Ii of an edge server Fi is mathemat-
ically defined as:

Ii = Lini +

(
ηBin

i + ζBout
i

Btot
i

)
, (8)

where Lini denotes the initial load of an edge server, Bin
i and Bout

i

denote the bandwidth allocated to VMs for inflow and outflow
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microservices, η and ζ denote the binary factor for bandwidth
allocated to VMs for inflow and outflow microservices, and Btot

i

denotes the total bandwidth available for server Fi.

Definition 12. The offloading decision metric Wj for an edge
device Mj is defined as:

Wj(Ii, Ej) =
1

Ej

(
Ii −

Ajχjfj
J cap
j

)
, (9)

where Aj denotes the microservice flow constraint for microser-
vice λj , χj denotes the microservice flow rate for microservice λj ,
J cap
j denotes the capacity of an edge device Mj , Ej denotes the

offloading capacity and fj denotes the dedicated flows.

Hence, we have designed an optimization problem for
efficient microservice offloading in MEC. Mathematically,

max
K∑
j=1

Wj(Ii, Ej) =
K∑
j=1

N∑
i=1

1

Ej

(
Ii −

Ajχjfj
J cap
j

)
(10)

subject to Ii < Ith, i ∈ N (11)
Ej ≥ Eth, j ∈ K (12)
χj ≥ Sth, j ∈ K. (13)

Here, Eq. (11) implies that a load of edge server Ii is to
be less than the threshold load of an edge server Ith. The
offloading capacity of edge device Ej is required to be larger
than the threshold offloading capacity Eth, as indicated
in Eq. (12). Eq. (11) represents that the microservice flow
rate χj needs to be higher than the threshold microservice
flow rate‡ Sth. Applying the duality technique to solve the
problem (13), the Lagrangian function is mathematically
given as follows:

Lj =
N∑
j=1

▽j

Wth(Ii, Ej)
Lj(Ii, Ej)− A1

( K∑
i=1

Ii − Ith

)

− A2

( N∑
j=1

Ej − Eth
)
− A3

( N∑
j=1

χj − Sth

)
, (14)

where A1, A2 and A3 are the Lagrangian dual variables and
▽j indicates the priority index of edge devices based on the
application types.

4.1.2 Theoretical Analysis

Here, we theoretically analyze the offloading decision metric
for MEC.

Theorem 1. The offloading metric, Wj(Ii, Ej), in Definition (12)
is continuous over the interval 0 < Ej < Emax.

Proof. Let, the offloading metric, Wj(Ii, Ej), a real valued
function designed on a subset of, ξ, of real number, R.
Specifically, ξ ∈ (ψ, Emax), where ψ > 0. We assume that
there exists a ξ > 0, such that for all Ej ∈ ξ, and δ0 ∈ ξ , the
inequality |Ej − δ0| < ξ. Therefore, we get,

|Wj(Ii, Ej)−Wj(Ii, δ0)| =
∣∣∣∣δ0 − Ej

Ejδ0

(
Ii −

Ajχjfj
J cap
j

)∣∣∣∣
‡. As the microservices are comprised of small tasks, therefore there

has data dependency among tasks hence we consider a data flow rate
between the tasks.

⇒ |Wj(Ii, Ej)−Wj(Ii, δ0)| =
∣∣∣∣δ0 − Ej

Ejδ0

(
Ii −

Ajχjfj
J cap
j

)∣∣∣∣
⇒ |Wj(Ii, Ej)−Wj(Ii, δ0)| = Ξ (15)

where Ξ =
δ0−Ej
Ejδ0

(
Ii − Ajχjfj

J cap
j

)
. As Ej ∈ (ψ, Emax), ∀j ∈

(1, N), all the terms in Eq. (15) are positive. Hence, Ξ >
0. Therefore, we conclude that Wj(Ii, Ej) is a continuous
function over the range (ψ, Emax), where ψ > 0. Hence, the
proof concludes.

Lemma 1. The offloading mechanism is loss-less in nature for
edge devices in the MEC platform.

