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Abstract: 
Cyber-physical systems facilitate seamless interaction between the physical and digital elements for 

improved efficiency, automation, and real-time monitoring across domains. This study analyzes a novel 

virus-spreading model called the delayed SEI2RS model, which is specifically designed for cyber-physical 

systems. This model incorporates a saturated incidence rate and treatment. An emphasis of this research is 

to explore the impact of time delay on the transient immunity interval of restored nodes. By using the time 

delay associated with the transitory immunity interval of recovered nodes as the bifurcation parameter, we 

derive a comprehensive set of appropriate conditions to assess the local stability of the malware-existence 

equilibrium and determine Hopf bifurcation. The center manifold theorem and normal form theory are 

employed to investigate the path and stability of Hopf bifurcation. Numerical calculations were used to 

validate the results, providing empirical evidence for the proposed model and its implications. 
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1. Introduction 
Malware propagation involves the dissemination of malicious software among interconnected nodes such as 

sensor networks, mobile phones, and cyber-physical systems (CPS), compromising their functionality and 

potentially causing disruptions or unauthorized data access [1,2]. Cybersecurity entails a proactive strategy 

aimed at protecting computers, mobile devices, servers, electronic systems, data and networks from potential 

malicious attacks. The frequency of data breaches has been on the rise, reflecting the rapid evolution of global 



cyber threats. A survey conducted by Risk Based Security revealed a staggering exposure of 7.9 billion 

records in the first nine months of 2019 alone, marking a 112% increase compared to the same period in 

2018. These systems represent a novel category of intelligent systems, seamlessly blending communication, 

computation, and control technologies to intricately integrate computing with physical resources [3-5]. The 

malware attacks on different cyber physical systems during the period 2019-2022 represented in the Fig.1.  

 

 
 

Fig 1 World-wide malware attacks (in millions) between 2019-2022  

Various safety-critical sectors, such as energy, transportation, healthcare, and the military, have extensively 

adopted Cyber-Physical Systems, characterized by their openness and dynamic nature. These systems adhere 

to stringent standards concerning security, safety, and reliability. As CPSs evolve continuously, their multi 

functionality and complexity also grow, inevitably leading to the emergence of numerous security 

vulnerabilities that can be exploited in cyber-attacks. The sectors most susceptible to breaches include 

healthcare, retail, and the public sector, with malicious actors frequently responsible for these incidents. 

Certain industries, such as healthcare and finance, are particularly appealing to cybercriminals due to the 

sensitive financial and medical data they handle. However, any organization utilizing networks is potentially 

at risk of customer data theft, corporate espionage, or other cyber threats. Despite their prevalence in security-

critical domains, CPSs are not immune to malicious code attacks and virus infections which can compromise 

their functionality and give rise to security concerns. The malware attacks on critical infrastructure in the 

year 2022 represented in the Fig.2. 
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Fig 2. Malware attacks on critical infrastructure in the year 2022.  

1.1. Motivations 

This unauthorized malware dissemination severely impacts network efficiency, security, and overall 

performance. Cyber security safeguards electronic systems, networks, and data from harmful attacks to 

ensure their protection [3]. The number of data breaches is showing an annual escalation, marked by a 

significant yearly increase compared with the preceding periods. This exposes billions of records, as 

evidenced by a study conducted by risk-based security. A CPS integrates physical processes, computation, 

and networking, enabling computational algorithms and networks to observe and govern the physical 

components. The demand for CPSs has rapidly grown because of evolving physical world requirements and 

information technology (IT) advancements. The increasing physical environment demands, driven by rapid 

IT growth, have led to a substantial rise in the demand for CPSs. This rise in demand for CPSs is primarily 

attributed to the expansion of IT and diverse needs in various industries. CPSs represent a different category 

of intelligent systems that incorporate computation, communication, and control technologies, effectively 

combining physical and computing resources [4,5]. 

Cyber-attacks pose significant threats to Cyber-Physical Systems (CPSs), integral to overall system security. 

Such attacks can lead to catastrophic consequences for society, the economy, and critical infrastructure. 

