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Abstract—The use of directional antennas in high frequency
bands (e.g., millimeter-wave) is essential to support applications
requiring high throughput and low latency. However, communi-
cations using directional antennas require intricate scheduling by
a central coordinator to avoid collision and deafness problems.
Thus, in this study, we propose a directional medium access
control (DMAC) protocol based on a deep Q-network (DQN)
framework wireless ad hoc networks (WANETs) for Internet of
Things (IoT). In our model, even though there is no central
coordinating unit (e.g., edge/cloud server), each IoT device can
intelligently avoid the collision and deafness through its learning
agent. In addition, to maximize the throughput, we design a
reinforcement learning (RL) architecture and propose a DQN-
based DMAC such that each IoT device intelligently selects the
time-slot and transmitting beam without any central coordinator.
The proposed schemes are evaluated using carrier-sense multiple
access (CSMA) and adaptive learning-based DMAC(AL-DMAC)
protocols. The evaluation results reveal that the proposed double
DQN scheme outperforms the existing schemes by approximately
54.1% and 57.2% in terms of the throughput.

Index Terms—Deep reinforcement learning, directional MAC,
deep Q-network

I. INTRODUCTION

Owing to the saturation problems faced in frequencies up
to 6 GHz, wireless communication using millimeter waves
(mmWave), such as the fifth-generation mobile communica-
tion, has been proposed and commercialized in IoT. The IEEE
802.11ad and 802.11ay standards are representative protocols
that use the unlicensed mmWave band and these standards
use directional communication for high data rates [1], [2].
In addition, they support the ad hoc mode in which nodes
are operated without a central coordinating unit. As the ad
hoc mode is possible without pre-installed communication
infrastructure, it is a promising option for device-to-device
(D2D) network and disaster-area communications using IoT
devices.
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Compared to omnidirectional communication, directional
communication has many benefits. For instance, it can transmit
signals to a longer distance than those of the omnidirectional
communication with the same transmission power. In addition,
it enhances the channel reuse by using only a partial degree of
omnidirectional communication. Despite its advantages, direc-
tional communication has a problem of deafness, which arises
because of the blocked beam during transmission/reception,
resulting in severely reducing the overall network capacity.
Therefore, a medium access control (MAC) protocol for
directional communication is necessary for achieving high
performance by managing the deafness problem as well as
collision (interference).

On the other hand, with the rapid evolution of computa-
tional capacity of communication nodes, the deep learning
approach has been adapted to resolve various wireless com-
munication challenges and requirements, nowadays [3]–[5].
For instance, machine learning-based scheduling techniques
have been emerged as one of the methods to efficiently
schedule communication without a central coordinator such as
edge/cloud server. In particular, adapting deep reinforcement
learning (DRL) technique to the wireless MAC protocol is
being actively studied [6]–[8]. In these schemes, each com-
munication IoT node can be considered as an agent, and
RL architectures were proposed for the formulated problems
(i.e., maximizing throughput or fairness). Thus, each IoT node
learns the network environment to maximize overall network
throughput or fairness and decides whether to transmit in
a specific time-slot or not. However, most of these studies
assumed omnidirectional communication, and the deafness
problem was not considered in [7] that assumed directional
communication. Thus, in this study, we investigate the RL
structure that maximizes network throughput by avoiding deaf-
ness and collision in a directional wireless ad hoc networks
(WANETs) for IoT. Besides, our RL architecture maximizes
network throughput by considering spatial reuse.

The major technical contributions of this study can be
summarized as follows:

• RL-based DMAC system architecture: We proposed a
new system model and RL architecture for throughput
maximization of the DMAC protocol in WANETs for
IoT. Based on the characteristics of RL that an agent
can improve its performance by interacting with the
environment, the overall network strives to achieve better
performance by agent-environment interaction.

• Q-learning based MAC protocol for directional IoT
networks: Based on the RL architecture and Q-learning
algorithm with the carrier-sense multiple access (CSMA)
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mechanism we proposed deep Q-network (DQN) frame-
works for DMAC (i.e., DDMAC and DDDMAC).

• Smart beam scheduling without a central coordinator:
By using DRL, we resolve the scalability problem of the
classic Q-learning. The proposed scheme attempts to se-
lect not only the time-slot, but also transmit beam to avoid
collision and deafness without any central coordinator.

• Maximizing spatial-resource: In addition, our proposed
RL architecture considered spatial reuse by finding si-
multaneous transmittable node pairs in one time-slot.

• Next-generation domain-free MAC protocol: The pro-
posed scheme can be used not only in the WSN-IoT
environment but also domain-independently. In particu-
lar, in the 6G environment, the proposed scheme can
be used as a wireless access technology for the next-
generation mobile communication system as the utiliza-
tion of mmWave and THz bands and network intelligence
become essential.

• Outstanding performance compared to existing
DMAC schemes: We demonstrate that the pro-
posed scheme outperforms the existing DMAC proto-
cols, CSMA-based DMAC, and adaptive learning-based
DMAC (AL-DMAC) in terms of the aggregate throughput
and latency by . Furthermore, by simple modification,
DDDMAC demonstrates a higher aggregate throughput
and lower latency than the existing DMAC schemes.