Proof. The offloading mechanism is lossless in nature. To
prove that, we have introduced a loss-less metric as:∑

Mj′ ∈ M̂ | ∃Mj′′ ∈ M̄,Wj′(Ii, Ej) >Wj′′(Ii, Ej).
(16)

where M̂ and M̄ are the set of critical edge devices and
the set of the remaining edge devices of the maximal subset,
respectively, M̂∪M̄ = M. We use the method of contradic-
tion to prove the statement. We consider ∃Mj ,Mj′′ in which
Eq. (16) holds true. Thus, (Lj′ > Lj′′ ). We have,

M−{Mk}+{Ml}∑
j′=1

Lj′(Ii, Ej) >
M∑

j′′=1

Lj′′(Ii, Ej). (17)

However, L(Ii, Ej) is maximized, where ∀Mk ∈ M̂,Ml ∈
M̄. Thus,

K∑
k′=1

▽k′

∑M−{Mk}+{Ml}
j′=1 Lj′(Ii, Ej)

Uth(S,Zi)
>

K∑
k′′=1

▽k′′

∑M
j′′=1 Lj′′(Ii, Ej)
Uth(S,Zi)

. (18)

Derived from Eq. (18), we have,

K̄∑
j′=1

Lj′(Ii, Ej′) >
K∑

j′′=1

Lj′′(Ii, Ej′′). (19)

In other words, mathematically, we get,

K̄∑
j′=1

Ej′ >
K∑

j′′=1

Ej′′ (20)

⇒
K̄∑

j′=1

Wj′(Ii, Ej′) >
K∑

j′′=1

Wj′′(Ii, Ej′′). (21)

Thus, the offloading decision metric ∄Wj′(Ii, Ej′) >
Wj′′(Ii, Ej′′) thereby disproving our assumption. The of-
floading mechanism is lossless in nature for edge devices.
Hence, the proof concludes.

Theorem 2. The online offloading mechanism is competitive in
nature for real-time edge applications.

Proof. To show competitiveness, we have considered the
dual technique to solve the original problem. To analyze
the online algorithms [44], the dual fitting and main-dual
approach techniques have been modeled. We introduce dual
variables A1, A2 and A3 for the first three constraints in
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Eq. (10). Let W denote the set of Wj(Ii, Ej) that satisfy the
three constraints Eq. (10). However, using the dual function,
we have,

L(A1,A2,A3) =
N∑
j=1

▽jLj(Ii, Ej)
Wth(Ii, Ej)

− A1

( K∑
i=1

Ii − Ith

)

− A2

( N∑
j=1

Ej − Eth
)
− A3

( N∑
j=1

χj − Sth

)
, (22)

L′(A1,A2,A3) = max
∑

Wj∈W̄

(
N∑
j=1

▽jLj(Ii, Ej)
Wth(Ii, Ej)

)

− A1

( K∑
i=1

Ii − Ith

)
− A2

( N∑
j=1

Ej − Eth
)

− A3

( N∑
j=1

χj − Sth

)
. (23)

where W̄ denotes the set of offloading decision metric and
L′(A1,A2,A3) denotes the maximum value of L(A1,A2,A3).
As stated in [45], we used the weak duality theorem, the
function of the weak duality theorem capitulates a maxi-
mum limit on the optimal solution of the main proposed
problem for any A1 ≥ 0, A2 ≥ 0, and A3 ≥ 0. The main
idea of the dual fitting is to set dual variables (A1,A2,A3)
based on the values of the primal variables W̄ resolved
by an online approach with deterministic value such that
L′(A1,A2,A3) ≤ ΛF̄ (W̄) for some Λ ≥ 1, which expresses
that this online approach is competitive. The proof ends.

4.2 Incentive Mechanism for Microservice Offloading
We discuss the design specifications of mISO’s incentive
mechanism considering its mathematical model. We also
prove the NP-hardness for the proposed approach, while
providing the necessary theoretical analysis.

4.2.1 Design Details of Microservice Offloader
As discussed in Section 3.4, the incentive mechanism for
mISO is described in Def. 2. Here, we envision modeling
an optimal double auction mechanism, which maximizes
social welfare and also provides satisfactory demand for
edge devices.

Social-Welfare Maximization. We mathematically defined
the winner selection scheme through a double-auction
social-welfare maximization approach. Mathematically,

max
∑

j:λj∈λ̄

αjΦj −
∑

i:Fi∈F
βiΨi, (24)

subject to Gj ≤ Gth,Mj ∈ M (25)

Ψi,Φj ∈ {0, 1},∀Fi ∈ F , λj ∈ λ̄ (26)
Ej ≥ Eth, j ∈ K. (27)
Wj >Wth,Mj ∈ M (28)

Constants. Here, mISO captures several parameters as
inputs: set of microservices λ̄, set of edge servers F , bidding
profile of edge devices’ and servers’ α and β, concerned mi-
croservice profile set of edge servers’ γ = {γ1, γ2, · · · , γN},
microservice label matrix H , and K̄ vector.