Malware, a term denoting malicious software, stands out as a prevalent cyber threat. Crafted by hackers or 

cyber criminals, malware is designed to disrupt or harm the computers of legitimate users, often with 

financial or political motives [6-7]. It is commonly distributed through unsolicited email attachments or 

seemingly legitimate downloads. 
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1.2. Related work 

The security of CPSs faces a substantial risk from malware, as highlighted in various research studies. Xu et 

al. [8] delve into malware attacks on the cyber-physical power system, proposing an analysis approach 

considering factors like malware incubation time and detection likelihood. Muthu Krishnan et al. [9] present 

an epidemic model for Susceptible-Infected-Traced-Susceptible in wireless sensor networks, exploring 

control strategies to impede malware spread. Shen et al. [10] focus on determining malware propagation 

thresholds in heterogeneous sensor networks. Mahboubi et al. [11] enhance the existing epidemic model for 

the Internet of Things, incorporating epidemic-specific states to construct a malware propagation model. 

These studies collectively underscore the urgency of addressing malware threats in CPSs through 

comprehensive analysis and strategic control measures. 

Malware can interfere with a CPS's natural operation when it attacks it, infecting one or more nodes 

throughout its spread [12-15]. With the introduction of malware, CPS behaviour will change and exhibit 

nonlinear traits, allowing it to be categorized as a nonlinear dynamic system [16]. The exploration of malware 

propagation in cyber-physical systems has embraced the utilization of Lyapunov's approach to comprehend 

system behavior. Representing the stability of a system based on the Lyapunov model involves the 

identification of a positive definite function, referred to as a Lyapunov function, which decreases along the 

system's trajectory. In the examination of nonlinear systems, foundational theoretical knowledge and 

stability-related techniques are incorporated [17]. This analysis encompasses processes such as the 

linearization of differential equations and the examination of phase portraits [18]. Lyapunov stability systems 

are applied to evaluate the stability of these nonlinear systems. The current study integrates optimal stability 

assessment methods for nonlinear systems [19, 20] within the framework of malware propagation in cyber-

physical systems. Ajayi et al. [21] discussed stability criteria for nonlinear systems and their associated 

properties. The research presented information on the Lyapunov stability analysis of nonlinear systems, 

offering an overview of ongoing research on the stability of nonlinear systems across various fields. 

Regarding the stability analysis of time-delay systems, Lyapunov functionals play a crucial role. Time delay 

systems have been investigated in extensive studies in the past decade, given the rapid growth in 

communications and network switching. It has been established that time delays are pervasive in technology-

based control systems and can significantly impact the performance of closed-loop systems. 

 

Extensive investigations have been conducted on the spread of malware in CPSs, its impact on cyber-physical 

power systems [8,12,13], wireless sensor networks [9,15,16,23,24 33], and heterogeneous sensor networks 

[10], aiming to analyze malware propagation, develop control techniques, and determine propagation 

thresholds to mitigate risks. Malware attacks disrupt CPSs, introducing nonlinear dynamic behavior, 

potentially leading to destructive phenomena such as chaos and bifurcation [25]. Bifurcation, for example, 



can lead to voltage oscillation and other undesired effects in power networks, thereby affecting CPS stability 

[30,31]. Understanding malware transmission and dynamic behavior in CPSs is therefore crucial. On the 

other hand, temporal delays are a concern when examining the stability of mathematical models [15,18,26-

29,32,33-37]. Fractional-order models [28] and stochastic models [11] have been employed to describe 

natural processes because the fractional derivative captures the entire period of biological activity. Neural 

networks based on delayed quaternion-valued fractional order have also been studied [30]. 

However, the multifunctionality and complexity of CPSs pose ongoing challenges, leading to potential 

security flaws and cyberattacks [22]. Industries such as healthcare, retail, and the public sector are prime 

targets for data breaches orchestrated by malicious criminals seeking financial or medical data. Any 

organization using networks can be a target for customer data theft, corporate espionage, or cyberattacks. 

CPSs, while widely used in security-critical domains, are vulnerable to malware attacks that compromise 

functionality and security. 

1.3. Our contributions and paper organization 

In this article, we studied the impact of time delay on malware propagation in CPSs. The main 

contributions of this article are as follows. 

• A novel virus-spreading model for CPS, called the delayed Susceptible-Exposed-Low Infected-High 

Infected-Recovered-Susceptible (SEI2RS) model with a consideration of a saturated incidence rate 

and treatment has been introduced and analyzed. 

• The impact of time delay on the transient immunity interval of restored nodes in the malware 

propagation model has been investigated. By using the time delay associated with the transitory 

immunity interval of recovered nodes as the bifurcation parameter, we derive a comprehensive set of 

appropriate conditions to assess the local stability of the malware-existence equilibrium and 

determine Hopf bifurcation. The center manifold theorem and normal form theory are employed to 

support the analysis. 