The remainder of this paper is organized as follows. In
Section II, we review the literature on RL approaches to MAC
protocols. In Section III, we introduce the system model for
DMAC in WANETs for IoT. The RL architecture for DMAC
is proposed in Section IV. In Section V, we propose the Q-
learning algorithm and the DRL framework for throughput
maximization. A performance evaluation is presented in Sec-
tion VI. Finally, we present the conclusions in Section VII.

II. RELATED WORK

A. Deep Reinforcement Learning

Using RL, an agent can learn its policy by interacting with
the environment [9]. Q-learning is regarded as a powerful
reinforcement learning method because it can estimate the Q-
value of the state and action pair without prior knowledge
of the model. The RL agent estimates the Q-value through
experience, which is an outcome of the agent-environment
interaction. DRL methods based on DQN [10], [11] and
deep deterministic policy gradient (DDPG) [12] have been
actively researched in the field of wireless communication.
DQN attempts to approximate the Q-function, which estimates
the discounted cumulative reward based on the state and action
pair. In contrast, DDPG attempts to approximate the policy
itself and generates the value of the action based on the
state. Hasselt et al. proposed a double DQN method [13] to
resolve the problem of DQN non-uniformly overestimating
the action value. Similar to DQN, the double DQN method
uses a policy network and a target network. While the DQN
method selects the next action that maximizes the Q-value and
calculates the values of the next state and action using only the
target network, the double DQN method decouples the action

selection from the value evaluation. The latter approach can
minimize overestimation and achieve a higher performance
than that of the existing DQN approach. The dueling DQN
method was proposed in [14]. In this method, the Q-value of a
given state and action are calculated by estimating the value of
a given state and the advantage of the state-dependent action.
By separating the estimation of state and action, the dueling
DQN can learn which state is more valuable, excluding the
effect of each action for the state.

B. Reinforcement Learning-based MAC

Most of the initial RL-based MAC schemes were proposed
based on the ALOHA MAC protocol because of its simplic-
ity. For instance, ALOHA-Q, which is a MAC protocol for
wireless sensor networks, was proposed in [15], [16]. The
ALOHA-Q node learns the Q-value to determine the time-
slot to transmit a packet by reflecting the experience of the
transmission success. ALOHA-Q uses stateless Q-learning so
that the Q-value depends only on the action (i.e., time-slot to
transmit the packet). The protocol assumes that each frame is
divided into slots, and the node transmits a packet to one of
the slots in each frame.

Based on ALOHA-Q, the ALOHA-quantitative tree (QT)
and ALOHA-QTF were proposed in [17]. While ALOHA-
Q selects only the time-slot to transmit, ALOHA-QT and
ALOHA-QTF select both the time-slot and the number of
slots per frame. Moreover, ALOHA-QTF considers fairness by
estimating the number of active nodes in the same network. To
estimate the number of active nodes, each node must transmit
its node ID and retain the sliding window containing the node
ID. Even though those protocols can dynamically determine
the frame length, there still exists a problem in that the depth
of the policy tree must be set appropriately, which significantly
affects convergence and spatial complexity.

ALOHA-Q has been expanded to UW-ALOHA-Q, which
is a MAC protocol for underwater acoustic sensor networks
[18]. Unlike other ALOHA-Q-based protocols, UW-ALOHA-
Q enables asynchronous slotted frame-based communication
among nodes by providing a sufficiently large guard interval
for a slot. In addition, to resolve the problem caused by
asynchronous slotted frame-based communication, uniform-
random back-off scheme was presented. The sensor node
delays the next start of the frame if a collision occurs. Because
the Q-value is also updated when a collision occurs, it is likely
to fail to converge.

Yu et al. researched DRL-based MAC (DLMA), where
DLMA nodes determine whether or not to transmit in every
time-slot based on the previous M slots history [19]–[21]. In
particular, a DLMA for heterogeneous wireless networks was
proposed in [20], [21]. In these methods, the DLMA nodes
use the DRL architecture to learn the policy to maximize the
sum throughput or α-fairness. When α is close to 0, α fairness
works similarly to the sum throughput maximization. When α
is close to ∞, it works similar to maximizing the minimum
of throughput. A deep residual network (ResNet) was used
to achieve near-optimal performance under various scenarios.
The action that maximizes the approximated Q-value is se-
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lected for throughput maximization, and the action that the α-
fairness function provides an approximated Q-value is selected
for fairness maximization. DLMA for CSMA (CS-DLMA) for
heterogeneous wireless networks was proposed in [19]. Unlike
traditional CSMA protocols, CS-DLMA determines whether
to transmit for each time-slot without an exponential back-
off. Because the transmitting packet occupies multiple slots,
a reward is provided after transmission, not every slot. The
authors introduced reward backpropagation schemes, which
divided the received reward into rewards of past time-slots to
transmit. A DRL-based MAC for backscatter communication
was proposed in [8]. Backscatter devices and Wi-Fi stations
coexist with associated APs, which is considered as an agent.
Action was defined as a reservation strategy for transmission
by backscatter devices. Each AP learns polices without coor-
dination with other APs. For simplicity, the aforementioned
RL approaches for wireless MAC assumed that all nodes are
in the communication area. Thus, they excluded the hidden
node problem, which can occur when a node is out of the
communication range of other nodes.

