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Abstract—In spectrum sensing, secondary users (SUs) often
face limitations in their sensing capabilities, making cooperation
among SUs crucial. By leveraging collaboration, we aim to
maximize comprehensive awareness of primary channel states
while minimizing sensing overhead. To achieve this, we develop
an adaptive algorithm that utilizes SU mobility and directional
antennas, enabling operation in dynamic environments where
prior network knowledge is unavailable. This study proposes a
two-stage learning approach. In the first stage, a PU location
estimation (PLE) algorithm assists SUs in identifying relevant
sensing targets. In the second stage, a multiagent reinforce-
ment learning-based algorithm is introduced to mitigate sensing
collisions, thereby enhancing channel state awareness. Simula-
tion results demonstrate that the proposed scheme outperforms
baseline algorithms in convergence speed, sensing collision rate,
and channel state awareness, offering an efficient solution for
cognitive radio networks. Specifically, the proposed approach
achieves up to an 81% and 24% increase in comprehensive
channel awareness, and a 53% and 13% reduction in sensing
overhead compared to the random scheme without and with
PLE, respectively.

Index Terms—Centralized training decentralized execution
(CTDE), cognitive radio network (CRN), cooperative spectrum
sensing (CSS), decentralized partially observable Markov deci-
sion process (Dec-POMDP), multiagent reinforcement learning
(MARL)

I. INTRODUCTION

By 2030, the global number of Internet of Things (IoT)
devices is projected to nearly double, surpassing 29 billion
from the 15.1 billion recorded in 2020 [1]. This rapid ex-
pansion underscores the urgent need for innovative solutions
to mitigate spectrum scarcity. In this regard, cognitive radio
networks (CRNs) [2] have emerged as a promising paradigm,
enabling secondary users (SUs) to opportunistically access
underutilized portions of the spectrum allocated to licensed
primary users (PUs). To enhance spectrum sensing efficiency,
cooperation among SUs is crucial. Hence, cooperative spec-
trum sensing (CSS) [3] has been widely recognized in the
CRN domain for its ability to leverage the spatial diver-
sity of multi-SU environments, thereby improving coopera-
tive gain. Numerous CSS approaches have been proposed in
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the literature [4]–[23], each employing distinct coordination
mechanisms. Centralized approaches, as highlighted in studies
such as [4]–[13], rely on a central node for coordination,
which may introduce potential bottlenecks. Additionally, the
selection between omnidirectional antennas [5]–[8], [14]–[16]
and directional antennas (DA) [4], [11], [17] presents further
challenges. Most existing approaches [4]–[6], [10], [14], [15],
[17]–[20], [22], [23] focus on stationary environments where
both SUs and PUs remain spatially fixed, highlights the need
for exploring CSS in mobile CRN scenarios. Decentralized
or distributed CSS schemes have been proposed to reduce
coordination costs by distributing tasks across multiple SUs to
address coordination issues in centralized methods. Moreover,
given the substantial advantages of DA in terms of accuracy,
efficiency, and connectivity [4], [24], [25], equipping SUs
with such antennas is an auspicious direction. In scenarios
where mobile directional SUs collaborate without central node
coordination, selecting channels and sensing directions for co-
operative spectrum sensing becomes increasingly challenging.

This study addresses the CSS challenge in a mobile, de-
centralized, and directional CRN, maximizing collective chan-
nel state awareness while minimizing unnecessary sensing.
Rather than evaluating sensing accuracy metrics such as false
alarm and miss detection probabilities, we focus on selecting
the appropriate sensing target–specifically, the direction and
channel. This step is as crucial as managing sensing accuracy
since an SU that repeatedly selects the wrong direction or
channel gains no benefit, even with perfect sensing accuracy.
For instance, if the SU consistently senses in a direction that
does not cover the PU or in channels that the PU is not using,
achieving a false alarm probability of 0 or a miss detection
probability of 0 becomes ineffective. Moreover, due to the
inherent limitations of individual sensing capabilities, SUs
must cooperate to assess the status of as many channels as pos-
sible before excluding the busy ones from use. The relevance
of accuracy metrics such as false alarm and miss detection
probabilities arises only when SUs collectively decide the
proper sectors and channels to sense. Thus, sensing decisions
must be made intelligently based on the SU’s location while
minimizing sensing collisions. To tackle this challenge, we
propose a multiagent collaboration framework using multia-
gent reinforcement learning (MARL) to maximize compre-
hensive channel state awareness in mobile directional CRNs.
We formulate a stochastic sequential optimization problem for
sensing target selection and introduce a two-stage learning
approach. The first stage estimates PU locations to establish
foundational environmental knowledge, while the second stage
mitigates sensing collisions. By leveraging a MARL strategy
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with centralized training and decentralized execution (CTDE),
our method dynamically optimizes channel-PU pair selection,
enhancing spectrum awareness and reducing sensing overhead,
while enabling SUs to make efficient and autonomous sensing
decisions without the need for centralized coordination. The
key contributions of this study are as follows:

• We highlight the challenge of maximizing the comprehen-
sive awareness rate of primary channel states owned by
the PUs while accounting for SUs’ sensing limitations.
This essential aspect has not been explored in prior
research.

• We investigate this challenge in a dynamic environment
where SUs mobility and DA offer substantial benefits to
the SU network [24]–[28], yet remain largely unexplored.

• We formulate a stochastic sequential optimization prob-
lem to dynamically select channel-PU pairs for sensing,
aiming to improve channel state awareness while mini-
mizing unnecessary sensing overhead.

• To solve this problem, we propose a two-stage learning
approach: (1) a PU location estimation (PLE) algorithm
to help SUs identify relevant sensing targets and (2) a
sensing collision mitigation (SCM) algorithm to improve
channel state awareness.

• Once the estimated PU location is obtained from the first
learning stage, an SCM algorithm is proposed to deter-
mine the optimal sensing channel-PU pair, allowing SUs
to maximize their comprehensive awareness rate while
minimizing sensing overhead. The algorithm employs the
CTDE-based MARL algorithm called QMIX [29].

• We validate the proposed scheme through simulations,
demonstrating its superiority over baseline algorithms re-
garding convergence performance, sensing collision rate,
and channel state awareness. Notably, it achieves up to
an 81% and 24% increase in comprehensive channel
awareness rate, and a 53% and 13% reduction in sensing
overhead compared to the random scheme without and
with PLE, respectively.

The paper is organized as follows. Section II reviews related
research, and Section III introduces the system model. The
problem formulation is presented in Section IV. Section V
explains the proposed solution, including the PLE method and
SCM algorithm. Experimental results and data analysis are
discussed in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK

A. Cooperative Spectrum Sensing

CSS occurs when multiple SUs collaborate to enhance a
common objective, namely cooperative gain [3]. Cooperative
gain can manifest in various forms, including sensing accuracy
[5]–[7], [12], [13], [16], [17], [19], [21], [23], sensing overhead
[4], [10], [17], sum throughput [8], [10], [22], and channel
availability [14], [15]. CSS methods are typically categorized
into three main approaches: centralized, decentralized, and
distributed. In centralized CSS [4]–[13], a fusion center (FC)
coordinates sensing operations by collecting and aggregating
sensing reports from all SUs. In contrast, decentralized CSS

[14]–[21] eliminates the need for an FC while requiring SUs
to exchange information for cooperative decision-making. On
the other hand, distributed CSS [22], [23] enables SUs to
operate independently without communication, relying on pre-
trained policies to make sensing decisions. Earlier literature
often groups decentralized and distributed schemes under the
broad term “distributed.”

In centralized CSS approaches, the coordination node is
pivotal in determining the final sensing result and optimizing
sensing parameters for subsequent steps across all SUs. Con-
sequently, research has predominantly focused on optimizing
collaborative sensing parameters for SUs [4] or developing
fusion algorithms [5], [6], [10]. Concretely, parameter op-
timization strategies focus on refining collaborative sensing
parameters. For instance, [4] introduced a cooperative scheme
in which the FC employs a numerical gradient optimization
algorithm to determine the optimal sensing parameters, includ-
ing sensing duration, threshold, channel, and beam selection.
The objective is to maximize PU detection probability while
minimizing sensing overhead. In contrast, the primary objec-
tive of fusion schemes is to enhance sensing performance by
aggregating data from multiple SUs, which sense channels and
relay their findings to the FC. The FC then applies predefined
or adaptive decision rules to determine the outcome. Notably,
[5] utilized a convolutional neural network (CNN) for fusion,
while [10] introduced a weighted fusion rule based on the
results from evaluating the reliability of historical sensing
information of all SUs. [6] implemented a deep Q-learning
framework with a CNN-based Q-network to learn an optimal
fusion function.