• Numerical simulations demonstrate the efficiency of the proposed immunization strategy or control 

scheme in recovering infected nodes in both low and highly infected areas. Consequently, the 

threshold for Hopf bifurcation is reached, leading to the attainment of a stable state in cyber-physical 

systems. This, in turn, results in a reduction of harm and disturbance caused by malicious software to 

cyber-physical systems. 

Table 1 gives the relative investigation of the proposed model with the current models in irresistible 

infection diseases. 

The rest of this paper is structured as follows. Section 2 provides the delayed SEI2RS malware 

propagation in the cyber–physical model. Section 3 provides the basic reproduction number and calculates 

its equilibria. Section 4 investigates the model’s stability along with an analysis of Hopf bifurcation. In 

Section 5, we determine the direction of the Hopf bifurcation and assess the stability of periodic solutions 



within the CPS, employing the center manifold and normal form theories. Section 6 presents the simulation 

results used to test the hypothesis proposed in Section 2. Section 7 offers concluding remarks and outlines 

recommendations for the future. 

Table 1: Comparison of proposed model with some existing models 

 

2. Delayed SEI2RS malware propagation in Cyber-Physical Systems 
Numerous studies concerning cyber-physical network models often assume a bilinear infection rate. 

However, the topology of the underlying network system significantly affects the propagation of cyber-

physical malware. To address this issue, we have incorporated the ratio-dependent functional response into 

the CPS, acknowledging its significant impact on malware propagation. Time delays also play a pivotal role 

in the spread of malware in cyber-physical networks. These delays can lead to stability loss and trigger Hopf 

bifurcations, resulting in periodic solutions. Interestingly, this cyclic behavioral phenomenon contrasts with 

the typical epidemiological viewpoint, where such cyclic patterns are considered undesirable. 

To enhance comprehension and tackle these complexities, we developed a novel delay model for analyzing 

malware propagation in CPSs. Table 1 summarizes the parameters employed in our cyber-physical model, 

and Figure 1 presents a schematic representation of each group within the CPS. Through the integration of 

these elements, our research sheds light on the dynamics of malware propagation within the context of cyber-

physical networks. 
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Table 1: Parameters description in SEI2RS malware propagation model in cyber–physical systems     

Parameter Description of the Parameters Values  

 New entry and exit nodes 0.01 

 Low infection rate of susceptible nodes 0.7 

 High infection rate of susceptible nodes 0.2 

 Transition rate from recovered to susceptible nodes 0.08 

 Transition rate from exposed to low infected node 0.8 

 Transition rate from exposed to high infected node 0.1 

 Recovery rate of low infected node 0.3 

 Recovery rate of high infected rate 0.1 

 Half saturation constant for susceptible to low infected node 0.01 

 Half saturation constant for susceptible to high infected node 0.02 

 Half saturation constant for low infected nodes 0.8 

 

 

 
 

Fig. 3. A schematic representation of the propagation of malware in a cyber-physical system. 

 

3. Malware propagation in Cyber-Physical Systems 
The possible steady states of the system (1) are 

(i) Malware-free equilibrium point in CPS  

(ii) Malware-present equilibrium point in CPS  

where  and 
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 and  

with  

We use the next-generation matrix method [26] to obtain the basic reproduction number of the system. 

Accordingly, let  and let F and V represent the Jacobian matrix of f and v at the malware-free 

equilibrium point  respectively. We have  

                     

 

Therefore,  

 

4. Stability Analysis of Malware Propagation in Cyber-Physical System 
The linearized system (1) becomes 

                                                          (2) 
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  The Jacobian matrix for the linearized system (2) is  
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The Jacobian matrix characteristic equation (3) is given by  
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Multiply on both sides of equation (4), then we have 
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4.1 Stability analysis in the absence of delay 

In the absence of delay, put  in equation (4), the characteristic equation (5) becomes 
.  (6) 

From equation (6), 

  
The Routh-Hurwitz criteria provide a set of sufficient conditions that ensure all the roots of equation (5) have 

a negative real part. These conditions are expressed in a specific form to ascertain the stability of the system.                  

                                                                               (7)                                                                                       

                                                       (8)                                                                

                             (9)                                      

      (10) 

If conditions (7)-(10) are satisfied, the system is considered locally asymptotically stable in the absence of 

delay. These conditions play a crucial role in determining the stability of the system, ensuring that it 

converges towards equilibrium in its behavior. 