An AL-DMAC for millimeter-wave wireless networks was
proposed in [7]. In this method, for each slot in the frame,
the node determines whether to transmit or receive based on
the transmission and reception probabilities as well as slot
index. The probabilities are updated whenever a transmission
or reception action is performed. Instead of an exponential
back-off, a linear back-off algorithm was adopted for the AL-
DMAC. When the transmission is successful, the contention
window (CW) size is reduced by a certain number of slots,
and when the transmission fails, the CW size is increased by
the same number of slots. However, AL-DMAC only considers
the time-slot and has no consideration of where to transmit. If
the node has packets for various destinations, it can achieve
a better performance by determining the destination node to
transmit first.

C. Beam management for IoT system

In recent studies, beam management techniques for D2D
communication in IoT systems have been proposed. In [22], an
optimal beam selection algorithm was proposed to maximize
user throughput in the mmWave IoT system. In their research,
they proposed an optimization algorithm based on machine
learning by designing user scheduling and beam selection
problems. In [23], a beam scheduling technique was proposed
to solve the problem of beam blockage, which is an obstacle to
communication in the mmWave environment. They designed
a Markov decision process (MDP)-based model and solved
the problem through dynamic optimization techniques. [24]
proposes a UAV beam management technique to optimize
energy efficiency in UAV assisted IIoT networks. In their
research, they designed a nonconvex problem with the goal
of optimizing not only beam power, pattern, and scheduling,
but also the position of the UAV, and this was solved through a
multiobjective evolutionary algorithm based on decomposition
algorithm. However, what these studies have in common is
that they are all focused on beam optimization by a central-
coordinator and are difficult to apply in an ad hoc IoT network

Fig. 1. Example scenario of deafness problem.

environment. It can be seen that there are very few studies on
beam management in an ad hoc environment [25], [26], and
this study is differentiated in that it optimizes the network
through optimal beam selection without a central coordinator.

III. SYSTEM MODEL

In our system model, we assume that each IoT node is
equipped with switched-beam antennas with M beam sectors
and each beam section has the same angle. During trans-
mission or reception, all beams, except the beam used for
directional transmission or reception, are blocked. In addition,
we assume that the position of each IoT node is fixed during
the communication process. In our model, there is no need
to exchange complete information among nodes. However, to
focus on the data transmission side of DMAC, we assume
that each IoT node configures the beam pair information of
the neighboring IoT node before communication. IoT nodes
can configure beam-pair information using beam-table caching
[27].

A. Deafness Problem

In traditional wireless communication, collision is the major
factor that degrades the network capacity. This is because,
unlike wired communication, IoT nodes using wireless com-
munication links cannot sense collisions during transmission.
Moreover, in directional communication, deafness is a critical
problem that affects the overall performance of the network.
It occurs when the sender IoT node transmits data to the
blocked beam direction owing to communication with another
directional beam. Fig. 1 illustrates an example scenario of the
deafness problem when the number of beam directions is four.
As shown in the figure, nodes A and B are communicating with
each other. Nodes A and B block all beams, except those in
communication, i.e., beams 1 and 3, respectively. Meanwhile,
node C transmits directional data (DDATA) to the blocked
beam (beam 4) of node B. However, due to the blocked beam,
node B cannot listen to DDATA from node C. Therefore, node
C receives directional acknowledgement (DACK) timeout and
attempts to re-transmit DDATA.
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TABLE I
SUMMARY OF PARAMETERS AND VARIABLES

Symbol Description
N , ni Set of IoT nodes, ith IoT node
Ai, ai,j Beam index vertor of ai, beam index from ni to nj

ri,j,t Achievable rate of the channel from ni to nj at time t
Ii,j,t Transmission indicator variable between ni and nj at time t
si,k State of ni at kth slot
qi,k Set of queued packets of ni at kth slot
ci,k Sensed channel state of ni at kth slot
xi,k Retransmission count of ni at kth slot
ri,k Reward value of ni at kth slot
ζ Negative reward factor

t, γ Current time slot, discount factor

B. Problem Formulation

The notations used in the paper are explained in Table. I. Let
N = {n1, n2, · · · , nN} be the set of IoT nodes in the network,
where N denotes the number of IoT nodes. IoT node ni has
an antenna beam index vector Ai, which can be described as
Ai = [ai,1 ai,2 · · · ai,N ], where ai,j denotes the beam
index from ni to nj . We assumed that IoT nodes share A by
beam caching algorithm [27] and the overall antenna beam
index table A is defined as follows:

A =


A1

A2

...
AN

 =


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · · aN,N

 . (1)

The achievable rate of the directional channel from ni to
nj at time t is denoted as follows:

ri,j,t = B log2

1 +
PtGtGr

(
λ

4πdi,j

)ρ

n0B + I

 , (2)

where B is the channel bandwidth, Pt is the transmission
power, Gt is the directional beam gain of the transmitter, Gr

is the directional beam gain of the receiver, λ is the radio
frequency wavelength, di,j is the distance between IoT node ni

and IoT node nj , ρ is the path loss coefficient, n0 is the noise
power spectral density, and I is the interference. Thus, the
objective function that maximizes the throughput is formulated
as follows:

maximize
1

T

T∑
t=1

N∑
i=1

N∑
j=1

ri,j,t · Ii,j,t

subject to
N∑
j=1

Ii,j,t ≤ 1, ∀i, t (C1)