Variables. Here, Φ = (Φ1,Φ2, · · · ,ΦN ) denotes the bi-
nary factors for incentive mechanism. Here Φi = 1 de-
notes that microservice λi will be offloaded and executed,
and thus, edge device Mj is a winning edge device (i.e.,
Mj ∈ YM ), whereas Φi = 0 denotes Mj ̸∈ YM . Similarly, the
mechanism considers another vector of K binary variables,
Ψ = (Ψ1,Ψ2, · · · ,ΨK), where Ψi = 1 indicates that edge
server Fi is a winning edge server (i.e., Fi ∈ YF ), and Ψi = 0
means Fi ̸∈ YF .

Main Function. The designed main function satisfies
that

∑
j:λj∈λ̄ αjΦj −

∑
i:Fi∈F βiΨi =

∑
j:Mj∈YM

αjΦj −∑
i:Fi∈YF

βiΨi it is basically the social welfare discussed in
Def. 6 considering the edge devices’ and servers’ bids.

Constraints. Eq. (24) describes the main objective function
and Eq. (25) represents that the demand response of an
edge device Gj is to be greater than the threshold demand
response Gth. The offloading decision metric Wj is to be
greater than the threshold offloading metric Wth as shown
in Eq. (26). The offloading capacity of edge device Ej is to be
greater than the threshold offloading capacity Eth as shown
in Eq. (27).

Theorem 3. The incentive mechanism is NP-hard in nature.

Proof. For the designed incentive mechanism, both the pa-
rameters αj and βi are constant. As both the parameters
are constant, hence the mISO incentive mechanism has
identical computational complexity in comparison with a
special case of the mISO incentive mechanism. The special
case of the incentive mechanism is considered to be a binary
linear program for both the parameters αj and βi. Thus,
we prove the NP-hardness of the binary linear program
by a polynomial-time reduction from the minimum weight
set cover problem. We consider an NP-complete minimum
weight set cover problem with a domain of K elements
λ̄ = {λ1, λ2, · · · , λK} and a domain of N subsets γ =
{γ1, γ2, · · · , γN} in order to start the reduction. For each
domain γi ∈ γ has positive weights for both the parameters
αj and βi. The main concern for the minimum weight set
cover problem is to search a subset of γ with the minimum
weight value. The subset equivalents to the unions of λ̄.
Next, we modify γi to γ′i where each element λi ∈ γj has
Γi,j ∈ +ג samples and essential to cover Aj ∈ +ג instants for
each element λj . Then, for an instance of the binary linear
program with E = [Γi,j ] ∈ K×N(+ג) , E = [Aj ] ∈ ,K×1(+ג)
and payment profiles for edge devices and servers α and α
is generated. Hence, the main problem is illustrated by the
binary linear program through the elements in E and E. The
values of E and E are considered to be positive real numbers
besides positive integers. Therefore, the mISO incentive
mechanism is polynomial-time reducible to the binary linear
program, and it proves the NP-hardness. Moreover, as the
binary linear program is a special case of the mISO incentive
mechanism, thus mISO incentive mechanism is also NP-
hard.

4.2.2 Offloading Algorithm Design
According to Theorem 3, the optimization problem is shown
to be NP-hard. It also indicates that there is a need for
an efficient algorithm, which provides a guaranteed ap-
proximation ratio. Hence, we provide an mISO incentive
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Algorithm 1: Winner Selection for Incentive Mecha-
nism

Input: λ̄,M, F , α, β, Rj , γ, G.
Output: YM, YF , C

1 YM ← ϕ and YF ← ϕ;
2 C← OFC(λ̄,γ,G);
3 for each j s.t. λj ∈ λ̄ do
4 Cj ← {Fi|Fi ∈ C, λj ∈ γi};

5 while maxj:Mj∈M(αj −
∑

i:Fi∈Cj
βi) ≥ 0 do

6 j∗ ← arg maxj:Mj∈M(αj −
∑

i:Fi∈Cj
βi);

7 each device M gets a value Rj = 1;
8 YM ← YM ∪ {M∗

j };
9 M←M/{M∗

j };
10 YF ← YF ∪ Cj ;
11 if each j s.t. Mj ∈ M and Rj == 1 then
12 Cj ← Cj/C∗

j ;

13 Return YM, YF ;

mechanism with a possible approximation ratio, and the
algorithm also guarantees positive social welfare for the
edge devices and servers.