Although centralized approaches leverage spatial diversity
among SUs to improve cooperation gains, they suffer from
high operational costs and potential bottlenecks at the central
node. Decentralized and distributed CSS schemes have been
developed to address these limitations. Decentralized CSS
strategies eliminate the need for an FC while maintaining
effective cooperation among SUs. Researchers in [14], [15]
proposed a multiagent deep deterministic policy gradient-
based framework, enabling SUs to dynamically select coop-
eration partners and optimize channel selection to increase
the likelihood of detecting available channels. In contrast, dis-
tributed CSS approaches ensure cooperation by allowing SUs
to undergo centralized training before deployment, facilitating
mutual learning without real-time information exchange during
operation. For example, [22] applied the CTDE-based QMIX
algorithm [29], where SUs strategically select sensing and
access channels to maximize sum throughput while avoiding
collisions with PUs and other SUs. Moreover, [23] proposed
a collaborative model fusion technique that enables SUs to
train band-specific sub-networks locally and, after fusion into
a unified model, operate in a fully distributed manner for
efficient and accurate wideband spectrum sensing. Despite
their advantages, these approaches are primarily designed
for conventional CRNs with stationary SUs using omnidi-
rectional antennas. However, as mobility becomes a defining
feature of next-generation wireless networks and millimeter-
wave technologies gain prominence, these models may require
substantial adaptations to remain effective.
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TABLE I: Summary of cooperative spectrum sensing (CSS) approaches.

Reference CSS scheme Cooperation gain Mobile SUs DA DRL-based
[4] Centralized Sensing overhead, PU detection probability ✓

[5], [6] Centralized Sensing accuracy ✓
[7] Centralized Sensing accuracy ✓
[8] Centralized Sum throughput ✓
[9] Centralized Sum throughput ✓ ✓
[10] Centralized Sensing overhead, Sum throughput
[11] Centralized PU detection probability ✓ ✓

[12], [13] Centralized Sensing accuracy ✓
[14], [15] Decentralized Channel availability ✓

[16] Decentralized Sensing accuracy ✓ ✓
[17] Decentralized Sensing overhead, Sensing accuracy ✓
[18] Decentralized Sum throughput ✓
[19] Decentralized Sensing accuracy ✓
[20] Decentralized Sum throughput, Fairness ✓
[21] Decentralized Sensing accuracy ✓ ✓
[22] Distributed Sum throughput ✓
[23] Distributed Sensing accuracy

Ours Decentralized Channel state awareness, Sensing overhead ✓ ✓ ✓

B. Cooperative Spectrum Sensing with Directional Antennas
and Mobile Cognitive Radio Networks

DAs have recently gained popularity for their ability to
steer and precisely concentrate signals. Studies indicate that
the directional CRN model enhances SU connectivity and
improves spectrum availability detection compared to the
omnidirectional model [24], [25]. Despite these advantages,
research on CSS in directional CRNs remains limited. One
notable study [4] explored this scenario by leveraging spatial
characteristics to reduce sensing overhead, allowing multiple
SUs to sense distinct directions simultaneously and rapidly
determine the PU’s location. Similarly, [17] utilized spatial
correlation among nearby SUs to further minimize sensing
overhead and enhance accuracy by maximizing the overlap of
their sensing beams. On the other hand, [11] proposed a coop-
erative spectrum sensing system that optimizes SU positions
and their directional antenna orientations to maximize energy
detection performance.

Mobility is another crucial factor in wireless networks.
Within CRNs, mobility substantially impacts key performance
metrics such as transmission time, misdetection rate, and
error probability [26], [27]. A study by [28] demonstrated
that mobility in CRNs reduces misdetection probability and
improves sensing scheduling efficiency. However, research
on CSS for mobile CRNs remains scarce due to the com-
plexities introduced by network dynamics. A recent study
[7] proposed a dynamic double-sensing threshold scheme,
enabling all SUs to achieve a more accurate final sensing
result through a fusion process at the FC. Other studies [8]
have examined mobile CRNs as an energy-harvesting network,
focusing on maximizing SU throughput under energy con-
straints. Additionally, [16] investigated mobile CRNs where
SU detection capabilities vary due to mobility, introducing
a deep reinforcement learning-based cooperation scheme to
optimize sensing accuracy. [12] developed an online learning-
based CSS algorithm that dynamically responds to mobility-
induced variations in signal quality and node reliability due
to their movement. On the other hand, [13] introduced a
path planning algorithm that directs PUs toward areas with

higher spectrum prediction uncertainty, which ensures more
informative data collection with minimal redundancy, resulting
in improved sensing accuracy.

Research into CSS schemes for mobile, directional CRNs
presents a promising avenue. Furthermore, the combination of
mobility and DAs enables SUs to identify and exploit spectrum
opportunities better, achieving more effective utilization than
static or omnidirectional models. Despite this potential, CSS
in mobile, directional CRNs remains an unexplored area of
research. Motivated by these advantages, this study introduces
a novel decentralized CSS scheme tailored to this unique
model. The proposed scheme uses the CTDE architecture and
the QMIX algorithm to enhance channel state awareness while
minimizing sensing overhead by eliminating redundant sensing
operations. Table I summarizes the key distinctions between
our proposed method and existing approaches.

III. SYSTEM MODEL

A. Network and Antenna Model

This study considers a primary network of U stationary
PUs and M mobile SUs. The SUs operate in a decentral-
ized manner, forming a dynamic network that communicates
directly without a central base station. Each SU is equipped
with directional antennas, which can be implemented using
beamforming-enabled antenna arrays, for communication and
spectrum sensing. These SUs move following the random
waypoint mobility model [30], with all SUs aware of each
others’ locations. SUs can detect and utilize available spectrum
bands left unused by PUs. We assume that PUs operate on K
licensed orthogonal channels and use omnidirectional anten-
nas, whereas SUs leverage directional antennas for improved
performance. The benefits of using directional antennas in
decentralized mobile networks have been demonstrated in pre-
vious studies, such as [31]–[35], highlighting their advantages
in similar scenarios. We define L as the number of sectors per
SU. In practice, directional antennas consist of a main beam
and several relatively insignificant side lobes. Thus, without
loss of generality, we ignore the side lobes and adopt a sector-
based model, where each sector has a width of ϕ = 2π

L , ϕ < π.
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SU sectors are indexed relative to the environment (i.e., North,
South, East, and West) rather than the SU itself.

The area containing SUs and PUs is defined as z × z.
Additionally, s represents the sensing range of SUs, while p
denotes the protection range of PUs. A moving SU may cause
a PU to enter or exit its sensing range. Thus, for each SU, it
might fall into one of the following two key events:
I : A PU enters the sensing range of a moving SU.
O : No PU is within the sensing range of the moving SU.

B. PU Traffic Model and SU Spectrum Sensing Method
We assume that all PUs in the network are all hopping

nodes [36] and utilize a channel-hopping mechanism for their
transmissions. At each time instant, a PU switches to a
different channel based on a predefined hopping pattern [37].
Notably, the channel-hopping behavior of each PU is modeled
as a Markov chain [38]. A Markov chain consists of a fixed
number of states K, each representing a specific channel. The
transition from one channel (state) to another is governed
by a transition probability matrix, P = [Pi]0≤i<K , Pi =
[Pj ]0≤j<K , where ∀i,

∑
j Pij = 1. Notably, the SU has no

prior knowledge of this matrix.
For spectrum sensing, we employed an energy detection

method, which is widely recognized as a computationally
efficient technique in cognitive radio systems for detecting
whether a channel is occupied (busy) or idle [3]. There
have been previous hypothesis testing models, such as those
proposed in [39], [40], where the authors introduced a dual-
threshold approach: one threshold distinguishes between white
and gray opportunities, while the other differentiates between
gray and black opportunities. In contrast, our approach adopts
a binary hypothesis testing model with a single threshold to
classify channel states as white (available) or black (occupied).
This approach was chosen for its simplicity, ensuring efficient
processing while meeting our objectives. It is important to
note that the primary aim of our algorithm is to enhance
the comprehensive awareness rate of SUs—specifically, to
maximize the SU’s ability to gather as much information as
possible about channel states. Notably, this goal of maximiz-
ing awareness remains independent of the hypothesis testing
method used for sensing. Whether a binary hypothesis testing
model with a single threshold or a multi-threshold method
[39], [40] is employed, the number of channels an SU can
sense remains unchanged. The choice of hypothesis testing
method primarily affects how we classify each channel state
(i.e., as white or black) but does not influence the SU’s sensing
capability. Moreover, in single-threshold spectrum sensing, the
decision between H1 (occupied) and H0 (idle) is based solely
on whether the received signal energy λ exceeds the detection
threshold. Therefore by adjusting this detection threshold,
we can control how weak signals (gray opportunities) are
classified. Let us denote the sensed channel bandwidth by w,
the sensing duration by τ , and the sampling rate by fsampling.
The number of samples that can be analyzed within one
sensing slot is given by N = fsamplingτ = 2wτ . In event
I , let yI(σ) represent the received signal energy at any SU.
The occupancy state of PUs at any SU is then formulated as
a binary hypothesis testing problem as follows:

yI(σ) =

{∑N
σ=1 |uσ|2, H0,∑N
σ=1 |hsσ + uσ|2, H1,

(1)

where H0 and H1 represent the channel states when it is idle
and busy, respectively. Moreover, uσ = ur

σ + jui
σ denotes

the complex Gaussian noise sample at time index σ, with ur
σ

and ui
σ being its real and imaginary parts, respectively. sσ =

srσ+jsiσ denotes the transmitted complex signal sample at time
index σ, with srσ and siσ being its real and imaginary parts,
respectively, and h = hr + jhi denotes the complex channel
coefficient. Therefore, we attain (uσ)

2 = (ur
σ)

2 + (ui
σ)

2, and
(hsσ + uσ)

2 = (hrsrσ − hisiσ + ur
σ)

2 + (hrsiσ + hisrσ + ui
σ)

2.
With respect to event O, the received signal energy at any

SU is given by yO(σ) as follows:

yO(σ) =

N∑
σ=1

|uσ|2, under both H1, H0. (2)

The test statistic is represented as λ = 1
N |y(σ)|, which is

then compared to a predefined detection threshold to determine
whether any PUs occupies the channel.