 

4.2 Stability analysis in the presence of delay 

For , put  be the root of equation (6). Then 
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where   

 

 

 

 

 

 

 

Therefore, we obtain 

                            (15)   

Let , then equation (15) becomes 
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Now, we have equation (13), which has at least one positive root . Thus, from equation (13), we have 
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Differentiating equation (5) with respect to , we obtain 
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where 

 

 

The transversality condition holds if . We have the following result. 

Theorem 1: Let an endemic equilibrium point of system (1) exist, and let conditions 

 and be satisfied. Then it is locally asymptotically stable at and unstable for . 

Furthermore, system (1) undergoes Hopf bifurcation at  when  and a family of 

periodic solutions bifurcates from  near . 

 

Assuming the existence of an endemic equilibrium point  of system (1) and fulfillment 

of conditions  and , the equilibrium point is deemed locally asymptotically stable at  

and unstable for . Moreover, the system (1) experiences a Hopf bifurcation at   

when , giving rise to a family of periodic solutions that bifurcate from , the vicinity 

of  . These findings shed light on the dynamic behavior of system (1) and its susceptibility to undergo 

significant changes under specific conditions and parameter values. 

 

5. Direction of Hopf bifurcation and its stability 

Theorem 2:  

(i) If then the Hopf-bifurcation is supercritical (subcritical),  

(ii) (ii) If  then the bifurcation periodic solutions are stable(unstable),  

(iii) (iii) If  then the bifurcating periodic solutions increase(decrease). 
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Let , , , , , ,  and 

, so that the system (1) is transformed into a functional differential equation in 

 as 
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where 
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Based on the Riesz representation theorem, it can be inferred that there exists a function that satisfies 
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From equation (20), we set  
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where  is the Dirac-Delta function. 
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and .                                                            (28) 

Let  be the eigen vector of related to  and

be the eigen vector of related to . According to equation (23) 

and equation (28), through simple calculation, one has 

 

 

 

According to equation (28), one has 
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According to the computation process in [27, 28], we obtain the values of , and . 
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And  

            

            

Then, we have  

                                                                       (30) 

( )

( ) ( )
( ) ( )

11 2 3 3 1 4 4 13 14 15

21 2 3 3 1 4 4 23 24
2
2 32 33 33

11
42 44

53 54 55

0
2 0 ;

0 0 0
0 0

a a a a

a a a
b a b
a a

b a a

h s s h s s

h s s h s s

- + - +é ù
ê ú

+ + +ê ú
ê úF = - +ê ú¡
ê ú
ê ú
ê úë û

( )

( ) ( )
( ) ( )

11 2 3 3 1 4 4 14 15

21 22 22 2 3 3 1 4 4 24
3
2 32

11
42 44

54 35

0

0
2 0 0 0 0 ;

0 0 0
0 0 0

a a a

a a b a
b
a a

a a

h s s h s s

h s s h s s

- + - +é ù
ê ú

+ + + +ê ú
ê úF = - ê ú¡
ê ú
ê ú
ê úë û

( )

( ) ( )
( ) ( )

11 2 3 3 1 4 4 15

21 22 22 23 2 3 3 1 4 4
4
2 32 33 33

11
42

53 55

0 0

0
2 0 0 0 ;

0 0 0 0
0 0 0

a a

a a b a
b a b
a

b a

h s s h s s

h s s h s s

- + - +é ù
ê ú

+ + + +ê ú
ê úF = - +ê ú¡
ê ú
ê ú
ê úë û

( )

( ) ( )
( ) ( )