N∑
i=1

Ii,j,t ≤ 1, ∀j, t (C2)

N∑
i=1

Ii,k,t +

N∑
j=1

Ik,j,t ≤ 1, ∀k, t (C3)

Ii,j,t = 0, ∀t, i = j (C4)

(3)

where Ii,j,t is an indicator variable. If ni schedules to transmit
to nj at time t, then Ii,j,t = 1, otherwise Ii,j,t = 0. Constraint

Fig. 2. Agent-environment interaction in RL.

(C1) represents each IoT node should transmit to at most
one node simultaneously. Constraint (C2) indicates that the
node should receive at most one packet from the other nodes
to avoid collision and deafness. Constraint (C3) stipulates
that the IoT node cannot transmit and receive simultaneously.
Constraint (C4) indicates that the node does not transmit to
itself.

However, because a central coordinating unit or AP does not
exist in WANETs for IoT, a medium access strategy cannot be
formulated in a centralized manner. Therefore, each IoT node
should determine its own medium access strategy. Because
RL improves policies by interacting with the environment, this
study formulates and resolves this problem using an RL-based
approach.

IV. RL ARCHITECTURE

In this section, we introduce the RL architecture of DMAC.
In RL, the agent learns its policy by interacting with the
environment as shown in Fig. 2. The agent selects an action by
considering the current state. It then receives the immediate
reward and the next state as a consequence of selecting the
action. The ultimate objective of the agent is to maximize the
return or sum of discounted rewards, which can be formulated
as follows:

R =

∞∑
m=1

γm−1rt+m, (4)

where t and γ denote the current time slot and discount factor,
respectively. In this study, the IoT node is considered as the
agent, and the network communication system is considered
as the environment.

We define the main components of a Markov decision
process (MDP), such as state, action, and reward function for
throughput maximization. We assume that the time horizon
is divided into frames, and each frame is further divided into
τslot slots. Based on the CSMA mechanism, each sender node
transmits DDATA after sensing the channel. If the receiver
node receives the DDATA destined to itself, it sends the
DACK to the sender node, which then determines whether
the transmission is successful by receiving the DACK. If the
sender node does not receive the DACK timeout duration,
a DACK timeout occurs, and the transmission is regarded
as a failure. Let Di denotes the set of destination nodes of
ni. The destination nodes in Di are in the communication
range from ni and receive DDATA from ni. Each sender
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node has more than one destination node. The packet for each
destination node is queued at the start of the frame. Therefore,
the sender node should transmit a DDATA to each destination
node to maintain a stable transmission queue. Each IoT node
determines its action at the start of the slot. When sensing takes
one slot, the transmission takes multiple slots. The reward
is provided after completion of the sensing or transmission.
Therefore, if the action is to transmit, the reward will be
provided multiple slots after the action is selected.

• State: The state of IoT node ni at the kth slot is
defined as si,k = {qi,k, ci,k, xi,k}, where qi,k ={
qi,k,1, qi,k,2, · · · , qi,k,|Di|

}
is the set of queued packets

for each destination node. ci,k ∈ {NONE,BUSY, IDLE}
is the sensed channel state. When the channel is not
sensed in the previous slot, ci,k = NONE. xi,k denotes
the retransmission count.

• Action: The IoT node can act to sense the channel
(SENSE) or transmit DDATA to one of the destination
nodes. Therefore, the number of actions for ni is |Di|+1.
Existing RL models for DMAC use actions to determine
whether to transmit or not. Unlike those RL models, our
model not only determines whether to transmit or not,
but also determines where to transmit.

• Reward: For throughput maximization, reward is pro-
vided as the transmission length in case of the trans-
mission success. Note that the reward is given after the
DACK timeout or DACK reception. The reward is not
given during DDATA transmission. For example, when
the transmission takes five slots and is successful, the
sender node receives (+5) as the reward. This can be
formulated as follows:

ri,k′ =

{
−ζ(k′ − k) if qi,k = qi,k′ ,

k′ − k, otherwise,
(5)

where k′ is the slot when the DACK is received or the
DACK timeout occurs by the sender node. ζ(0 < ζ < 1)
is a negative reward factor devised to encourage trans-
mission.

We provide an example scenario for the proposed RL
architecture as depicted in Fig. 4 - Fig. 6. From Fig. 4, n3 is
the destination node of n1 and n2. To obtain a positive reward,
n1 and n2 successively transmit DDATA to n3. Assume that
n2 is located at the center between n1 and n3 (Fig. 3(a)),
hence n2 can receive the signals from n1 and n3. From the
perspective of n3, n1 and n2 are located in the same beam
sector. After sensing, n1 selects the transmit action to transmit
to n3 at slot k = 1. Then, n3 receives DDATA from n1 and
transmits DACK to n1 after a certain amount of time, which
is equivalent to a short inter-frame space. As n1 receives
DACK from n3, n1 receives a reward of (+5). Note that
n2 can listen to DDATA and DACK between n1 and n3. n2

then selects an action to transmit to n3 at slot k = 7. After
receiving the DDATA from n2, n3 transmits DACK to n2.
Similar to the case of n1, n2 receives a reward of (+5). Fig. 5
depicts a collision scenario assuming that nodes are located
as depicted in Fig. 3(a). As n1 and n2 transmit DDATA to
n3 simultaneously at slot k = 1, DDATA collision happens.