C. SU Transmission Protocol and Time Frame Structure

We assume that SUs employ a directional routing protocol,
as described in [41], where each SU maintains a local table
of its directional neighbor routes. When they transmit, they
determine the destination and then use the table to search for
the shortest path. In the proposed solution, before transmitting,
SUs must lock the sectors covering any PUs, along with
the channels currently occupied by those PUs. This process
modifies the initial routing table by eliminating routes that
pass through these locked sectors and channels. Our proposed
algorithm enhances the SU’s awareness of the state of all
channels associated with nearby PUs. As a result, the SU
gains knowledge of which specific PUs currently occupy
channels. By leveraging this information and PU location data,
the SU can accurately determine which channels and sectors
should be locked. In summary, the primary objective is for
SUs to identify channel-PU pairs that are currently occupied.
This ensures that SUs avoid transmitting on sectors covering
those PUs and the channels they use, thereby minimizing
interference with the primary network.

All SUs are synchronized in a time-slot manner, where each
time slot is referred to as a period. Each period consists of
three phases: sensing, sharing, and transmission. In every time
slot, one SU begins by sensing a set of k specific channel-
PU pairs during the sensing phase. The SU then shares its
sensing results with other SUs in its proximity, particularly
those with sectors covering the same PUs. Subsequently,
each SUs determines which channel-sector pairs should be
locked based on the gathered information. Finally, the SUs
select one of the remaining channel-sector pairs according
to their transmission protocol for sending packets during the
transmission phase. In event O, SUs do not need to sense any
channels because no PUs are within their sensing range. As
a result, locking channels and sectors is unnecessary in this
case. Therefore, SUs can utilize the entire time-slot duration
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Fig. 1: An illustration of the optimal sensing decisions by
secondary users.

for transmission, reducing sensing overhead and potentially
increasing transmission throughput.

IV. PROBLEM FORMULATION

We consider a cognitive radio access network environment
consisting of U stationary PUs, each owning K primary
channels, and coexisting with M mobile SUs that follow
a random waypoint mobility model. At each time step, the
SUs relocate to new positions, where they either experience
event I (when one or more PUs fall within the SU’s sensing
range) or event O (when no PU is within the SU’s sensing
range). Since each SU can sense a maximum of k channels,
and the number of channel-PU pairs within its sensing range
often exceeds k, our objective is to develop a cooperation
solution that maximizes the SUs’ awareness of the states of
the channel-PU pairs they cover while minimizing sensing
overhead. Specifically, when SUs are in an event O, they are
expected to forgo sensing and use the entire time-slot duration
for transmission. Conversely, in event I , SUs must select
k channel-PU pairs to sense, ensuring that the chosen PUs
fall within their sectors. Additionally, the selected channel-PU
pairs should differ from those sensed by nearby SUs covering
the same PUs. In other words, SUs with overlapping coverage
should avoid sensing collisions in terms of both channel and
PU indices to maximize knowledge acquisition regarding the
surrounding channel-PU states.

As illustrated in Fig. 1, no PUs are within the sensing
range of SU2 (i.e., in event O); thus, SU2 should allocate
the entire period on transmission. In contrast, two PUs are
within the sensing range of SU0 (i.e., PU0 and PU1), and one
PU is within the sensing ranges of SU1 and SU3 (i.e., PU1).
Therefore, SU0, SU1, and SU3 form a temporal group because
they cover the same PU (i.e., PU1). Consequently, these three
SUs should ensure no sensing collision on PU1. Let c0 and
c1 represent the indices of two distinct channels, where c0
corresponds to the first channel index and c1 corresponds to

the second channel index. An example of an optimal sensing
assignment for all SUs is as follows:

• SU0 senses channel c0 and c1 w.r.t. PU0.
• SU1 senses channels c0 and c1 w.r.t. PU1.
• SU2 skips sensing for this time slot.
• SU3 skips sensing for this time slot.

Through this cooperation, SU0, SU1, and SU3 can collectively
obtain complete information about the surrounding channel-
PU states by sharing their sensing results after the sensing
phase. Moreover, SU2 can conserve its sensing energy since
there is no PU in its sensing range, SU3 can also reduce
its sensing effort while still benefiting from the shared infor-
mation. Ultimately, mitigating sensing collisions among SUs
within the same group is an effective approach to enhance
comprehensive awareness of channel-PU activity, while also
helping to reduce sensing overhead by avoiding unnecessary
individual sensing efforts.

At each time step, the network consists of serveral temporal
SU groups which are formed dynamically by SUs. Let Gm

t

denote the temporal group formed by SUm, which consists of
SUm itself and other SUs covering the same PUs at time step t.
At each time step, every SU in Gm

t must decide whether to skip
sensing or, if sensing is chosen, which specific channel–PU
pair to sense. We define cm,i,j

t to represent a single decision
made by SUm on a single channel-PU pair, where i and j
correspond to the channel and PU indices, respectively. Let
cmt = [cm,i,j

t ]0≤i<K,0≤j<U denote the decision matrix made
by SUm on all channel-PUs pairs at the time step t. Eventually,
the number of channel–PU pair states that SUm can observe
after performing sensing and sharing the results with other
members of the group Gm

t is given by:

NoPm
t =

K−1∑
i=0

∑
j∈Um

t

1(cm,i,j
t > 0) (3)

where cm,i,j
t = 1 indicates that SUm selects channel i and

PUj for sensing, and cm,i,j
t = 0 otherwise. With Um

t (0 ≤
|Um

t | ≤ U) denotes the set of PUs covered by SUm at time
step t, we have j ∈ Um

t , which implies that the chosen sensing
PUj falls within the sensing range of SUm. The total number
of channel-PU pairs covered by SUm is then given by K|Um

t |,
where K is the total number of primary channels and |Um

t | is
the cardinality of the set Um

t . Accordingly, the comprehensive
awareness rate of SUm at time step t is expressed as:

ωm
t =

NoPm
t

K|Um
t |

. (4)

Thus, the problem is formulated as follows:
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max
Ct = {cmt }

∑
t≥0

M−1∑
m=0

K−1∑
i=0

U−1∑
j=0

ωm
t 1{I,j}(d

m,j
t )cm,i,j

t + (1− 1{I,j}(d
m,j
t ))(1− cm,i,j

t ) (5)

s.t. cm,i,j
t ∈ {0, 1},∀m, i, j, (5a)
K−1∑
i=0

U−1∑
j=0

cm,i,j
t ∈ {0, k}, (5b)

where the first term of the equation represents the awareness
rate of SUm in event I . The indicator variable 1{I,j}(d

m,j
t )

determines whether event I applies to PUj at SUm, and
dm,j
t =

√
(xSUm − xPUj )

2 + ySUm − yPUj )
2 denotes the

current distance between SUm and PUj . The first term,
ωm
t 1{I,j}(d

m,j
t )cm,i,j

t , is activated when SUm chooses to
sense the ith channel of PUj (i.e., cm,i,j

t = 1), and PUj is
within the SU’s sensing range (i.e., event I , 1{I,j}(d

m,j
t ) = 1).

This term is weighted by ωm
t , the awareness rate of SUm,

which promotes sensing actions that contribute to greater
awareness at the group level (i.e., actions that can prevent
overlapping sensing). Meanwhile, the second term aims to
maximize the likelihood that sensing is skipped when the SU is
not in event I . The second term, (1−1{I,j}(d

m,j
t ))(1−cm,i,j

t ),
is activated when PUj is not within the sensing range of SUm

(i.e., event O, 1{I,j}(d
m,j
t ) = 0), and the SU correctly chooses

to skip sensing (i.e., cm,i,j
t = 0). This term rewards energy-

efficient behavior and avoids unnecessary sensing attempts
that cannot yield useful information. Moreover, Ct represents
the joint decision of all SUs at time t. The decision matrix
cmt = [cm,i,j

t ]0≤i<K,0≤j<U made by SUm specifies whether
it performs sensing. If sensing is selected, it further determines
the channel-PU pairs to be sensed. Specifically, the constraint
in (5b) ensures that an SU can either skip sensing or select
exactly k channel-PU pairs from the total K×U pairs within
each time slot t.