We discuss the incentive winner selection algorithm for
MEC in Alg. 1. The inputs of the Alg. 1 are a set of edge
devices M, a set of edge servers F , a set of microservices
λ̄, bidding profile of edge devices α and servers β, set of
concerned microservices for edge servers γ, demand profile
of edge devices G. First, we initialize the set of edge devices
M and F servers to ψ. Thereafter, we calculate the optimal
feasible cover set (OFC)§ C, which considers the set of edge
servers to provide the feasibility of constraint (25) for each
microservice λi. We call another function OFC to provide
the feasible cover, it takes the inputs: set of microservices
λ̄, set of concerned microservices for edge servers γ, and
demand profile of edge devices G. We implemented the
function in polynomial time for edge devices and servers.
As an example, the edge server Fi gets selected into the
optimal feasible cover set by the OFC function based on
the decreasing value of

∑
j:λj∈γi

Gj , while satisfying all the
constraints.

The complexity of the OFC function is O(N). Here, the
OFC function considers a greedy approach in this work.
The selection of a particular OFC is not important, since
we get a feasible cover in polynomial time. Thereafter, we
choose a feasible cover for the set of edge server Cj for
each microservice λi whose concerned server sets include
this microservice. Depending on the value of C, we select
the set of winning edge devices and servers which assign
positive social welfare. The process gets terminated till it
exceeds arg maxj:Mj∈M(αj −

∑
i:Fi∈Cj

βi), the maximum
social welfare of considering a new edge device Mj and the
set of edge servers Cj , and the winning edge devices and
server set get non-positive values, respectively. Each device
M gets a value Rj = 1. For each step, we find the very first
index j∗ of the edge device Mj∗ which gives maximum
social welfare. Then, we incorporate Mj∗ into the winning
edge device set YM, also discard Mj∗ from the edge device
set M, and also incorporates all edge servers in Cj∗ into the
winning edge server set YF . At last, it discards all the edge

§. The optimal feasible cover set in the proposed formulation is
a feasible solution that covers all elements to provide the optimal
solution.

Algorithm 2: Pricing for Double-Auction Mechanism
Input: λ̄,M, F , α, β, γ, Rj , G, YM, YF , Si, C

1 . Output: pM , pF

2 pM ← 0, pF ← 0;
3 for each j s.t. Mj ∈ YM do
4 run Alg. 1 onM/{Mj} and F ;
5 Y ′

M ← winning edge device set after line 3;
6 for each k s.t. Mk ∈ Y ′

M do
7 pM

j ← min {pM
j ,

∑
Fi∈C′

j
βi + αk −

∑
Fi∈C′

k
βi};

8 if C′
j = ϕ then

9 pM
j ← min {pM

j , 0};

10 for each i s.t. Fi ∈ YF do
11 run Alg. 1 onM and F/{Fi};
12 calculate the offloading cost Si;
13 Y ′

F ← winning edge server set after line 10;
14 for each k s.t. Fi ∈ C′

k and Mk ∈ Y ′
M do

15 sort edge devices αj −
∑

i:Fi∈C′
j
βi in decreasing order;

16 Ω← index of the first edge server with Fi ̸∈ C′
Ω;

17 if FΩ ∈ Y ′
F then

18 pF
i ← max
{pF

i , αk −
∑

Fh∈C′
k
βh + αΩ −

∑
Fh∈C′

Ω
βh};

19 get the optimized offloading cost Si;

20 else
21 pF

i ← max {pF
i , αk −

∑
Fh∈C′

k
βh};

22 Return pM , pF ;

servers in Cj∗ from Cj for each microservice λj . Then, it
returns the winning edge device and server set YM and YF .

Now, we discuss the pricing policy for the double-
auction mechanism in Alg. 2. It takes the inputs of Alg. 1 and
also takes a few other inputs: winning set of edge devices
YM and servers YF . At first, we initialize the payment vector
of edge devices and servers to 0. Thereafter, we estimate the
payment pMj of every edge device. Then, we perform on the
edge device set M and server set F excluding device Mj ,
for each Mj ∈ YM. We also set the winning edge device
set Y ′M. We also then find the minimum bid value αj,k

for edge device Mj to declare Mk as the winner. This step
continue for each Mk ∈ Y ′M. To get that, αj,k should fulfill
a condition αj,k −

∑
Fi∈C′

j
βi = αk −

∑
Fi∈C′

k
βi, it can be

identical to αj,k−
∑

Fi∈C′
j
βi+αk−

∑
Fi∈C′

k
βi. Also, we get

the optimized offloading cost Si for each j s.t. λj ∈ λ̄ using
Lagrangian multipliers.