11 13 14 2 3 3 1 4 4

21 22 22 23 24 2 3 3 1 4 4
5
2 31 32 33 33

11
41 42 44

54

0

2 0 0 ;
0 0

0 0 0 0

a a a

a a b a a
a b a b
a a a

a

h s s h s s

h s s h s s

- + - +é ù
ê ú

+ + + +ê ú
ê úF = - +ê ú¡
ê ú
ê ú
ê úë û

0 0

0 0 0 0

0 0

0 11 13 14 15
2

21 0 22 22 23 24
2 2

20 32 0 33 33

0 44
2

33 54 0 55

2 0

2 0

0 2 0 0 ;
0 0 0 2 0

0 0 2

i

i i

i

i a a a a

a i a b e a a

b e i a b e
i a

b e a i a

t w

t w t w

t w

w

w

w
w

w

-

- -

-

- - - -é ù
ê ú
- - - - -ê ú

ê ú¡ = - - -ê ú
-ê ú

ê ú
- - -ê úë û

11 13 14 15

21 22 22 23 24

11 32 33 33

44

53 54 55

0
0

0 0 0 .
0 0 0 0
0 0

a a a a
a a b a a

b a b
a

b a a

d

é ù
ê ú+ê ú
ê ú= +
ê ú
ê ú
ê úë û

( )
2

2 02 21
11 20 11

0 0

0 2 ;
2 3 2

w wi w w w
t w

é ù
Á = - - +ê ú

ê úë û



                                                                                                                         (31) 

                                                                                                                              (32) 

                                                                                                   (33) 

6.Numerical Simulations and analysis 
Numerical simulations are accomplished to show the malware spreading in cyber physical system and to 

validate the findings of the analysis. 

                                          (34) 

Through a series of calculations, we determined that the malware-existence equilibrium is uniquely given by 

(0.4996, 0.2317, 1.1067, 0.2104, 3.2910), and the elementary reproduction number ( ) = 1.18262>1 and 

the malware presence equilibrium point p1(0.4996, 0.2317, 1.1067, 0.2104, 3.2910). It can be confirmed that 

the system (34) is locally asymptotically stable when . This can be shown in Fig 4. For  by some 

computations with the aid of MATLAB platform, we obtain , . Upon setting the 

parameters to their respective values and initializing the system with the values p1(S*, E*, I1*, I2*, R*) = 

p1(0.4996, 0.2317, 1.1067, 0.2104, 3.2910), it can be observed from Figure 5(a) that the model (34) 

demonstrates local asymptotic stability. This achievement was made possible through careful parameter 

selection. Under this scenario, the densities of exposed nodes, sensitive nodes and infected nodes with weak 

infected capacity, infected nodes with strong infected capacity, and recovered nodes gradually converge to a 

unique equilibrium state, referred to as p1 (0.4996, 0.2317, 1.1067, 0.2104, 3.2910), which indicates the 

presence of malware. In addition, Figures 5(b-f) present phase plots depicting the dynamics of I1-I2-R, S-I1-

I2, R-I2-S, E-I1-R, and E-R-S, that can be used to illustrate this stable phenomenon of system (34) with 
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Fig 4. Time series plot of the nodes S-E-I1-I2-R for . 

 

 

 

(a) Time series plot of the nodes S-E-I1-I2-R (b) Phase plot of I1-I2-R 

  
(c) Phase plot of S-I1-I2 (d) Phase plot of R-I2-S 

  
(e) Phase plot of E-I1-R (f) Phase plot of E-R-S 

Fig. 5. Node states for . 
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On the other hand, we fix  and choose the same initial value of densities of the nodes. When 

considering the values (S, E, I1, I2, R) = [0.4809, 0.2260, 1.1939, 0.2822, 3.2529], it is observed that the 

model (34) undergoes a loss of stability. Consequently, the densities of exposed nodes, susceptible and 

infected nodes with minimal infection capacity, infected nodes with high infection capacity, and recovered 

nodes exhibit periodic oscillations around the unique equilibrium state of malware existence, denoted as 

p1(0.4996, 0.2317, 1.1067, 0.2104, 3.2910), as depicted in Figure 6(a). In addition, Figures 6(b-f) depict 

phase plots of I1-I2-R. S-I1-I2, R-I2-S, E-I1-R, and E-R-S stand as additional instances that can be used to 

illustrate this stable phenomenon of system (29) with . 

  
(a) Time series plot of the nodes S-E-I1-I2-R (b) Phase plot of I1-I2-R 

  
(c) Phase plot of S-I1-I2 (d) Phase plot of R-I2-S 

  
(e) Phase plot of E-I1-R (f) Phase plot of E-R-S 

Fig. 6. Node states for . 

18.55 16.55t = >

18.55 16.55t = >

18.55 16.55t = >



Furthermore, near the value of 𝜏!, the model (34) undergoes a Hopf bifurcation, leading to a transition from 

its stable state to a limit cycle. This behavior is exemplified in Figure 7. Additionally, providing further 

insights into the dynamics of the system during this bifurcation, illustrate phase plots of I1-I2-R, S-I1-I2, R-

I2-S, E-I1-R, and E-R-S are instances that can be used to illustrate this stable phenomenon of system (34) 

with . 