The optimization problem presented in (5) is challenging
due to several reasons. First, SUs have no prior knowledge
about the environment–specifically, the number and locations
of PUs are unknown. Second, there is no central coordinator to
assign sensing tasks among the SUs. Third, the movement of
SUs constantly changes the environment, making the sensing
environment highly dynamic. Lastly, SUs can only access
partial observation of the environment. These challenges col-
lectively render traditional optimization methods impractical
for solving the problem in a decentralized manner at every
time step. Eq. (5), however, defines a cumulative objective
function over time. More specifically, at each time step, the
optimization aims to achieve two closely related objectives:
(i) maximizing the comprehensive awareness rate ωm

t , and (ii)
increasing the chance of skipping sensing when the PU is not
in event I . As defined in Equation (4), the awareness rate
is calculated as the ratio between the number of channel-PU
pairs that SUm is actually aware of (i.e., NoPm

t ) and the
total number of pairs it could potentially be aware of based
on its coverage (i.e., K|Um

t |). Since the denominator (that
is, K|Um

t |) is influenced by the environment and cannot be
controlled directly, to maximize the comprehensive awareness
rate, the actual number of channel–PU pairs that SUm is
aware of (i.e., NoPm

t ) should be maximized. This can be
achieved when each SU collects non-redundant channel-PU
observations. When multiple SUs sense the same channel-PU



7

pair, sensing collision occurs. Hence, to improve the compre-
hensive awareness rate, optimization must encourage different
and non-redundant sensing in the same group Gm

t . At the same
time, SUs must also determine whether they are in event I (i.e.,
whether any PU is nearby) or not. This requirement implies
that SUs must estimate the location of PUs before making
sensing decisions. Based on these requirements, the original
problem is decomposed into two sub-problems: (i) PU location
estimation (PLE), enabling each SU to determine if it should
sense at all, and (ii) sensing collision mitigation (SCM), ensur-
ing that SUs in a group select a different subset of channel–PU
pairs to sense. To address the first sub-problem, we propose
a PLE method, detailed in Sub-section V-A. Subsequently,
we employ a deep MARL approach to solve the second
sub-problem. Specifically, we reformulate the objective as a
decentralized partially observable Markov decision process
(Dec-POMDP) [42], in Sub-sections V-B and V-C, and present
the proposed SCM algorithm to solve it.

V. PROPOSED SOLUTION

This section presents a two-stage learning solution to ad-
dress the above problem. The overall process is depicted
in Fig. 2, where the SUs estimate PU locations in the first
stage and train their policy network according to the proposed
solution, SCM, in the second stage. Once deployed (i.e.,
execution phase), all SUs acquire enough knowledge and a
well-trained policy that helps them operate independently with
limited information sharing from neighboring SUs that cover
the same PUs. Concretely, after running the PLE algorithm,
SUs estimate the locations of all PUs. This shared location
information enables SUs to identify PUs within their sens-
ing range. Additionally, since PU indices remain consistent
across all SUs, each SU can determine which PUs fall within
its sensing range upon relocation. Our cooperative sensing
scheme then leverages this location data to optimize channel
selection intelligently. For instance, if two SUs cover the same
PU with four channels but one SU can sense only two, the
scheme ensures they select different channels to avoid overlap.
Once an SU selects a channel-PU pair, it must sense the PU’s
signal in the corresponding sector covering that PU. The SUs
then collectively acquire knowledge about all four channels by
sharing their sensing results. First, Section V-A explains the
PU estimation method (i.e., the first learning stage). After that,
section V-C introduces the SCM algorithm (i.e., the second
learning stage).

A. Primary User Location Estimation

The objective is to enable SUs to estimate PU locations
by leveraging their mobility and spatial sensing capabilities,
thereby allowing them to skip sensing when no PU is nearby
(i.e., when the system is not in event I). We assume that
any arbitrary SU within the network can estimate the PU
locations. The estimated position information is then shared
with all other SUs in the network. Since PUs are assumed
to be stationary, this location information remains valid over
a long duration and does not require frequent re-estimation.
To estimate PU locations, the algorithm leverages the spatial

mobility of SUs to identify potential regions where PUs may
exist, which are referred to as PU location beliefs. During
each episode, these beliefs are refined by eliminating areas
that are believed to contain no PUs, continuing until the
belief region falls below a predefined threshold. At the start
of each episode, the SU collects historical sensing data over
a defined time window. Using this data, it constructs two
sets: the PU-covering sector set, containing regions likely to
include PUs, and the non-PU-covering sector set, containing
regions believed to be PU-free. The PU location beliefs are
then updated by intersecting the current belief regions with
the PU-covering sector set and removing the non-PU-covering
sector set. This process gradually narrows down the potential
locations of PUs. Let Sm,l denote a particular sector of SUm,
where l ∈ [0, L) represents the sector index. Then, we obtain
the following:

Sm,l ={p | (xp − xm
t )2 + (yp − ymt )2 ≤ s2,

βs ≤ arctan 2(yp − ymt , xp − xm
t ) ≤ βs + ϕ},

(6)

where s is SU’s sensing range, p denotes a particular point with
coordinates (xp, yp), βs represents the initial angle, measured
counterclockwise from the positive x-axis to the first radius
of the lth sector, and (xm

t , ymt ) are the current coordinates of
SUm. The sector width is given by ϕ = 2π

L . We define F as
the set of points bounded by an arbitrary simple closed curve
within the considered zone and express the intersection with
sector Sm,l as: F ∩ Sm,l = {p|p ∈ F, p ∈ Sm,l}. Similarly,
the difference between F and Sm,l is given by: F \ Sm,l =
{p|p ∈ F, p /∈ Sm,l}. The area of F can be computed using
the shoelace theorem as follows:

A(F ) =
1

2

∣∣∣∣ f∑
i=1

xiyi+1 + xfy1 −
f∑

i=1

xi+1yi − x1yf

∣∣∣∣, (7)

where (xi, yi) are the coordinates of the ith point in the convex
hull set CF of F , which is determined using the Graham Scan
algorithm [43], and f = |CF |.

In the proposed solution, the SU maintains an estimation
belief, denoted as B, representing an approximation of the PU
locations. After each movement, the SU selects a sector for
comprehensive channel sensing and records historical sector
data, including the chosen sector index and associated PU
coverage status. The primary user location estimations (PLEs)
are updated based on this collected information. The detailed
PU estimation process is outlined in Algorithm 1.

This algorithm consists of Ef episodes with Tf time steps.
At each time step:

1) The SU relocates to a new position.
2) It selects a sensing sector Sm,l

t based on its current
local estimation beliefs, prioritizing sectors that have the
greatest intersection with those beliefs (Lines 4–15).

3) The experiences accumulated over Tf time steps are
divided into two distinct sets:
• PU-covering sector set Sc

t .
• Non-PU-covering sector set Sn

t (Lines 21–22).
4) The Sc

t set is subsequently used to update B by calculat-
ing the intersection between these sectors (Lines 23–29).
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Algorithm 1 Primary user location estimation (PLE) algorithm
1: Initialize e = 0
2: repeat
3: while t < Tf do
4: SUm moves to a new way point
5: if B = ∅ then
6: Randomly chose a sensing sector Sm,l

t , l < L
7: else
8: for each Sm,l, l < L do
9: Il ← Sm,l ∩ (

⋃
B)

10: end for
11: if ∃ argmaxl A(Il) then
12: l← argmaxl A(Il)
13: else
14: Sm,l

t ← ∅
15: end if
16: end if
17: if Sm,l

t ̸= ∅ then
18: Perform sensing with sector Sm,l

t

19: Store Sm,l
t with its PU-covering status

20: end if
21: end while
22: Sct ← {S

m,l
t |Sm,l

t ∋ PU}
23: Snt ← {S

m,l
t |Sm,l

t ̸∋ PU}
24: for each Sm,l

t ∈ Sct do
25: if ∀Bk ∈ B, Sm,l

t ∩Bk = ∅ then
26: B ← B + Sm,l

t

27: else if ∃Bk ∈ B, |Sm,l
t ∩Bk| = 1 then

28: Bk ← Sm,l
t ∩Bk

29: end if
30: end for
31: for each Sm,l

t ∈ Snt do
32: if ∀Bk ∈ B, Bk \ (Sm,l

t ∩Bk) = ∅ then
33: Delete Bk

34: else
35: Bk ← Bk \ (Sm,l

t ∩Bk)
36: end if
37: end for
38: e← e+ 1
39: until e = Ef or ∀Bk ∈ B, A(Bk) < µ

5) The estimation belief B is further updated by substracting
non-PU-covering sectors in Sn

t (Lines 30–36).
6) The algorithm stops updating when all element areas in B

reach the threshold µ (Line 37). At this stage, B consists
of relatively small sets. The final PLEs are determined
by computing the center points of all these sets, with the
total number of sets in B corresponding to the estimated
total number of PUs in the area.

