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Intelligent QoE Management for IoMT Streaming
Services in Multi-User Downlink RSMA Networks

The-Vinh Nguyen, Duc-Thien Hua, Thien Ho Huong, Vinh Truong Hoang, Nhu-Ngoc Dao, Sungrae Cho

Abstract—The exponential growth of the Internet of Multime-
dia Things (IoMT) traffic has posed a threat of service quality
degradation due to the limitation of current communication,
networking, and computing advances in mobile networks. In
this regard, managing the Quality-of-Experience (QoE) for IoMT
services is a vital challenge to meet user satisfaction. To cope with
this problem, we investigate the joint optimization of video quality
variation and latency in multi-user downlink Rate-Splitting
Multiple-Access (RSMA) networks, especially within imperfect
network conditions and state information. To accomplish this, we
first formulated the joint optimization problem into a Markov
decision process framework, then exploited a deep reinforcement
learning approach to adaptively calculate the optimal configura-
tion of the RSMA against environment dynamics. As a result,
the proposed Deep Deterministic Policy Gradient on RSMA-based
Video streaming System (DDPG-RMAVS) provides QoE main-
tenance by minimizing video resolution reduction and latency.
Extensive simulation results revealed that the proposed DDPG-
RMAVS algorithm surpasses existing algorithms by achieving
higher video quality, lower delay, larger buffer capacity, and
limited stalling events, representing a significant breakthrough
in IoMT streaming optimization.

Index Terms—Internet of multimedia things, quality of expe-
rience, rate splitting multiple access, mobile network

I. INTRODUCTION

THE popularity of mobile Internet of Multimedia Things
(IoMT) streaming services has grown significantly due

to their convenience and accessibility. According to Ericsson
Mobility report data and forecasts [1], the total global mobile
traffic has reached 118 EB per month at the end of the year
2022, and it is forecast to incline to 472 EB per month by the
end of 2028, with 66% of the share belongs to 5G’s mobile
data traffic. In particular, IoMT traffic currently accounts for
71% of all mobile data traffic, and it is projected to increase
to 80% by the year 2028, making it the most dominant data
category on the Internet. As a result, the demand for IoMT
streaming services is expected to increase as more users enter
the market. The emergence of video service providers such
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as Youtube, Tiktok, and Twitch demonstrates the ubiquity of
video services in our daily lives.

As the Internet and IoMT services boom, there is a need
for an efficient multiple-access framework that can efficiently
utilize wireless resources and provide massive connectivity.
One such potential technology is the Rate-Splitting Multiple-
Access (RSMA) [2], which allows multiple users to transmit
data simultaneously over a shared spectrum. The working
principle of RSMA involves separating the transmission data
of each user into two parts: a common part that all users
can receive and utilize, and a private part that is designated
specifically for each user. Each user then reconstructs the
original message from the common and private messages using
the Successive Interference Cancellation (SIC) technique [3].
This approach has been proven to be able to improve sig-
nificantly spectral efficiency and offer an alternative to tradi-
tional methods like Space-Division Multiple-Access (SDMA),
Frequency-Division Multiple-Access (FDMA), and the recent
Non-Orthogonal Multiple-Access (NOMA) of 5G networks
[4].

A. Motivation
With the advantages of RSMA, the application of IoMT

services would bring many benefits to users’ experience. One
of the most notable achievements of RSMA is the advanced
resource allocation capability [5], [6]. RSMA enables better
resource allocation among multiple users, which can lead to
improved Quality-of-Service (QoS) and Quality-of-Experience
(QoE); hence users will experience fewer interruptions or
buffering when experiencing a video stream. Secondly, RSMA
has a powerful interference management capability, which can
increase the overall capacity of the streaming system while
stabilizing the network between each user and the server [7],
[8]. This means more users can access the IoMT service
simultaneously without a downgrade in video transmission
due to highly dense video data traffic. Moreover, RSMA
ensures that each user is allocated a fair share of the wireless
communication resources [9], [10]. No single user will monop-
olize the available resources, and all users will have an equal
opportunity to access the IoMT service. Last but not least,
RSMA can result in better energy efficiency by optimising
wireless communication resources [11], [12]. Devices can
operate more efficiently and use less battery power. Overall,
RSMA is a valuable technique for improving the performance
and efficiency of wireless communication systems and can
provide significant benefits for IoMT services.