The optimal solution of our scheme can be found using a
feasible solution where we get the maximum values of YM
and YF . We get a global optimal solution when there are no
other feasible solutions with values than YM and YF .

Here, C′1,C′2, · · ·C′K denote the sets C1,C2, · · ·CK when
a particular edge device Mk is chosen into Y ′M. When C′j
is non-empty, then the payment pMj is set based on the
minimum value of αj,k’s, otherwise, it should be compared
to 0. As the edge device, Mj can win, until it has a
positive bid. Then, we estimate the payment pFi for each
winning edge server. We perform on the edge device set M
and server set F excluding device Fi, for each Fi ∈ YF .
Next, we also set the winning edge device set Y ′F . Here,
C′1,C′2, · · ·C′K denote the sets C1,C2, · · ·CK when a partic-
ular edge device Mk is chosen into Y ′M. It also estimates
the maximum bid βi,k for winning edge server Fi for each
set C′k, ∀Fi ∈ C′k. We sort the edge servers’ social welfare
in decreasing order based on the value of αj −

∑
Fi∈C′

k
βi

and also discover the index Ω of the very first edge server
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such as way that Fi is not related to C′Ω. When FΩ i a
winning edge server in Y ′F , then βi,k must follow a con-
dition αk − (

∑
Fh∈C′

k
βh + βi,k) = αf −

∑
Fh∈C′

f
βh, it can

be identical to βi,k = αk −
∑

Fh∈C′
k
βh − αf +

∑
Fh∈C′

f
βh.

Thereafter, the payment pFi is set based on the minimum
value of βi,k’s. Lastly, it provides the edge devices pM and
pF servers payment profile.

4.2.3 Offloading Model Analysis
We provide the theoretical analysis of mISO double-auction
mechanism, as depicted in Alg. 1 and 2. First and foremost,
we prove its truthfulness in Theorem 4.

Theorem 4. The designed mISO multi-stage auction mechanism
is truthful in nature.

Proof. In order to the truthfulness of mISO, it needs to satisfy
two conditions – (i) monotonicity and (ii) critical payment.
They are discussed below:

• Monotonicity: The feasible cover property of Alg. 1
is autonomous to edge devices’ and servers’ bids,
and winners can be determined considering a de-
creasing order of αj −

∑
i : Fi ∈ Cjβi. Hence, if an

edge device Mj wins with bidding αj , then it can
also win the auction with bidding any α

′

j > αj .
Furthermore, if an edge server Fi wins by bidding
βj , then the auction mechanism will be won by the
edge server; besides, if the edge server bid considers
any value β

′

j > βj .
• Critical payment: It rewards every winning edge

device and server the infimum and supremum of its
bid, which will be declared as a winner in Alg. 2.

As discussed in [46], these two conditions construct the
auction mechanism truthful, where each edge device Mj

maximizes its utility values by bidding Rj , and each edge
server Fi maximizes its utility by bidding Si. Hence, the
mISO auction mechanism is truthful, and the proof con-
cludes.

Theorem 5. The designed mISO multi-stage auction mechanism
is individually rational.

Proof. From Defs. 3 and 4, the participants who do not win
in the mISO double-auction mechanism, receive zero utility
values. In Theorem 4, every winning edge device Mj bids
Rj , and every edge server Fi bids Si to the designed plat-
form. Furthermore, in order to win the auction mechanism,
they need to pay the infimum and supremum of their bid,
respectively. Therefore, this procedure assured that all the
edge devices and servers attained positive utility values.
Hence, the proposed mISO auction method is individually
rational.

Theorem 6. The complexity of mISO multi-stage double-auction
mechanism is O(K3N +K2N2).

Proof. The complexity of Alg. 1 is O(N), where it considers
a greedy approach to identify the feasible covers set in
line 2. Then, it identify the sets C1,C2, · · · ,CM , which
aborted after KN times in line 3–4. Thereafter, in the worst
case, the main step is aborted after K times. In order to
find the edge devices’ maximal social welfare, it needs

O(K) time, as shown in line 6. For updating the existing
set C1,C2, · · · ,CM , it considers O(KN) iterations. Hence,
the complexity of the main step is O(KN), and the total
complexity is O(K2N). Following Alg. 1, the mISO auction
mechanism runs the pricing algorithm in Alg. 2. Here, the
pricing estimation step for edge devices is aborted after K
times, as described in lines 1–8. The complexity of each
step of the loop is influenced by running Alg. 1. Hence, the
pricing estimation step for edge devices requires O(K3N)
time in Alg. 2 described in lines 1–8. By using the same
procedure, we also estimate the edge servers pricing in Alg.
2, which requires O(K2N2). Therefore, the total complexity
of Alg. 2 is O(K3N +K2N2).