B. Decentralized Partially Markov Decision Process

The optimization objective in (5) aims to maximize the
cumulative comprehensive awareness rate of all SUs, while
also increasing the likelihood of skipping sensing when an
SU is not in event I over time. In this context, the sensing
decision of each SU at every time step serves as the decision
variable. The sequence of decision-making steps taken by
the SUs, including their interactions with the environment
and the subsequent actions, aligns with the Markov game
framework, as it involves multiple agents (SUs) making
sequential decisions (i.e., sensing decisions) based on the
current state of the environment. These sensing decisions
represent the agents’ actions, which directly influence
future states and rewards. Consequently, the problem fits

within the Markov game framework, defined by its key
components—agents, states, actions, transitions, and rewards
[44], [45]. In this framework, M SUs act as agents within
a cooperative environment. Each SU obtains sensing results
from itself and from temporary neighbors, which cover the
same PUs. As a result, each SU makes decisions based
solely on this localized information, which means that the
environment is partially observable from the perspective of
each SU. Given this partial observability, we then model
the problem as a Dec-POMDP [42], defined as the tuple:
(M,S, {Am}m∈M,P, {rm}m∈M, {Om}m∈M, {Ym}m∈M, γ),
where M = {1, ...,M} is the set of all agents, S represents
the actual state of the environment, Am is the action space of
the mth agent, P(s′|s, a) : S × A → ∆(S) denotes the state
transition probability, rm(s, a, s′) : S×A×S → R represents
the reward function for agent mth when it takes action a
from state s to s′, Om signifies the partial observation space
available to agent mth, Ym : S → P(Om) defines the
observation channel that the mth agent uses to perceive its
local knowledge, and γ ∈ [0, 1) is the discount factor. At
every time step t, the mth agent utilizes its partial observation
om
t to execute an action amt . The joint actions of all agents,

{a1t , ..., aMt }, cause the environment to transition from state st
to st+1, while each agent receives a reward rmt (st, at, st+1).
The object of the mth agent is to determine an optimal policy
πm : Om → ∆(Am) that maximizes its expected long-term
discounted reward [46]–[48].

1) Actual State of the Environment: The actual state of
the environment includes all relevant information within the
considered area, such as the sensing collision state of all SUs,
their interconnections, and the coverage information of PUs.
Note that this actual environmental state is not observable
by the SUs during execution. It is only available during the
training phase, where it can be used for learning purposes.

We denote the environment state at time t as st, defined as:

st = {χt,Et,ρt},
where χt = [χm

t ], χm
t ∈ {0, 1},

Et = [emt ], emt = [em,n
t ], em,n

t ∈ {0, 1},
ρt = [ρut ], ρut ∈ [0,M ],

for 0 ≤ m,n < M, 0 ≤ u < U.

(8)

The components of the state are defined as follows:
• Actual Sensing Collision State χt: A vector representing

the actual sensing collision state of SUm at the previous
time step. Each element of the vector, χm

t , is a binary
variable which equals 1 if SUm experienced a sensing
collision, and 0 otherwise. As a true environmental signal,
χm
t is unobservable during execution and is available only

during training for learning purposes.

χm
t =

{
1, if SUm experienced a sensing collision,
0, otherwise.

• SU Connection State Et: An M×M connectivity matrix
indicating the relationship among SUs. If SUm and SUn

are connected (i.e., if their current groups share at least
one common member), then em,n

t = 1; otherwise, em,n
t =

0.
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• PU Coverage ρt: A vector where each element ρut rep-
resents the number of SUs currently covering a specific
PUu. The value ranges from 0 to M .

2) Partial Observations by Secondary Users: After exe-
cuting an action, each SU relocates and receives a partial
observation composed of the following information:

i. The observered sensing collision states of all SUs within
its previous group,

ii. The identities of SUs in its current group (i.e., current
neighborhood),

iii. The number of group members covering each PU that the
current SU can observe based on estimated PU locations.

These observations are based on SUs’ own estimations of
PU locations, not the ground truth PU positions as defined in
the system’s actual state. For a given SUm, the observation at
time t is defined as:

om
t = {χ̃m

t , η̃m
t , ρ̃m

t } ,
where χ̃m

t = [χ̃m,n
t ], χ̃m,n

t ∈ [−1, 1],

η̃m
t = [η̃m,n

t ], η̃m,n
t ∈ {0, 1},

ρ̃m
t = [ρ̃m,u

t ], ρ̃m,u
t ∈ [0, |Gm

t |],
with 0 ≤ m,n < M, 0 ≤ u < U.

(9)

The components of the observation are defined as follows:
• Observerd Sensing Collision State χ̃m

t : A vector where
each element represents SUm’s observation of the colli-
sion state of another SU, SUn at the previous time step.
This observed variable can take one of three values: 1,
0, or –1. The value –1 is used to explicitly capture cases
where SUm lacks observability or information sharing
with SUn, particularly when they do not belong to the
same group.
– If SUm was in event I at the previous time step:

∗ χ̃m,n
t = −1 if SUn did not belong to the previous

group of SUm (i.e., n /∈ Gm
t−1).

∗ χ̃m,n
t = 1 if SUn either experienced a sensing col-

lision or chose not to sense incase some channels
remain unsensed.

∗ χ̃m,n
t = 0 if no sensing collision occurred for SUn.

– If SUm was in event O at the previous time step:
∗ χ̃m,n

t = −1 if n ̸= m.
∗ χ̃m,n

t = 0 if n = m and SUm chose not to sense;
otherwise, χ̃m,n

t = 1.
• Current Group Membership η̃m

t : A vector where each
element indicates whether SUn is currently in the same
group as SUm.

η̃m,n
t =

{
1, if n ∈ Gm

t or n = m,

0, otherwise.

• Estimated PU Coverage ρ̃m
t : A vector where each

element represents SUm’s estimate of how many of its
current group members are covering each PU that SUm

can also currently observe.

ρ̃m,u
t =

{
0, if u /∈ Um

t ,∑
m∈Gm

t
1(u ∈ Um

t ), otherwise.

3) Action Space of Secondary Users: Each agent can sense
k channel-PU pairs or skip sensing at each time step. Thus, the
action space has a size of:

(
U×K

k

)
+1. Accordingly, the action

taken by the mth agent at time step t is defined as follows:

amt = [cm,i,j
t ]0≤i<K,0≤j<U , (10)

where cm,i,j
t ∈ {0, 1}, and i, j represent the channel and PU

indices, respectively. Note that, for convenience, we now use
amt to denote the action taken by SUm at time step tth, instead
of cmt as defined in Section IV.

4) Reward Function: At any time step, an SU may en-
counter one of the following four scenarios based on its
sensing decision:
#1. The SU is in event O and chooses not to sense.
#2. The SU is in event O and chooses to sense.
#3. The SU is in event I and chooses to sense PUs that are

not in its sensing range.
#4. The SU is in event I and either (i) chooses not to sense,

or (ii) senses a PU within its sensing range.
In our work, the original objective function (i.e., Eq. (5))

aims to maximize the comprehensive awareness rate of the
SUs while minimizing unnecessary sensing, especially under
event O (where no PU is within sensing range). The first ob-
jective can be achieved by reducing sensing collisions among
SUs within the same group. Minimizing sensing collisions
among SUs increases the number of unique channel-PU states
each SU can access after sensing and sharing results within
its group. As defined in Eq. (4), increasing the number of
unique channel-PU states available to each SU leads to a
higher comprehensive awareness rate. Therefore, the Dec-
POMDP formulation, with its objective of maximizing the
expected cumulative reward is valid to capture the original goal
of maximizing the comprehensive awareness rate. Meanwhile
the second objective can be supported using the estimated
locations of PUs. Motivated by these goals and the four
possible SU scenarios above, we define the reward function
with the following key components:

• A positive reward is assigned when an SU correctly
chooses not to sense under event O (Scenario #1) – which
aligns with reducing unnecessary sensing.

• A penalty is imposed when an SU senses in event O
(Scenario #2) – discouraging redundant sensing.

• A penalty is imposed when an SU senses a PU outside
its sensing range in event I (Scenario #3) – promoting
spatially accurate sensing.

• A dynamic reward is used in event I for Scenario #4
– incentivizing collaboration among group members by
minimizing sensing collision. This, in turn improves the
collective channel-PU state awareness.

In this way, each agent receives a reward for selecting
an appropriate action and a penalty for making an incorrect
choice. Eventually, by optimizing this reward function through
multi-agent reinforcement learning, each SU learns to select
actions that: (i) increase the probability of covering all relevant
PU channels within the group by reducing sensing collisions,
and (ii) reduce sensing redundancy. It is important to note
that the reward is assigned based on the actual state of the
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Fig. 3: QMIX architechture.

environment. Over time, through the learning process, the
agent is expected to converge towards an effective policy,
which can then be deployed during the execution phase.
Hence, the reward function is given as follows:

rmt =


0, if #1 happens,
−b if #2 or #3 happens,
−bχm

t , if #4 happens,
(11)

where b > 0 denotes the penalty score, and χm
t is the true

sensing collision state of SUm at the previous time step which
is 1 if SUm experienced a sensing collision, and 0 otherwise.
Note that the reward value we choose here is a neutral value
(i.e., 0), this is soly for the purpose of easy mornitoring when
developing the aglorithm, it has no affect to the performance
of the solution.