A simple sketch of end-to-end video transmission is de-
picted in Fig.1. With the demand dramatically increasing,
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Fig. 1: End-to-end IoMT transmission.

network congestion appears during the downlink distribution.
Despite the numerous advantages and benefits that RSMA
could offer for IoMT services, the extent of discussion re-
garding their integration remains highly limited. While recent
research acknowledges that IoMT streaming is among the
services that can benefit from RSMA, these studies failed
to provide substantial details. To the best of our knowledge,
there has not been any official scientific research conducted on
studying IoMT services over an RSMA network, highlighting
the need for further investigation into this area. In this paper,
we have modeled a downlink IoMT streaming scenario, in
which RSMA was deployed at the Base Station (BS) and
simultaneously sent video data from the server to multiple
users. Additionally, we focus on resolving the two important
QoE utilities of IoMT streaming: Latency and Quality. In
order to optimize the two aforementioned utilities under the
dynamic environment of an RSMA-based IoMT streaming
system, we came up with a Deep Reinforcement Learning
(DRL) algorithm, namely Deep Deterministic Policy Gradient
on RSMA-based Video streaming System (DDPG-RMAVS).

B. Contributions

In this work, we investigate how DDPG-RMAVS can resolve
the joint optimization problem between maximizing video
quality and minimizing the transmission latency on an IoMT
streaming system over RSMA networks. The major contribu-
tions of this work are as follows:

• We considered a downlink IoMT streaming system in
multi-user RSMA networks. We aimed to jointly opti-
mize the two important QoE utilities of IoMT streaming
service: Video quality and Latency by managing the video
bitrate selection and signal transmit power at BS. We for-
mulated the optimization problem under transmit power
constraint, buffer constraint, and minimum rate constraint
of users. We especially investigated the imperfect video
transmission environment, in which an imperfect Channel
State Information at Transmitter (CSIT) and an imperfect
SIC were considered.

• The optimization problem is non-convex and challenging
to solve with traditional optimization methods. Therefore,

we proposed the DDPG-RMAVS algorithm, a DRL-based
approach as the feasible way to achieve a sub-optimal
solution. We have transformed the optimization problem
into a Markov Decision Process (MDP) framework to
facilitate the use of DDPG-RMAVS.

• We demonstrated through simulation results that the pro-
posed algorithm achieves better performance than other
state-of-the-art optimization models in terms of quality,
latency, buffer capacity, and the number of stalling events.
We conclude that the application of DDPG-RMAVS onto
RSMA-based IoMT streaming system can enhance the
QoE of users, particularly in terms of latency and video
quality.

The structure of this paper is as follows. The system model
and the optimization problem’s formulation are explained in
Section III. We present the MDP framework and suggest
the application of DDPG-RMAVS in Section IV. Section V
provides a detailed account of the simulation setting and
presents numerical results alongside comparative analysis. We
also discuss some of the possible drawbacks remaining on the
paper, as well as providing some promising future research
directions in VI. Finally, Section VII offers a summarized
conclusion.

Notation: Upper and lower case letters written in bold
represent the matrices and vectors, respectively. Transpose,
Hermitian, Euclidean norm, and expectation operator are
represented by (.)

T , (.)
H , ∥.∥, and E {.}, respectively. The

circularly symmetric complex Gaussian (CSCG) distribution
with zero mean and variance σ2 is denoted as CN (0, σ2).

II. RELATED WORKS

Given the superior of RSMA scheme and the potential of
DRL models for IoMT streaming and RSMA, we have orga-
nized related works into three main categories: (i) comparison
between RSMA and other traditional multiple access schemes,
(ii) the utilization of DRL solutions in RSMA, and (iii) the
application of DRL techniques to address utility problems in
live IoMT streaming.
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A. RSMA in Comparison with Traditional Schemes

The most notable achievement that distinguishes RSMA
from other multiple access methods is sophisticated inter-
ference management. As previously stated, RSMA divides
messages into common and private messages, allowing RSMA
to partially interpret interference as noise and partially decode
interference. This strategy, incorporating the interference man-
agement methods of NOMA and SDMA, enables RSMA to
handle interference more efficiently, therefore achieving higher
performance than NOMA/SDMA.