(a) n2 is located at the center between n1 and n3. n1 and n3 are located
in directional transmission range of each other. Thus, n2 can hear the
signal exchanged between n1 and n3.

(b) n1 and n2 are located in different beam sectors in perspective of
n3. The distance between n1 and n2 is longer than the directional
transmission range. Thus, n2 cannot hear the signal exchanged between
n1 and n3.

Fig. 3. Example node deployments for Fig. 4 - Fig. 6.

Because n3 cannot completely receive any DDATA, DACK is
not transmitted from n3. In addition, because a DACK timeout
occurs, n1 and n2 receive (−5ζ) rewards. Moreover, as n2 and
n3 are located in the same beam sector from the perspective
of n3, collision occurs again between slots k = 9 and k = 10,
even though n2 transmits faster than n1. From this experience,
n1 and n2 will attempt to avoid collision to prevent negative
reward.

Fig. 6 depicts the deafness scenario assuming that n1 and
n2 are located in different beam sectors from the perspective
of n3, and the distance between n1 and n2 are longer than
directional transmission range (Fig. 3(b)). Thus, n2 cannot
hear the signal exchanged between n1 and n3. While n1 is
transmitting DDATA to n3, n2 transmits DDATA to n3 at slot
k = 2. Because n3 is already receiving DDATA from n1,
DDATA transmitted from n2 is blocked, and only n1 receives
DACK after transmission. Therefore, to prevent a negative
reward, n2 should transmit to another destination node or wait.
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Fig. 4. Example transmission scenario of RL architecture.

Fig. 5. Example collision scenario of RL architecture.

Fig. 6. Example collision scenario of RL architecture.

V. DQN-BASED FRAMEWORK

A. Q-learning algorithm
This section proposes a Q-learning-based algorithm for

the DMAC protocols. According to the traditional Q-learning

Algorithm 1 Q-learning-based DMAC algorithm
1: Input: ϵstart, ϵend, ϵdecay, β, γ, si,0
2: Initialize: Q-value Qi(·, ·) ← 0, frame index t ← 0, step

count c← 0
3: while True do
4: k ← 0
5: while k < τslot do
6: if ci,k = IDLE then
7: Calculate ϵ according to Eq. 7.
8: Uniformly sample v in range [0, 1).
9: if v < ϵ then

10: ai,k ← random action
11: else
12: c← c+ 1
13: ai,k ← argmaxai

(si,k, ai)
14: end if
15: else
16: ai,k ← SENSE
17: end if
18: Take action ai,k
19: Observe ri,k, k

′, si,k′

20: Update Qi(si,k, ai,k) according to Eq. 6:
21: k ← k′

22: end while
23: t← t+ 1
24: end while

framework, the Q-value is updated through interaction with
the environment:

Qnew(s, a) = Qold(s, a)+

(1− β)
{
r + γmax

a′
Qold(s′, a′)−Qold(s, a)

}
(6)

where β is the step size; γ is a discount factor; and s, a, s′,
and r are the state, action, next state, and reward, respectively.

Algorithm 1 describes the pseudo code of the Q-learning
algorithm for the DMAC protocol. However, instead of relying
only on Q-learning, we used a hybrid method based on the
CSMA scheme. In particular, action selection by Q-learning
is employed only if the sensed channel state is IDLE. If the
channel is not sensed or is BUSY, the next action is determined
as SENSE, and Q-learning is not used. At the start of each
slot, the IoT node selects the action based on the ϵ-greedy
method. The value of ϵ decreases as the learning step proceeds.
Equation (7) formulates the epsilon decay method:

ϵ = ϵend +
ϵstart − ϵend

e
c

ϵdecay
, (7)

where c denotes the step count, which increases when the Q-
value is updated. As the step count increases, the value of ϵ
decreases from ϵstart to ϵend. After an action is taken, the IoT
node evaluates the reward, next slot, next state, and updates
its Q-value. When the last slot of the frame is completed, the
first slot of the next frame begins.
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Fig. 7. Architecture of DQN-based framework for DMAC.

B. DQN-based Algorithm

As traditional Q-learning algorithms require Q-values for
every state and action pair, the space complexity and time
taken to converge for every Q-value increases exponentially as
the number of states increases. For example, when the number
of destination nodes increases by 1, the required size of the
Q-table will be more than twice. To resolve this challenge, a
deep neural network (DNN) has been utilized as a universal
approximation tool such that the DQN approach can obtain
near-optimal policies through multiple training steps. In this
section, we introduce a DQN-based framework for DMAC.

Fig. 7 depicts the architecture of the DQN-based framework
for DMAC. The DNN networks are classified into policy
and target networks, denoted by θP

i and θT
i , respectively.