C. Multiagent Reinforcement Learning-based Sensing Colli-
sion Mitigation

To solve the Dec-POMDP problem, we first adopt the
CTDE architecture, where the system Q-value is learned in
a centralized manner using action observations acknowledged
by all agents. During the execution phase, once agents have
gained sufficient knowledge of the environment, they utilize
their policy network to determine the optimal action. In CTDE,
centralized training is applied only during the training phase
to enhance cooperative learning and learning efficiency, while
execution remains fully decentralized, allowing each agent to
make independent decisions. Since finding an optimal solution
for Dec-POMDPs is often intractable, we use QMIX [29], a
cooperative MARL algorithm, to approximate a near-optimal
solution that remains consistent with the objective of the
original problem formulation. We employ the QMIX algorithm
in this study , which establishes a monotonic relationship
between the total Q-value of the system and the individual
Q-value of each agent in cooperative environments. Thus, a
mixing network is trained centrally to learn the global action-
value function. Additionally, each agent is equipped with its
Q-network, which takes the local observations of the agent
as input and produces a corresponding optimal decision. We
define Qg as the global action-value function of the entire

system and Qm as the individual agent action-value function.
To ensure the monotonic relationship between these values,
the following constraint must be satisfied:

∂Qg

∂Qm
≥ 0 ∀m ∈ M, (12)

This constraint is enforced by how the algorithm controls the
weight of the mixing network. In the QMIX architecture, in
addition to the mixing network (Qg) and the agent network
(Qm), a set of hypernetworks exist, responsible for learning
nonnegative weights W for the mixing network. The number
of hypernetworks equals the number of layers in the mixing
network. The input for these hypernetworks is the global state
st of the system. This global state serves as extra information
indirectly fed into the mixing network. Fig. 3 illustrates the
overall QMIX architecture.

Similar to the conventional deep Q-learning algorithm, the
loss function for updating these networks is based on the
temporal difference error, expressed as follows:

L(θ) =
∑
B

(ygt −Qg(ot,at|θ))2, (13)

where θ represents the parameters for the evaluation agent
network and hypernetworks, B denotes the batch data sampled
from the replay buffer, and ygt is defined as follows:

ygt =
∑

m∈M
rmt + γmax

at+1

Qg(ot+1,at+1|θ′), (14)

where θ′ denotes the parameter for the target agent network
and hypernetworks. The evaluation network and hypernetwork
parameters are updated as follows:

θt := θt−1 − α∇θL(θ), (15)

where α represents the learning rate. The step-by-step SCM
procedure is detailed in Algorithm 2.

D. Computational Complexity Analysis

In the training phase, each agent is equipped with a Q-
network, while a centralized Q-network is accompanied by a
set of hypernetworks. Let V denote the number of layers for in
all Q-networks. Consequently, there are also V hypernetworks,
each consisting of Z layers.

The computational complexity for a single episode of a

single agent’s Q-mix network is given by: O

(
Ts

(
X1H1 +

(V − 2)H2
1 + Y1H1

))
where H1 represents the hidden layer

size, and X1 and Y1 denote the dimensions of the input and
output layers, respectively. As illustrated in Fig. 3, the agent
network takes as input the current partial observation and the
last action, producing the Q-value as output. Thus, we have:
X1 = 2M + U +KU, Y1 = 1.

Similarly, the computational complexity of the centralized

Q-network is given by: O
(
Ts

(
X2H2+(V −2)H2

2 +Y2H2

))
where X2 = M represents the joint state dimension (i.e.,
the number of agents in the system), Y2 = 1 is the output
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Algorithm 2 Sensing collision mitigation (SCM) algorithm
1: Initialize the cognitive environment
2: Initialize the replay buffer and all hyperparameters
3: Initialize weight parameters for the hypernetworks, evaluation agent

networks, and target agent networks
4: repeat
5: Obtain the initial state s0 and initial observation o0

6: for t := 1...Ts do
7: for SUm ∈M do
8: Select action amt from πm according to ϵ-greedy
9: end for

10: All SUs perform sensing based on the chosen actions
11: SUs obtain reward rt based on (11)
12: The environment transitions to the next state st+1

13: SUs observe the next observation ot+1

14: Store (st,ot,at, st+1,ot+1, rt) to the replay buffer
15: st ← st+1,ot ← ot+1

16: if enough experiences then
17: Sample batch B from the replay buffer
18: Obtain all Qm

t and Qm
t+1 from the evaluation and target agent

networks
19: Obtain W from the hypernetworks
20: Obtain Qg

t and Qg
t+1 from the mixing network with inputs of

Qm
t and Qm

t+1
21: Calculate the loss according to (14)
22: Update the evaluation agent and hypernetwork weights accord-

ing to (15)
23: if update == true then
24: Update the target agent networks from the evaluation

networks
25: end if
26: end if
27: if ϵ > ϵmin then
28: ϵ← ϵ− ϵd
29: end if
30: end for
31: until convergence or aborted

dimension of the centralized Q-network, and H2 denotes the
hidden layer size used in the centralized Q-network.

Finally, the computational complexity of the set of hyper-

networks is given by: O
(
TsV

(
X3H3+(Z−2)H2

3 +Y3H3

))
where X3 = M + M2 + U represents the combined input
size, Y3 = H2 is the output size of the hypernetwork, which
matches the hidden layer size of the centralized Q-network,
and H3 denotes the hidden layer size used in the hypernetwork.

VI. NUMERICAL RESULTS

This section presents simulations to validate the perfor-
mance of the SCM algorithm. Table II details all essential
hyperparameters for the wireless environment and the pro-
posed algorithm. The first part of this section evaluates the
performance of the PLE algorithm, measuring its effectiveness
in terms of the PU identification rate (PIR) and Hausdorff
distance. Following that, we illustrate the overall effectiveness
of the proposed solution, highlighting its superior convergence
performance, reduced sensing collision rate, enhanced channel
state awareness rates, and lower sensing overhead compared
with baseline schemes. We compare the proposed algorithm
with five baseline schemes, described as follows.

1) Central-V [49]: A multiagent extension of the temporal
difference actor-critic algorithm, a policy gradient-based
method.

2) Value-decomposition networks (VDN) [50]: A MARL al-
gorithm that follows the CTDE approach. Unlike QMIX,

TABLE II: Simulation parameters.

Parameter Value
Number of PUs U 3, 7, 11
Number of channel bands K 4
Number of SUs M 7, 10
Number of sectors L 4, 6, 8
Zone width z 1 km
SU sensing range s 100, 200, 300 m
Number of sensing channel-PU pairs k 1, 2
Time steps per episode (PLE) Tf 100, 200
No. of episodes (PLE) Ef 30
Area threshold (PLE) µ 1e-4
Time steps per episode (QMIX) Ts 100
Optimizer Adam
Learning rate 1e-3
Discount factor γ 0.99
Agent network layers 3
Mixing network layers 3
Initial ϵ 1
Epsilon decay value ϵd 19e-6
Minimum ϵmin 0.05
Time steps to update target networks 200
Batch size 32
Buffer size 5e3
Reward penalty score b 20

VDN employs a simpler decomposition, representing the
system Q-value as the sum of all individual agents’ Q-
values.

3) Centralized CSS (C-CSS): A centralized node that col-
lects all information regarding all SU locations within
the network at each time step and determines the optimal
sensing channel-PU indices for all SUs based on the esti-
mated PU locations, ensuring no sensing collisions. This
represents a near-ideal scenario, demonstrating close-to-
optimal coordination.

4) Random sensing with PLE (R-PLE): SUs decide whether
to sense at each time instant based on PU location
estimation output from PLE. If sensing is selected, the
k sensing channel-PU pairs are chosen randomly.

5) Random sensing without PLE (R-nPLE): Agents lack
information since PLE is not performed. At each time
step, agents choose k channel-PU pairs to sense, making
their selections randomly.

A. PU Location Estimation (PLE)

1) Effect of Different Numbers of PUs: This simulation
evaluates the PLE performance under varying numbers of
PUs, ranging from three to 11. The algorithm is executed
10 times for each PU quantity, and the results are averaged.
The applied performance metric is the PIR, defined as the
frequency with which SUs correctly select the sector covering
any PU over the total event occurrences I . PU locations are
randomly positioned within the considered zone width in each
runtime. Fig. 4 illustrates the results for each episode. After
several episodes, the algorithm converges to a PIR of 99%
when the number of PUs is three and 95% when the number
of PUs is 11. Additionally, as the number of PUs increases,
the PIR decreases. This occurs because higher density makes it
more challenging to distinguish nearby PUs, especially when
they frequently fall within the same sector area.
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Fig. 4: Average PU identification rate (PIR) with different
numbers of PUs, L = 4, s = 300 m,Tf = 100.

Fig. 5: Average Hausdorff distance with different settings.

2) Effect of Different Sector Settings and Number of Time
Steps for Each Episode: This experiment employs the Haus-
dorff distance [51] as the performance metric, measuring the
discrepancy between the actual and estimated PU positions.
The Hausdorff distance between two sets of points, X and Y ,
in a two-dimensional space, quantifies their similarity and is
computed as follows:

dH(X ,Y) = max( sup
px∈X

inf
py∈Y

d(px, py), sup
py∈Y

inf
px∈X

d(py, px)),

(16)

where sup and inf are the supremum (maximum) and infimum
(minimum) operators, and d(px, py) denotes the Euclidean
distance from point px to py .