The work of [2] has comprehensively conducted a compar-
ison between RSMA and SDMA/NOMA in different metrics.
Firstly, RSMA gains more Degree-of-Freedom (DoF) than
NOMA and SDMA in imperfect CSIT environment [13],
[14], [15]. Similarly, Clerckx et al. [16] demonstrated that
larger sum-DoF and symmetric DoF in RSMA enable the ex-
ploitation of multi-antenna strategy in Multiple-input multiple-
output (MIMO). Secondly, the precoders in RSMA outperform
other schemes in terms of achievable rate while reducing
complexity and computational weight. Precoder design adds
to the success of inter-user interference control by allowing
users to use greater rates. Schroder et al. [17] compared the
achievable rate maximization in multibeam satellite systems
and highlighted the superiority of the RSMA system. Accord-
ing to the research of [18], [19], [20], RSMA outperforms
SDMA and NOMA in both perfect and imperfect CSIT by
attaining higher average rate region and weighted sum rate
under various user deployments and network loads. Finally,
as compared to NOMA/SDMA, RSMA achieves the greatest
throughput in both Shannon Bound and Link-level simulations
platforms[21]. Furthermore, the work of [22] indicates that
RSMA is more robust to high mobility users in MIMO
networks because it achieves higher throughput than SDMA,
whereas NOMA is vulnerable to high user mobility due to the
user clustering problem.

B. Deep Reinforcement Learning with RSMA

RSMA wireless communication networks are intricate,
marked by dynamic channel conditions, user mobility, and
interference variations. Tackling the optimization challenges in
RSMA utilities, given the network’s non-convex and unstable
nature, is demanding. DRL has emerged as a promising
solution for such complex environments, allowing the develop-
ment of optimal policies through interaction with the network
without prior knowledge of the system model.

Recent research has focused on power allocation in RSMA,
aiming to maximize sum rates, minimize transmit power, and
enhance user fairness [2]. RSMA splits data rates into multiple
streams, demanding significant power and potentially impact-
ing energy consumption and system performance. Various
algorithms have been proposed to address RSMA challenges.
In [23], a Proximal Policy Optimization (PPO) rate allocation.
Giang et al. [24] employed Deep Q-Learning (DQN) for uplink
RSMA’s sum-rate maximization. Zhang et al. [25] integrated
RSMA with intelligent surface-assisted wireless information
and power transfer. PPO jointly determined optimal power
allocation, common rate, beam-forming, and phase shifting.

Unmanned Aerial Vehicle (UAV)-based RSMA has gained
attention, as it enhances spectral efficiency in bandwidth-
limited UAV networks. In [26], Thien et al. used a Deep De-
terministic Policy Gradient (DDPG) model to maximize sum
rates in a downlink RSMA system deployed on UAVs. DDPG
was also applied to optimize UAV trajectory for sum-rate max-
imization in [27]. Truong et al. proposed HAMCE a system
optimizing RSMA aspects, including offloading decision, split-
ting ratio, transmit power, and decoding order, using DDPG
[28]. The study investigated the impact of Ornstein-Uhlenbeck
(OU) noise on DRL model exploration and exploitation. Ji et
al. [29] explored uplink-downlink decoupled user association
in RSMA within a multi-UAV scenario, considering various
constraints to maximize user and multicast group sum rates.

C. Deep Reinforcement Learning with IoMT Streaming

DRL methods have gained prominence in optimizing IoMT
streaming, particularly in adapting bitrate algorithms to vary-
ing network conditions and user preferences. Notable applica-
tions of DRL in video utilities encompass video resolution,
latency, energy efficiency, and security [30]. For instance,
Huang et al. used DRL in [31] to dynamically select video
bitrates based on past frame quality, enhancing real-time IoMT
streaming quality and stability. Hong et al. [32] employed
DDPG for bitrate and latency control, outperforming DQN by
3.6% in QoE. In the context of 360-degree video streaming,
Zhang et al. presented DRL360 in [33], a DRL framework
leveraging Deep Learning for bandwidth and view-ports pre-
diction, and an Actor-Critic model for tile rate allocation.
Pang et al. [34] proposed an actor-critic-based Asynchronous
Advantage Actor Critic (A3C) algorithm to optimize latency
in 360-degree videos, emphasizing their latency sensitivity.

An interesting study related to both IoMT streaming and
RSMA, employing DRL, is the work of Hieu et al. [35]. They
addressed transmission latency in RSMA-based virtual reality
IoMT streaming by clustering users according to their priority
for virtual video streams and utilizing a PPO-based model
to mitigate latency under computational constraints. However,
this research focused on a specific type of video content
(virtual video streams), making it distinct from the broader
scope of live IoMT streaming. In light of this research gap, our
study provides a comprehensive examination of RSMA-based
IoMT streaming, encompassing a practical and generalized
IoMT streaming framework.