The policy network estimates the Q-values of actions based
on the state. The target network is used for calculating the
temporal difference and has the same DNN architecture as
that of the policy network. By fixing the parameter of the
target network for G steps, the policy network can be updated
in a stable manner. After receiving the reward and the next
state from the environment, the IoT node stores the transition
experience ei,k = (si,k, ai,k, ri,k′ , si,k′) in the experience
buffer EBi, which has limited capacity and stores transition
experiences based on the first-in-first-out policy. Employing
the experience buffer helps the IoT node to increase the
efficiency of experiences. The policy network in the DQN
framework updates its parameter by minimizing the temporal
difference, which is defined as follows:

δ(s, a; θ) = r + γmax
a′
Q(s′, a′; θT)−Q(s, a; θP). (8)

Instead of directly minimizing the temporal difference, the
Huber loss is used as a loss function in the DQN framework
based on experience batch B as:

L =
1

|B|
∑

(s,a,r,s′)∈B

L [δ(s, a; θ)] ,

where L [δ(s, a; θ)] =

{
1
2 [δ(s, a; θ)]

2
, if |δ(s, a; θ)| < 1,

|δ(s, a; θ)| − 1
2 , otherwise,

(9)

Algorithm 2 DQN-based DMAC algorithm
1: Input: ϵstart, ϵend, ϵdecay, α, γ, ω, si,0
2: Initialize: θP

i , frame index t← 0, step count c← 0
3: θT

i ←, θP
i

4: while True do
5: k ← 0
6: while k < τslot do
7: if ci,k = IDLE then
8: Calculate ϵ based on Eq. 7.
9: Uniformly sample v in range [0, 1).

10: if v < ϵ then
11: ai,k ← random action
12: else
13: c← c+ 1
14: ai,k ← argmaxai

(si,k, ai; θ
P
i )

15: end if
16: else
17: ai,k ← SENSE
18: end if
19: Take action ai,k
20: Observe ri,k, k

′, si,k′

21: Store the experience ei,k = (si,k, ai,k, ri,k′ , si,k′)
22: Sample experience batch B from EBi

23: Update θP
i according to Eq. 10

24: if c % τ target = 0 then
25: θT

i ← ωθP
i + (1− ω)θT

i

26: end if
27: k ← k′

28: end while
29: t← t+ 1
30: end while

The experience batch, which consists of subsets of experi-
ences, is constructed by randomly sampling experiences from
EBi. The Huber loss function prevents the loss value from
becoming too large. Thus, the parameter of the policy network
is updated as follows:

θP
i = θP

i + α∇θP
i
L, (10)

where α denotes the learning rate, and the Adam optimizer is
employed to update the parameter.

The pseudocode for the DQN-based framework is shown
in Algorithm 2, which has a procedure similar to that of
Algorithm 1. As mentioned earlier, action in the DQN model
is selected only if the sensed channel state is IDLE. After
receiving the reward, next slot, and next state, the experience
is stored in EBi. If the size of the experience buffer is
larger than the batch size, the experience batch is constructed,
and the parameters of the policy network are updated using
the optimizer. The parameter of the target network is softly
updated as the parameter of the policy network for every
τ target training steps. In particular, the parameter of the target
network is updated as follows:

θT = ωθP + (1− ω)θT, (11)

where ω is the soft update ratio.
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C. Double DQN

Unlike the DQN method, the double DQN method decou-
ples the action selection and value estimation to compute the
temporal difference. Consequently, the DQN can be changed
to the double DQN with minor modifications. As the DQN
scheme already uses the policy and target networks, the only
modification required is to modify the formulation of the
temporal difference from Eq. (8) as:

δ(s, a; θ) = r + γQ
(
s′, argmax

a′
Q(s′, a′; θP ); θT

)
−Q(s, a; θP ).

(12)

Here, to compute the temporal difference, the next action is
selected by the policy network i.e., θP, and the value of the
next state and next action are evaluated by the target network
(i.e., θT). Accordingly, we can alleviate the problem of DQN,
which is overestimating the Q-value on a given state and action
pair.

VI. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of the
proposed scheme conducted by network simulations. Simula-
tions were performed using Python 3.8.6 and PyTorch 1.7.0.
In our simulator, we have implemented a DQN/DDQN nodes
with experience buffer, policy/target network, and optimizer
are implemented using PyTorch framework. In addition, imple-
mented DQN/DDQN node receives the reward and monitors
the state. Based on the received reward and state, each node
updates the policy network and determines the action for frame
to be transmitted. Fig. 8 shows our implemented simulator
architecture. Each node is implemented as an instance of an
Agent class. After the simulator executes the next step, the
simulator calls observe() method of the node instance with the
parameters: st+1 and rt+1. By calling the pushExperience()
method, the node then push the experience to the experience
buffer, while each experience consists of st, at, st+1, and rt+1.
The target network samples an experience from the experience
buffer and calculates the loss. By calling optimize() method,
the policy network is updated first. Then, the target network
is softly updated with the parameters of the policy network.
When the simulator calls getAction() method of the node
instance, the node instance internally calls the selectAction()
function to return the next action. The above process is
repeated for each frame for each node.