Fig. 5 illustrates the algorithm’s performance under different
sector settings, including the number of sectors L and the
sensing range s. A larger Hausdorff distance indicates greater
dissimilarity between the actual and estimated PU locations.
As shown in the figure, all settings exhibit an upward trend,
reflecting that as the number of PUs increases, the algorithm
encounters greater challenges in accurately estimating their
locations. Conversely, a higher number of sectors and a shorter
sensing range result in a smaller sensing area per sector,
leading to better PLE performance with a smaller Hausdorff
distance. Additionally, increased time steps per episode allow
the SU to accumulate more historical data, further reducing the
Hausdorff distance. Generally, a configuration of six sectors,
a sensing range of 200 m, and 100 time steps per episode
demonstrates commendable performance, with a maximum
Hausdorff distance of approximately 20 m when the number
of PUs is 11.

Fig. 6: Convergence with different settings, U = 3.

B. Multiagent Reinforcement Learning-based

This section presents comprehensive simulations to evaluate
the performance of the proposed SCM algorithm, considering
the convergence behavior, sensing collision rate, channel state
awareness rate, and sensing overhead.

1) Convergence Analysis: This simulation initially executes
the algorithm under various settings concerning the number of
SUs M and the sensing channel-PU pairs k. Fig. 6 illustrates
the sum system reward convergence curves over episodes for
different values of M and k with a fixed number of PUs
(U = 3). Notably, the algorithm demonstrates stable conver-
gence after sufficient episodes, regardless of these parameters.
Specifically, a faster convergence speed is observed with fewer
agents (i.e., M = 7), and a similar trend occurs with a smaller
k (i.e., k = 1). This result is expected as agents learn to avoid
sensing collisions and having fewer M and k simplifies this
goal.

Fig. 7 presents a convergence comparison between the
proposed SCM algorithm and two baseline approaches, VDN
and Central-V. The simulation environment is identical for all
three approaches: The number of SUs M is set to M = 7, the
number of sensing channel-PU pairs is k = 2, the number of
PUs is U = 3. All three approaches exhibit convergence after
several episodes. The proposed SCM algorithm demonstrates
superior convergence performance, achieving the highest re-
ward (close to zero) with a more stable convergence pro-
cess. VDN and Central-V converged earlier (around episode
1000) but only achieved approximately −30 and −42 of
reward values, respectively. This is because our objective is
to achieve fine-grained interactions between agents’ actions,
such as avoiding conflicts. QMIX, with its nonlinear and
state-dependent mixing network, enables complex inter-agent
coordination. This allows proposed solution to effectively
capture the intricate relationships between agents’ actions and
their collective impact on the team reward. In contrast, Central-
V learns a joint value function for the entire system but does
not explicitly model individual agents’ contributions or the
joint action space. As a result, it is less effective at capturing
the detailed interactions between agents’ actions. Similarly,
VDN simplifies the problem by decomposing the joint Q-
value as a linear sum of individual agents’ Q-values. While
easier to implement, this linear approach struggles to handle
the complexities of multi-agent coordination.
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Fig. 7: Convergence comparison, M = 7, k = 2, and U = 3.

Fig. 8: Sensing collision rate with different settings, U = 3.

2) Sensing Collision Rate with Different Settings: Fig. 8
illustrates the impact of M (number of SUs) and k (sensing
channel-PU pairs per SU) on the average sensing collision rate
of all SUs. A lower collision rate (close to zero) is observed
when fewer SUs and sensing channel-PU pairs are present
(i.e., M = 7, k = 1). This indicates that, at each time slot,
individual SUs can effectively select sensing channel-PU pairs
that do not overlap with those chosen by nearby SUs. In
scenarios such as M = 7, k = 2 or M = 10, k = 2, the
observed sensing collision rates are approximately 0.01 and
0.04, respectively. These results demonstrate the algorithm’s
capability to minimize collisions, even as the number of SUs
increases.

3) Channel State Awareness Rate with Different Settings:
Fig. 9 compares different M (number of SUs) and k (sensing
channel-PU pairs per SU) settings w.r.t. the average channel
state awareness rate per episode, defined as follows:

ωavg =
1

Ts

1

M

Ts−1∑
t=0

M−1∑
m=0

ωm
t . (17)

This experiment revealed a reverse trend compared to the
sensing collision rate, where a higher number of SUs M and
sensing channel-PU pairs k resulted in a higher channel state
awareness rate. With M = 7 and k = 1, the algorithm per-
formed least effectively, achieving approximately 74% channel
state awareness rate. Meanwhile, a configuration of M = 7
and k = 2 exhibits a faster increase in ωavg than M = 10
and k = 2 but ultimately reaches a lower channel state
awareness rate (approximately 90%). This outcome indicates
that, although higher M and k values make it more challenging
for agents to learn the optimal policy, the final performance
can still exceed configurations with smaller M and k. This is

Fig. 9: Awareness rate with different settings, U = 3.

Fig. 10: Sensing collision rate comparison, M = 7 and k = 2.

because a greater number of agents and more sensing channel-
PU pairs promote higher cooperation, ultimately improving
overall system efficiency.

4) Sensing Collision Rate Comparison with Baseline
Schemes: Fig. 10 compares sensing collision rates between
the proposed scheme and various baseline methods under
different PU scenarios. For this comparison, we set the number
of SUs at M = 7 and the number of sensing channel-PU
pairs at k = 2. R-nPLE, which lacks environmental learning,
exhibited the highest collision rate (approximately 75.5%). R-
PLE, relying solely on PLE, reducing the collision rate to
approximately 36%. VDN and Central-V further lowered the
collision rates of 29% and 6.5%, respectively. The proposed
SCM scheme outperformed all decentralized counterparts,
achieving 1% sensing collision rate U = 3 and 1% sensing
collision rate with U = 7. Notably, the SCM scheme’s
performance is comparable to the nearly optimal collision rate
achieved by the C-CSS scheme.

5) Channel state awareness rate comparison with baseline
schemes: Fig. 11 compares the SCM algorithm with baseline
schemes in terms of the average channel state awareness rate
with U = 3 and U = 7. Across scenarios with varying
numbers of PUs, the R-nPLE scheme consistently exhibited
the lowest performance. VDN and R-PLE performed better,
achieving ωavg approximately 73% and 84% for U = 3,
and 64% and 67% for U = 7. Central-V demonstrated
commendable performance, with only marginal degradation
compared to the proposed SCM scheme. The proposed SCM
algorithm outperformed all decentralized methods, achieving
ωavg approximately 91% for U = 3 and 72% for U = 7.
This performance is nearly comparable to the C-CSS scheme.
Moreover, an increase in the number of PUs does not signifi-
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Fig. 11: Awareness rate comparison, M = 7 and k = 2.

cantly affect the sensing collision rate. However, the channel
state awareness rate decreased because each SU covers a
higher number of channel-PU pairs per time step on average
with a higher number of PUs. Consequently, maintaining a
fixed number of sensing channel-PU pairs at k = 2 decreases
the channel state awareness rate.

6) Sensing Overhead Comparison with Baseline Schemes:
Fig. 12 presents a performance comparison of sensing over-
head versus average channel state awareness between the
proposed solution and baseline methods. For this experiment,
the number of sensing channel-PU pairs is set at (k = 2), and
the number of PUs is set at (U = 3). The bar chart represents
the sensing overhead, measured as the average k that one SU
chooses to sense in a time slot, expressed as follows:

kavg =
1

Ts

1

M

Ts−1∑
t=0

M−1∑
m=0

kmt , (18)

where kmt ∈ {0, k}.
The line chart illustrates the average channel state awareness

rate corresponding to each of the comparison schemes. First,
we analyzed the results of all schemes with seven SUs
(M = 7). Both the proposed scheme and the optimal case
of the C-CSS scheme exhibited similar average channel state
awareness rates and required sensing overhead. Moreover,
compared to the highest overhead scenario of k = 2 (observed
in the R-nPLE scheme), the proposed solution reduces sensing
overhead by approximately 53.2%. When comparing with
the R-PLE scheme, where SUs greedily sense in every time
slot when they move near any PU, the proposed scheme
can save approximately 13.4% of the sensing overhead while
maintaining commendable performance. Although the VDN-
based scheme achieved the lowest average sensing overhead,
it resulted in the second-worst ωavg (outperforming only the
R-nPLE scheme). Furthermore, when comparing the proposed
scheme with different numbers of SUs (M = 7 and M =
10), the algorithm demonstrates improved performance with
reduced sensing overhead (approximately 0.83 channel-PU
pairs per time step) as more agents are incorporated. This
outcome underscores the cooperative nature of the scheme and
indicates that overall system performance can be enhanced by
introducing additional SUs into the network.

Fig. 12: Sensing overhead comparison, k = 2, U = 3.