III. PROBLEM STATEMENT

This paper considers a live IoMT streaming system in multi-
user downlink RSMA networks with imperfect CSIT and SIC,
as shown in Fig.2. This model consists of one multi-antenna
gNB and a set of K = {1, . . . ,K} single-antenna users. The
number of transmit antennas equipped at the gNB is M . BS
is assumed to employ the one-layer RSMA technology in this
model to send video signals to every user simultaneously.
Without loss of generality, the terms video signals and mes-
sages might be used interchangeably throughout this study.
Adopting the 3GPP standard model for multimedia services in
mobile networks [36], the 5G media streaming (5GMS) server
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TABLE I: List of denotations

Denotation Description
K Total number of users
M Total number of antenna on BS
w Bandwidth of BS
pc Transmit power for common stream
pp,k Transmit power for private stream of user k
P Total transmit power of BS
x Transmit signal from BS
hk Perfect CSIT of user k
ek CSIT error estimation of user k
ĥk Imperfect CSIT of user k
nk AWGN noise of user k
σ2 Noise variance
ξ Imperfect SIC variance for common stream
δk[t] Playtime of video chunks at timeslot t of user k
Π Size in bit of one video chunk
τ Duration of one timeslot in seconds
rk[t] Bitrate of video chunks at timeslot t of user k
bk[t] Buffer in seconds at timeslot t of user k
ρk[t] Video playtime at timeslot t

5GMS 
clients

5GMS edge 
server

5GMS
platform

5G multiple 

access

Fig. 2: RSMA downlink 5GMS live streaming system model.

located at the gNB calculates optimal solutions for content
transcoding and delivery while the central application servers
at the core networks are in charge of video distribution and
long-term content storage.

A. Channel Model

Denote a message sent by gNB to user k, ∀k ∈ K, as Wk.
Following the one-layer RSMA technique, the message Wk

is firstly divided into two parts: a common message Wc,k

and a private message Wp,k [18]. The common messages
of all users, i.e., {Wc,1, . . . ,Wc,K}, are concatenated into a
single common message, indicated as Wc, and accordingly
encoded into a common stream sc ∈ C. The private message
of user k, Wp,k, on the other hand, is encoded independently
into a private stream sp,k ∈ C. Hence, the total number of
encoded streams s = [sc, sp,1, . . . , sp,K ]

T ∈ CK+1, consists
of K private streams and one common stream. The transmit
power allocated for common stream sc and private stream
sp,k of user k are denoted as pc ∈ CM and pp,k ∈ CM , re-
spectively. Therefore, the transmit power matrix is represented
as P = [pc,p1, . . . ,pK ]

T ∈ CM×(K+1). The transmit signal
x ∈ CM is represented as follows [37]

x =
√
pczcsc +

K∑
k=1

√
pp,kzp,ksp,k, (1)

where zc ∈ CM and zp,k ∈ CM are the precoding vectors
of the common and private streams of user k, and the power

constraint pc +
∑K

k=1 pp,k ≤ P holds, i.e, the sum of allo-
cated power for all message streams must not exceed the total
available power P at the BS. For practical implementation,
imperfect CSIT is assumed with a possible error in channel
estimation. Let H = [h1,h2, ...,hK ] ∈ CM×K be the perfect
CSIT estimation of the downlink from the gNB. Each element
of hk represents the channel gain between user k and each
transmits antenna. The imperfect CSIT is given by

ĥk = hk + ek, (2)

where E = [e1, e2, ..., eK ] ∈ CM×K be the channel estima-
tion error matrix. The CSIT error variance is derived as
σ2
e,k ≜ Eek

{∥ ek ∥2} [19], identical for all users, i.e.
σ2
e,k = σ2

e , and scalable as σ2
e,k = O(P−ϱ). The scaling

factor ϱ ∈ [0,∞) indicates the quality of CSI at the BS in
high signal-to-noise ratio (SNR) region [38]. For the extreme
case of ϱ = 0, the CSIT quality remains invariant regardless
of the SNR. On the other hand, as ϱ→∞, the error variance
σ2
e,k → 0, hence perfect CSIT is achieved. Thus, with a finite

ϱ > 0, the CSIT quality is improved due to the increasing
SNR. In this paper, we set the range ϱ ∈ [0, 1] because ϱ = 1
corresponds to perfect CSIT from a DoF perspective [39].