For the simulation configuration, we used a GPU as
NVIDIA GeForce GTX 1060 3 GB, Intel Xeon E5-1607 v4,
and 8 GB of memory. The nodes were uniformly distributed
within a 100m × 100m network area. The number of sink
nodes was set as 30. The destination nodes of the sender node
were randomly selected among the sink nodes in the trans-
mission range of the sender node. The simulation parameters
used are listed in Table II and Table III. Note that, since our
learning model showed similar results regardless of the hyper-
parameters, we set it to the fastest learned hyper-parameter as
in Table IV. As the sensing action was taken during a slot,
the slot time was set as 13µs, which was the same as the
distributed inter-frame space of the IEEE 802.11ad standard

Fig. 8. Implemented simulator architecture (Agent class architecture).

TABLE II
SIMULATION ENVIRONMENT

Category Value
GPU NVIDA GeForce GTX 1060 3 GB
CPU Intel Xeon E5-1607 v4
Memory 8 GB
Programming Language Python 3.8.6
Deep Learning Framework PyTorch 1.7.0
Simulation Topology Uniformly Distribution
Topology Size 100m× 100m
The Number of Nodes 60 (30 senders and 30 sink nodes)

[28]. Unless noted otherwise, the simulation parameters were
set based on the values listed in Table III. The following four
models were considered for performance evaluation:

• DDMAC: The proposed DQN-based framework for
DMAC.

• DDDMAC: It is the same as DDMAC, except that
DDDMAC calculates the temporal difference as de-
scribed in Eq. (12).

• CSMA: The traditional DMAC protocol based on CSMA
with exponential back-off. The CSMA node transmits
after waiting for the back-off duration plus one slot,
where the back-off duration was calculated as a random
integer from [0,CW− 1]. The minimum CW was set as
16, and the maximum CW was set as 1024.

• AL-DMAC: Unlike the proposed scheme, AL-DMAC
learns only the time slot to transmit DDATA [7]. If
DDATA remains in the transmission queue, the AL-
DMAC determines whether or not to transmit for each
slot.

The aggregate throughput and latency were considered as
performance metrics. The aggregate throughput is the total
received traffic per second of the overall nodes. Latency is the
time required for queued DDATA to arrive at the destination
node and it was averaged for every received DDTA. After
analyzing the convergence performance of the proposed DQN
and double DQN frameworks, the performance evaluations
were presented.

A. Convergence Analysis

In this section, we analyze the convergence of the proposed
DQN and double DQN frameworks. Fig. 9 and Fig. 10 depict
the total reward versus frame curves of the DQN and double
DQN methods with various learning rates for 600 frames.
The total reward is calculated as the sum of all the rewards
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TABLE III
SIMULATION PARAMETERS

Parameter Value
Number of antennas 6
Transmission range 40 m
Number of sender nodes (N ) 20
Number of target nodes (|Di|) 4
Slot time 13 µs
DACK size 14 bytes
Data rate of channel 4,620 Mbps
Packet size 64 KBytes
Number of slots per frame (τslot) 100
Learning rate (α) 0.0001
Optimizer Adam
ϵstart 0.5
ϵend 0.005
ϵdecay 1000
Update interval of target network (τ target) 100
Soft update ratio (ω) 0.01

TABLE IV
CONVERGENCE FRAME AND AVERAGE REWARD ACCORDING TO

HYPER-PARAMETERS

XXXXXXXXϵend
ϵstart

0.1 0.5 1.0

0.001 431 Frames (epoch) /
r = 323

442 Frames (epoch) /
r = 324

462 Frames (epoch) /
r = 326

0.005 389 Frames (epoch) /
r = 303

403 Frames (epoch) /
r = 321

432 Frames (epoch) /
r = 323

0.01 383 Frames (epoch) /
r = 302

402 Frames (epoch) /
r = 315

422 Frames (epoch) /
r = 316

during one frame. When the learning rate is α = 0.01, the
total reward increases initially before it starts to decrease after
approximately 300 frames. This effect can be explained by
the high learning rate, which can lead to unstable training.
Except for the α = 0.01 case, the other cases converge
after 400 frames and exhibit similar total rewards for various
learning rates. After 400 frames, the double DQN method,
Fig. 10, demonstrates a higher total reward than that of the
DQN method. By decoupling the action selection and value
estimation, the double DQN method achieves a higher total
reward than that of the DQN method. Because each DQN
framework works in a distributed manner and a single change
of action can significantly affect the throughput of the entire
network, jitter of the total reward still exists after convergence.

B. Throughput and Latency Analysis

The aggregate throughput versus frame curve is depicted
in Fig. 11 during training for 500 frames. The aggregate
throughput was averaged per 10 frames. Because the CSMA
protocol does not require training, the aggregate throughput
of the CSMA nodes is presented without training. As we
can observe from the figure, between 100 and 350 frames,
DDMAC and DDDMAC exhibit similar throughputs. After
400 frames, DDDMAC exhibits a higher aggregate throughput
than that of the DDMAC, by approximately 1.1. However,
the proposed DDMAC and DDDMAC schemes exhibit higher
aggregate throughputs compared to those of AL-DMAC and
CSMA. AL-DMAC only considers whether or not to transmit
for a given slot, whereas the proposed schemes consider both
the action and the node to transmit. Therefore, the proposed

0 100 200 300 400 500 600

Frame

0

50

100

150

200

250

300

350

400

T
o

ta
l 
re

w
a

rd
 (

 
r
)

=0.01

=0.001

=0.0001

=0.00001

Fig. 9. Total reward versus frame curve of DQN method for various learning
rates.
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Fig. 10. Total reward versus frame curve of double DQN method for various
learning rates.
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Fig. 11. Aggregate throughput versus frame curve during training for 500
frames.

scheme can prevent collisions or deafness and transmit to
another destination node.