Finally, we introduce the following theorem to prove
that our proposed double-auction-based mISO approach is
guaranteed to have non-negative social welfare.

Theorem 7. The mISO multi-stage auction mechanism ensures
positive optimal social welfare.

Proof. An edge device Mj and server in Cj are chosen
as winning participants when the designating marginal
social welfare αj −

∑
i : Fi ∈ Cjβi can be considered to

be positive, as discussed in Alg. 1. Therefore, the mISO
auction mechanism assures positive social welfare when
the comprehensive social welfare is the summation of all
aforementioned social welfare for each selected new winner
as discussed in Alg. 1. Thus, the proof concludes.

5 EXPERIMENTAL RESULTS

We discuss the experiential setting of the proposed mISO
framework and also benchmarks for the comparison.

5.1 Experimental Setup

We use the following settings to evaluate our proposed
mISO framework, as shown in Table 4. We consider a
network setting composed of 50 devices, they are randomly
scattered in a region of 3 Km × 3 Km [47]–[49]. Each edge
device is placed nearer to a base station, and the ratio of
base stations spans over 20 to 100 meters in most cases. The
edge devices act as sellers, and each seller is connected to
buyers through base stations in that area. Therefore, the of-
floading channel is available to all the sellers nearby. In our
simulation settings, buyers (i.e., edge servers) are randomly
distributed in the edge computing platform. We consider
around 100 edge servers. We consider in our auction mech-
anism that the buyers’ bids are randomly distributed. If the
offloading channel is not available to a seller, then the bid is
considered to be 0. As the offloading channel can be reused;
therefore, sellers can sell their offloading channel to more
than one buyer; hence the bid can be set to higher for sellers.
The compute capacity of the edge servers is 120 GHz, and
the compute capacity of edge devices is 0.9 GHz. The edge
servers are connected through the back-haul network with
a delay coefficient 0.0001 sec/KB [50]. The microservice
offloading time is set to be in the range of 15 − 20 ms. The
microservice compute traffic size is set to 500− 900 KB. The
latency requirements of microservices are set to be within
0.8− 1.2 seconds.
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Table 3: Variation in Experimental Contexts.

Context No. K N Rj Si Θij |γ′i|
I 50 [50− 100] [5− 15] [5− 10] [0, 1] [10− 15]
II [50− 100] [100− 150] [5− 15] [5− 10] [0, 1] [10− 15]

Table 4: Experimental Parameters.

Parameter Value
Base station capability (i.e., bandwidth) 25 MHz
Cycles of microservice tasks 1,500 Megacycles
Microservice deadline (i.e., completion time) [3500, 5500] ms
Microservice resource demand in terms of bandwidth [20, 30] MHz
Transmitter energy of edge device 95 mWatts
Compute capacity of edge users equipped with IoT devices 0.65 GHz
Compute capacity of edge servers 120 GHz
Traffic arrival rate of microservices [0, 15] unit/sec
Compute size of traffic offloaded by microservices 120 Mbits
Microservice arrival rate following Poisson process (size = 1.5 Mbit) [0, 15],

We take an average of 200 runs for all our simulation
results. We consider the following performance metrics for
our simulation results:

• Social welfare is determined through the incentive
microservices get during offloading process.

• Buyer profit level: percentage of microservices that
can get fair resources during offloading process.

• Average demand response during offloading.
• Offloading decision of microservices.

The uppermost two performance metrics show the perfor-
mance of our incentive mechanism. The latter two metrics
show the performance of our offloading process.

Simulator. We use EdgeCloudSim [51] to simulate the
environments related to the edge computing platform and
design a discrete-time simulator on top of it to evaluate
the performance of mISO through a series of simulations.
It simulates all the microservice events in mISO, including
microservice arrival, microservice completion, microservice
enqueuing, microservice dequeuing, and microservice pre-
emption. It tracks microservice execution times.