  
(a) Time series plot of the nodes S-E-I1-I2-R (b) Phase plot of I1-I2-R 

  
(c) Phase plot of S-I1-I2 (d) Phase plot of R-I2-S 

  
(e) Phase plot of E-I1-R (f) Phase plot of E-R-S 

Fig. 7. Node states for . 
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In addition, we obtain by some complex computation with the help of MAT Lab 

software package. Thus, established on equation (30)-(33), we get  

 Consequently, drawing from Theorem 2, we can deduce that the Hopf bifurcation 

occurring at   is of a supercritical nature. The resulting periodic solutions from the bifurcation are 

stable, and there is an increase in the period of these bifurcating periodic solutions. 

Moreover, it is observed that as the delay parameter increases in model (34), the system undergoes a 

transition from a stable state to a chaotic state. In addition, when R0 is greater than one, the number of infected 

nodes I2 tends to increase more rapidly in comparison to infected nodes I1 initially. Nonetheless, this 

difference eventually levels off. Therefore, to effectively manage the number of infected nodes, it is crucial 

to minimize R0 as much as possible, ensuring that infected nodes remain in a stable state and facilitating 

better control of malware spread. 

As malware proliferates, the behaviors of CPS change and possess nonlinear traits, leading to the 

consideration of CPS behavior as a nonlinear dynamic system. Consequently, the impact of a malware attack 

on CPSs may manifest in destructive dynamic behaviors, including bifurcation and chaos. The emergence of 

bifurcation, for example, can instigate mutations in CPS stability, potentially leading to adverse effects. In 

practical terms, bifurcation might induce harmful phenomena in power networks, such as voltage fluctuations, 

with the potential for catastrophic consequences. Therefore, it is crucial to delve into the distribution of 

malware and its dynamic manifestations within CPSs to better understand and mitigate potential risks. 

The widespread adoption of robust communication infrastructure has heightened our dependence on cyber-

physical systems, shaping their pivotal role in both professional and everyday activities. The vulnerability of 

cyber-physical systems to disruptions upon encountering malware underscores the critical security 

challenges they face. To explore the dynamics of malware propagation in these systems, we refine a model 

incorporating delayed dissemination and varying infection rates. This model introduces time delays 

corresponding to the transient immunity intervals of exposed and low-infected nodes. 

Comprehensive mathematical derivations have meticulously validated the phenomena of Hopf bifurcation 

and local stability. This analysis establishes a crucial threshold value, determining the manageability of 

malware spread in cyber-physical systems. Below this threshold, regulation is achievable, but surpassing it 

renders the spread uncontrollable. The outcomes of numerical simulations reveal that, under specific 

circumstances, the proposed model undergoes a transition from its initially stable state to a limit cycle. 

Notably, our numerical simulations shed light on the impact of various parameters on the model, emphasizing 

proactive measures for cyber-physical system users. Regular use of anti-malware software, coupled with 

timely updates, emerges as a pivotal strategy to effectively manage malware dissemination within these 

systems, as evidenced by our numerical findings. 

( )0 1.612 0.1924iÁ = - -

1 3.6437 0,Ã = > 2 1.2467 0,Ã = - <

3 4.1372 0.Ã = >

0 16.55t =



7. Concluding Remarks 
 

To scrutinize the propagation dynamics of malware in these systems, a model with deferred propagation, 

incorporating diverse infection rates, is reconceptualized in this paper. This reformulation introduces a time 

delay attributed to the transitory immunity interval of recovered nodes. Careful mathematical derivations 

have been made in order to confirm local stability and the demonstration of Hopf bifurcation. The 

identification of the critical threshold value signifies the point beneath which the propagation of malware in 

cyber-physical systems can be effectively controlled, while surpassing this threshold renders it uncontrollable. 

The results of numerical simulations reveal that, under specific conditions, the proposed model undergoes a 

transition from its optimal stable state to a limit cycle. The proposed theorem is then validated through 

simulation. Through numerical simulations assessing the impact of factors like, and on our model, it becomes 

evident that users within cyber-physical systems should routinely employ anti-software to eradicate malware 

and ensure timely updates to control the dissemination of malware effectively. To extend this study, future 

research will consider the proposed system on various practical cyber security measures and analyze the 

impact of various factors, such as network topology, system architecture, and user behaviors. In addition, the 

incorporation of machine learning and artificial intelligence techniques into the malware detection and 

control processes can be further investigated in future work. 
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