Fig. 12 and Fig. 13 exhibit the evaluation results with vary-
ing numbers of sender nodes. The performances of DDMAC,
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Fig. 12. Aggregate throughput versus number of sender nodes.
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Fig. 13. Latency versus number of sender nodes.

DDDMAC, and AL-DMAC were measured after 500 training
frames. The number of nodes varies from 5 to 30 with an
interval of 5. When the number of sender nodes increases, col-
lisions and deafness are more likely. DDMAC and DDDMAC
exhibit superior performances compared to those of AL-
DMAC and CSMA in both performance metrics. From Fig.
12, we can observe that the aggregate throughputs of DDMAC
and DDMAC are greater than those of AL-DMAC and CSMA.
Particularly, the throughput of DDDMAC is greater than those
of AL-DMAC and CSMA by 2.8%-54.1% and 21.8%-72.7%,
respectively. The aggregate throughput of AL-DMAC is higher
than that of CSMA, but is significantly lower than those of
DDMAC and DDDMAC. Considering destination nodes to
transmit as the action, DDMAC and DDDMAC could achieve
high aggregate throughputs. As is evident in Fig. 13, the
latency tends to increase with an increase in the number of
sender nodes. Because DDMAC and DDDMAC can reduce
the queuing delay in the transmission queue by achieving a
higher throughput, the latencies of the proposed schemes are
significantly smaller than those of AL-DMAC and CSMA.
For instance, when the number of nodes is 30, DDDMAC
exhibits 58.2% and 58.1% lower latency compared to those of
AL-DMAC and CSMA, respectively.
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Fig. 14. Aggregate throughput versus number of beam sectors.
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Fig. 15. Latency versus number of beam sectors.

Fig. 14 depicts the aggregate throughputs of four protocols
for various numbers of beam sectors. As the number of beam
sectors increases, the probabilities of collision and deafness
decreases. Therefore, as is evident in Fig. 14 and Fig. 15, the
aggregate throughput increases and latency decreases when the
number of beam sectors increases for all schemes. However,
similar to Fig. 12 and Fig. 13, DDMAC and DDDMAC exhibit
higher aggregate throughputs and lower latencies compared
to those of AL-DMAC and CSMA. DDDMAC exhibits a
relatively high aggregate throughput than that of DDMAC.

C. Energy Consumption

In this subsection, we compare and analyze the energy
consumption values of our proposed scheme. Our proposed
RL models operate individually for each device. Thus, it is
true that running RL models on IoT devices is burdensome in
terms of computing power and energy consumption. However,
once it is trained, the time it takes to update the network and
make decisions in the future is not a big burden. In addition,
our learning model requires relatively small amounts of state
and action compared to other large-scale applications such as
image processing, so the energy and time required to train is
small.
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TABLE V
ENERGY CONSUMPTION FOR PROPOSED SCHEME

DQN/DDQN Scheme Other Schemes (/wo RL)
Energy Consumption

for Training
5.6 W

for 500 iteration -

Energy Consumption
for Inferring 1.2 mW -

Energy Consumption
for Transmitting/Receiving 6.4 W 6.4 W

In order to analyze energy consumption model for proposed
scheme, we measured the energy consumption for training,
inferring, and communication with the Raspberry Pi 4 model
as Table V. In Table V, it is shown that our proposed
method consumes 5.6 watts and takes about 1 hour to train
for about 500 iterations. In addition, comparing the energy
cost of performing communications, our scheme shows that it
consumes about 1.2 milliwatts more for inference, which does
not appear to be a significant difference.

VII. CONCLUSION

This paper proposed a DQN-based framework for the
DMAC in WANETs for IoT. As there is no central coor-
dinating unit in this framework, such as BS or AP, each
IoT node learns its transmission policy by interacting with
the environment. To this end, we first introduced the RL
architecture for throughput maximization of WANET by defin-
ing the state, action, and reward of the node. Based on the
Q-learning algorithm using the CSMA scheme, DQN and
double DQN-based frameworks were proposed for time and
space efficiency. The performance evaluation results indicated
that the proposed DDMAC and DDDMAC exhibit superior
performances compared to those of CSMA and AL-DMAC
in terms of aggregate throughput and latency. However, our
proposed scheme has a weakness in mobile environment such
as vehicular network or UAV network. In the mobile network,
our propose cannot learned well due to the node’s mobility.
Therefore, we will intend to adapt the DRL technique to
a network consisting of devices with mobility features. In
this scenario, as the beam pair of the destination nodes is
frequently changing, the efficient update of the beam pair is
expected to be a significantly challenging problem.
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