The simulator runs the algorithms at a fixed time inter-
lude to minimize the preemption cost/overhead. The time
interlude is a configurable value, which can be configured
based on the performance requirements. It produces the
identification labels and placement scenarios and schedules
microservices according to the placement scenarios. The
identification labels are generated based on the microservice
identification model in Section 3.3. The mISO simulator
simulates the algorithms following an executor running
multiple iterations to get the average microservice execution
delay and optimized results. Otherwise (without optimiza-
tions), the scheduler uses a default profile. We follow the
general practice to set the number of tasks a microser-
vice needs to be a power of two. When the identification
labels and placement scenarios are created, the scheduler
terminates old tasks and starts new tasks according to the
scenario. The simulator tracks the demand information of
each microservice, utilization, profile level, and offloading
decision metric. Additionally, the simulator also tracks each
microservice’s enqueuing, dequeuing, and completion time.

Benchmarks We use two benchmarks - WFSM [34] pro-
posed by Bao et al. and IntMA [33] proposed by Joseph et al..
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Figure 3: Analysis of social welfare.
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Figure 4: Analysis of demand response.

WFSM [34] proposed a workflow scheduling algorithm for
microservice-oriented applications in the cloud platforms.
They formulated a prediction mechanism for microservices
and modeled it mathematically. In this work, they basically
tried to minimize the end-to-end delay while considering
a predefined budget and proposed a heuristic algorithm.
IntMA [33] proposed a dynamic interaction-aware resource
allocation scheme for microservices. They deployed the
microservice modules in the cloud platform and modeled
the problem as a binary quadratic programming problem.
The proposed IntMA framework, which is a novel and
robust heuristic approach, considered an interaction-aware
resource allocation scheme using an interaction graph. This
mechanism improves the response time and throughput of
microservices. We model and design the incentive mech-
anism for both the mechanism IntMA and WFSM while
considering their respective assumptions and framework.

5.2 Numerical Result Analysis

Social Welfare. We compare the social welfare of the
mISO incentive offloading mechanism with existing meth-
ods WFSM and IntMA. The results illustrate that the mISO
incentive offloading mechanism provides better social wel-
fare than WFSM and IntMA with contexts I and II. The social
welfare of mISO is shown in Figure 3(a) with context I.
As illustrated in Figure 3(a), we notice that social welfare
decreases if we increase the quantity of edge servers. If
the quantity of servers is scaled out in the edge platform,
then the quantity of microservices executed by the server
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Figure 5: Analysis of offloading decision.
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Figure 6: Analysis of profit level.

decreases. It automatically decreases the social welfare of
microservice-enabled edge platforms. mISO efficiently of-
floads and executes microservices to servers from edge de-
vices, which improves overall social welfare. mISO performs
better than existing methods WFSM and IntMA with an
improvement of 15–23 %. Figure 3(b) depicts the social
welfare of mISO with context II. We can notice that social-
welfare increases with the extension in the quantity of mi-
croservices. As the quantity of microservices increases, edge
devices get hold of executing more quality microservices,
which automatically improves the social welfare of the edge
platform. It is relatively better than WFSM and IntMA. The
social welfare of mISO is better than other approaches with
an improvement of 13–19 %.

Demand Response. Figure 4(a) depicts the demand re-
sponse of edge devices. It expands as the heterogeneous IoT
applications increase with the context I. With the increase in
the quantity of edge devices, the quantity of microservices
spawned up in the edge servers inevitably increases the
demand response of edge devices. mISO achieves better
performance than existing methods WFSM and IntMA. The
demand response of edge devices of mISO is better than
other methods with an improvement of 18–25 %. Further,
Figure 4(b) illustrates the demand response of edge de-
vices with the extension in the quantity of microservices
with context II. As the quantity of microservices extends
in the platform, then the resource required to execute the
microservices also expands, it provides a steep rise in the
demand response. mISO shows better performance than
other methods, WFSM and IntMA, with an improvement
of 9–11 %.

Offloading Decision. Figure 5(a) signifies the offloading
decision of mISO with the context I. We can notice from
the figure that offloading decision metric improves with
expanding the quantity of microservices. As the quantity
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Figure 7: Analysis of latency.
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Figure 8: Analysis of resource utilization.

of microservices expands, the microservice flow rate also
expands. Therefore, the offloading decision metric also ex-
pands, as it is a factor of data traffic function. mISO ef-
fectively improves the offloading performance of microser-
vices to servers. mISO basically outruns the other methods,
WFSM and IntMA, with an improvement of 8–13 %. Further,
we also check out the offloading decision with context II in
Figure 5(b). It also outruns the other methods, WFSM and
IntMA, with an improvement of 7–9 %.