VII. CONCLUSION AND FUTURE WORKS

This study investigates a decentralized CSS scheme for
mobile directional CRNs. We formulated a stochastic sequen-
tial optimization problem to enhance channel state awareness
while reducing unnecessary overhead through dynamic sensing
decisions for channel-PU pairs. To address this problem, we
proposed a two-stage learning approach that comprises a PLE
algorithm and an SCM method. In the second stage, the
problem was transformed into a Dec-POMDP, for which we
applied QMIX, a CTDE-based MARL algorithm. This CTDE
architecture allows SUs to learn centrally and operate decen-
tralized with limited communication after sufficient training.
Numerical results demonstrate that our solution outperforms
alternative schemes regarding convergence, sensing collision
rate, channel state awareness, and sensing overhead. Moreover,
the findings highlight the cooperative nature of the prob-
lem, indicating that increased SU participation can further
enhance overall performance. While this study offers valu-
able insights into enhancing channel state awareness through
SU cooperation, some limitations present opportunities for
further research. Our model assumes ideal conditions for
applying directional antennas to mobile SUs; however, real-
world challenges—such as multipath effects, non-line-of-sight
conditions, and handover issues—must be addressed. Future
work could integrate advanced beamforming techniques, such
as massive MIMO, or hybrid beamforming to mitigate these
challenges while preserving the benefits of directional anten-
nas. Although our findings provide a strong foundation, further
research is needed to generalize the approach across diverse
environments.

REFERENCES

[1] Lionel Sujay Vailshery. Number of internet of things (iot) connected
devices worldwide from 2019 to 2023, with forecasts from 2022 to
2030 (in billions) [graph], July 1 2023.

[2] Ian F Akyildiz, Won-Yeol Lee, Mehmet C Vuran, and Shantidev
Mohanty. Next generation/dynamic spectrum access/cognitive radio
wireless networks: A survey. Computer networks, 50(13):2127–2159,
2006.



15

[3] Ian F. Akyildiz, Brandon F. Lo, and Ravikumar Balakrishnan. Cooper-
ative spectrum sensing in cognitive radio networks: A survey. Physical
Communication, 4(1):40–62, 2011.

[4] Woongsoo Na, Jongha Yoon, Sungrae Cho, David Griffith, and Nada
Golmie. Centralized cooperative directional spectrum sensing for
cognitive radio networks. IEEE Transactions on Mobile Computing,
17(6):1260–1274, 2018.

[5] Woongsup Lee, Minhoe Kim, and Dong-Ho Cho. Deep cooperative
sensing: Cooperative spectrum sensing based on convolutional neural
networks. IEEE Transactions on Vehicular Technology, 68(3):3005–
3009, 2019.

[6] Rahil Sarikhani and Farshid Keynia. Cooperative spectrum sensing
meets machine learning: Deep reinforcement learning approach. IEEE
Communications Letters, 24(7):1459–1462, 2020.

[7] Jun Wu, Cong Wang, Yue Yu, Tiecheng Song, and Jing Hu. Performance
optimisation of cooperative spectrum sensing in mobile cognitive radio
networks. IET Communications, 14(6):1028–1036, 2020.

[8] Xiaoying Liu, Kechen Zheng, Kaikai Chi, and Yi-Hua Zhu. Cooperative
spectrum sensing optimization in energy-harvesting cognitive radio net-
works. IEEE Transactions on Wireless Communications, 19(11):7663–
7676, 2020.

[9] Sadia Khaf, Georges Kaddoum, and Joao Victor de Carvalho Evange-
lista. Partially cooperative rl for hybrid action crns with imperfect csi.
IEEE Open Journal of the Communications Society, 5:3762–3774, 2024.

[10] Jun Wu, Mingkun Su, Lei Qiao, Xiaorong Xu, Xuesong Liang, Hao
Wang, Jianrong Bao, and Weiwei Cao. Quick parallel cooperative
spectrum sensing in cognitive wireless sensor networks. IEEE Sensors
Letters, 8(8):1–4, 2024.

[11] Lingyun Zhou, Wenqiang Pu, Yixin Jiang, Ming-Yi You, Rongqing
Zhang, and Qingjiang Shi. Joint optimization of uav deployment and
directional antenna orientation for multi-uav cooperative sensing system.
IEEE Transactions on Wireless Communications, 23(10):14052–14065,
2024.

[12] Qing Hu, Chensong Zhao, Shahzad Bashir, Shuaiheng Huai, Yanpeng
Dai, Qing Zhang, Yuchen Wang, and Mingming Li. Cooperative
spectrum sensing for the offshore cognitive ship ad hoc network. IEEE
Sensors Journal, 25(2):3199–3211, 2025.

[13] Jie Shi, Jiaxin Wu, Jingzheng Chong, and Zhihua Yang. Collaborative
spectrum sensing for multi-uav system: a u-net approach with uncer-
tainty awareness. IEEE Transactions on Vehicular Technology, pages
1–16, 2025.

[14] Ang Gao, Chengyuan Du, Soon Ng, and Wei Liang. A cooperative
spectrum sensing with multi-agent reinforcement learning approach in
cognitive radio networks. IEEE Communications Letters, PP:1–1, 05
2021.

[15] Jarmo Lunden, Sanjeev R Kulkarni, Visa Koivunen, and H Vincent Poor.
Multiagent reinforcement learning based spectrum sensing policies for
cognitive radio networks. IEEE journal of selected topics in signal
processing, 7(5):858–868, 2013.

[16] Wenli Ning, Xiaoyan Huang, Kun Yang, Fan Wu, and Supeng Leng. Re-
inforcement learning enabled cooperative spectrum sensing in cognitive
radio networks. Journal of Communications and Networks, 22(1):12–22,
2020.

[17] Chunghyun Lee, Junsuk Oh, Woongsoo Na, Jongha Yoon, Wonjong
Noh, and Sungrae Cho. Directional-antenna-based spatial and energy-
efficient semi-distributed spectrum sensing in cognitive internet-of-
things networks. Journal of Network and Computer Applications, page
103687, 2023.

[18] Xuanheng Li, Yulong Zhang, Haichuan Ding, and Yuguang Fang.
Intelligent spectrum sensing and access with partial observation based on
hierarchical multi-agent deep reinforcement learning. IEEE Transactions
on Wireless Communications, 23(4):3131–3145, 2024.

[19] Ang Gao, Qinyu Wang, Yongze Wang, Chengyuan Du, Yansu Hu, Wei
Liang, and Soon Xin Ng. Attention enhanced multi-agent reinforcement
learning for cooperative spectrum sensing in cognitive radio networks.
IEEE Transactions on Vehicular Technology, 73(7):10464–10477, 2024.

[20] Sungwook Kim. Multi-agent learning and bargaining scheme for
cooperative spectrum sharing process. IEEE Access, 11:47863–47872,
2023.

[21] Jiawen Li, Yonghua Wang, Yanqing Chen, Guanhai Xu, and Bingfeng
Zheng. Local cooperative sensing in 3d spectrum availability-
heterogeneous uav networks. IEEE Transactions on Vehicular Tech-
nology, pages 1–14, 2024.

[22] Xiang Tan, Li Zhou, Haijun Wang, Yuli Sun, Haitao Zhao, Boon-Chong
Seet, Jibo Wei, and Victor C. M. Leung. Cooperative multi-agent
reinforcement-learning-based distributed dynamic spectrum access in

cognitive radio networks. IEEE Internet of Things Journal, 9(19):19477–
19488, 2022.

[23] Weishan Zhang, Yue Wang, Xiang Chen, Lingjia Liu, and Zhi Tian. Col-
laborative learning-based spectrum sensing under partial observations.
IEEE Transactions on Cognitive Communications and Networking,
10(5):1843–1855, 2024.

[24] Qiu Wang, Hong-Ning Dai, Orestis Georgiou, Zhiguo Shi, and Wei
Zhang. Connectivity of underlay cognitive radio networks with
directional antennas. IEEE Transactions on Vehicular Technology,
67(8):7003–7017, 2018.

[25] Shuchi Tripathi, Abhishek K Gupta, and SaiDhiraj Amuru. Coverage
analysis of cognitive mmwave networks with directional sensing. In
2021 55th Asilomar Conference on Signals, Systems, and Computers,
pages 125–129. IEEE, 2021.

[26] Yanxiao Zhao, Prosanta Paul, ChunSheng Xin, and Min Song. Perfor-
mance analysis of spectrum sensing with mobile sus in cognitive radio
networks. In 2014 IEEE International Conference on Communications
(ICC), pages 2761–2766, 2014.

[27] Xinyu Wang, Min Jia, Qing Guo, and Xuemai Gu. Performance analysis
of spectrum sensing for mobile cognitive radio networks. In 2015 IEEE
Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2015.

[28] Alexander W Min and Kang G Shin. Impact of mobility on spectrum
sensing in cognitive radio networks. In Proceedings of the 2009 ACM
workshop on Cognitive radio networks, pages 13–18, 2009.

[29] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gre-
gory Farquhar, Jakob Foerster, and Shimon Whiteson. Monotonic value
function factorisation for deep multi-agent reinforcement learning. The
Journal of Machine Learning Research, 21(1):7234–7284, 2020.

[30] Christian Bettstetter, Hannes Hartenstein, and Xavier Pérez-Costa.
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