Profit Level. Figure 6(a) signifies the profit level of mISO
with the context I. We discover that the profit level of
edge devices improves with expansion in the quantity of
microservices. As the quantity of microservices expands,
then the mISO can process more quantity of microservices
to servers. The profit of mISO is superior to other methods
with an improvement of 13–18 %. On the other hand,
Figure 6(b) depicts the profit level of mISO with context
II. mISO outruns the existing methods WFSM and IntMA.
The profit level of mISO is better than other methods with
an improvement of 16–26 %.

Latency. Figure 7(a) signifies the average latency of mISO
with the context I. We discover that the average latency
of edge devices improves with expansion in the quantity
of microservices. As the quantity of microservices expands,
then the mISO can process more quantity of microservices
to servers. The average latency of mISO is lesser than other
methods with an improvement of 20–22 %. On the other
hand, Figure 7(b) depicts the average latency of mISO with
context II. mISO outruns the existing methods WFSM and
IntMA. The average latency of mISO is better than other
methods with an improvement of 18–21 %.

Utilization. Figure 8(a) signifies the resource utilization
of mISO with the context I. We discover that the resource
utilization of edge devices improves with the expansion in
the quantity of microservices. As the quantity of microser-
vices expands, then the mISO can process more quantity of
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Figure 9: Analysis of Overhead.

microservices to servers. The resource utilization of mISO is
superior to other methods with an improvement of 21-24 %.
On the other hand, Figure 8(b) depicts the average latency
of mISO with context II. mISO outruns the existing methods
WFSM and IntMA. The utilization of mISO is better than
other methods with an improvement of 25-30 %.

Overhead. We can observe from the Theorem 6 that the
complexity of mISO isO(K3N+K2N2). For a large number
of microservices and edge servers, the system overhead
of mISO would be very high. Hence, it is important to
minimize the system overhead for a large number of mi-
croservices and edge servers. Figure 9(a) shows that the
overhead of mISO with Partitioned Optimization Problems
(POP) [52] is comparatively very low than standalone mISO
with expansion in the quantity of microservices and 20
edge servers. By adopting POP, we can randomly split the
problem into smaller problems (with a subset of the clients
and resources in the server) and combine the resulting sub-
problem into a global offloading for all clients. POP is
easy to implement and provides better runtime. Similarly,
mISO with POP can achieve 32 % less overhead compared
to standalone mISO with increasing edge servers and 300
microservices.

5.3 Discussion

We enlist a few main takeaways from the mISO mechanism.

• mISO provides 18–21 % and 25–30 % improvements
in terms of average latency and resource utilization
compared to existing works. mISO’s benefits are due
to efficient microservice identification, resilient de-
mand estimation, and optimal microservice offload-
ing algorithms.

• mISO mechanism holds truthfulness, rationality, and
low computational complexity while guaranteeing
positive social welfare.

• mISO is robust to various configuration parameters
and experimental settings.

We enlist a few limitations of the mISO mechanism.

• mISO cannot handle any concerns regarding the
failures. Therefore, if a single task fails within a
microservice, then the entire microservice can fail.
To tackle such situations, we need a resilient load-
balancing scheme or fault-tolerant mechanism.

• mISO does not consider any concerns related to
designing an energy-efficient incentive mechanism.
This may lead to some problems if there are shortage

of resources and edge devices keep on trying to
offload the microservices; in such cases, the edge
devices’ batteries may go down. So in the future, we
need an energy-efficient incentive mechanism.

6 CONCLUSION

We present a novel incentive mechanism for MEC-enabled
IoT networks to provide maximum social welfare to edge
IoT devices. mISO proposes a demand-agnostic scheme,
which efficiently estimates the demand specifications of
edge devices to maximize the profit of the network. Fur-
ther, we come up with an incentive microservice offloading
scheme to optimize the social welfare of both edge devices
and servers. Hence, the proposed scheme–mISO efficiently
offloads the computational microservices to edge servers to
increase the system utilization. Rigorous and extensive sim-
ulation results show that mISO achieves better social welfare
than the existing methods WFSM and IntMA. Building a
real system implementation for optimizing the microservice
allocation problem in complex and dynamic MEC systems
is a promising topic for future research. Another interesting
topic is an adaptive microservice placement for MEC-based
mobile health systems.
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