At the receiver side, the received signal yk at user k is
formulated as

yk = ĥH
k x+ nk, (3)

where nk ∼ CN (0, σ2
k) is the corresponding mean-zero addi-

tive white Gaussian noise (AWGN) at user k, with the variance
σ2
k.
In a one-layer RSMA system, after user k has received

signal yk, the common stream sc is firstly decoded by treating
all private streams from K users as noise. These noises
are filtered using the SIC technique placed at each receiver.
Therefore, the signal-to-interference-plus-noise ratio (SINR)
γc,k for transmitting common stream to user k is

γc,k =
pc|ĥH

k zc|2∑K
k=1 pp,k|ĥH

k zp,k|2 + σ2
k

. (4)

All users decode the common stream. To do this, the decoding
rate for all users must not exceed the minimum decoding SINR
of all users [40]. Hence, the transmission rate for the common
stream for all users is

Rc = w. log2

(
1 + min {γc,k}Kk=1

)
, (5)

where w is the channel bandwidth. Since each user has a
distinct amount of messages to contribute to the common
message stream, the transmission rate Rc is the sum of all the
portions which each k user allocated to transmit the common
message. Denote Ck is the common rate allocated by user k,
we have

K∑
k=1

Ck ≤ Rc. (6)

Ideally, after user k has successfully decoded the common
stream using SIC and formed a common message Ŵc,k, this
message is then removed from the total received message.
However, there could be errors that occurred during this
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process and the common message signal has not been de-
tached completely, resulting in the imperfect SIC condition.
Therefore, when user k decodes its own private stream by
treating private streams of other users as noise, interference
still exists from the common stream. Thus, the transmission
rate Rp,k for the private stream at k-th user is computed as

Rp,k = w. log2 (1 + γp,k) (7)

in which the SINR γp,k of the private stream can be calculated
as

γp,k =
pp,k|ĥH

k zp,k|2∑K
j=1,j ̸=k pp,j |ĥH

k zp,j |2 + σ2
k + ξ.pc|ĥH

k zc|2
(8)

where ξ ∈ [0, 1] corresponds to the imperfect SIC after de-
coding the common message [41], [42]. In overall, the total
achievable rate Rk for user k is given by

Rk = Ck +Rp,k. (9)

Subsequently, the private message Ŵp,k of user k is ex-
tracted after the decoding of private stream sp,k. Henceforth,
user k reconstructs the intended message Ŵk by combining
Ŵc,k and Ŵp,k, which should have the form similar to the
original message Wk.

B. Video Traffic Model

Given that a discrete-time stochastic live IoMT streaming
session at user k incorporates into the considered system
model. At the beginning of timeslot t, the 5GMS server
located at the gNB is caching Ωk[t] contiguous video chunks
to provide for user k. Obviously, Ωk[t] = 0, t = 0. Without
loss of generality, the size in bits of a video chunk and the
duration of a timeslot are fixed as Π and τ , respectively. In
addition, denote the number and play time of video chunks
downloaded by user k during timeslot t are ∆k[t] and δk[t].
Given that video bitrate rk[t] has been selected for the video
stream in timeslot t, δk[t] can be calculated as

δk[t] =
Π

rk[t]
. (10)

On the other hand, the number of video chunks continuously
appended to the cache at the 5GMS server during timeslot t
is given by τ

δk[t]
. Hence, ∆k[t] is given by

∆k[t] =


⌊
τRk[t]

Π

⌋
if τRk[t] < Π

(
Ωk[t] +

τ
δk[t]

)
Ωk[t] +

⌊
τ

δk[t]

⌋
otherwise,

(11)
where ⌊·⌋ is a floor function. Accordingly, the cache at the
5GMS server remains at the beginning of timeslot t+ 1 as

Ωk[t+ 1] = Ωk[t] +
τ

δk[t]
−∆k[t]. (12)

In a downlink live IoMT streaming, the video session begins
when the 5GMS streaming server receives user video requests
and detailed information about the network conditions. The
process includes the server sending encoded video data with
the requested quality, the transmission from the gNB to users,
decoding the data, and finally adding to the video buffer for

playing back. Regarding these processes, we introduce the
terms Buffering and Stalling based on the 3GPP technical
report on media streaming [43]. Video buffering includes
initial buffering and re-buffering. The former term indicates
the duration starting when the user triggers the video request
until the video is being playback on user devices. The latter
term, re-buffering, refers to the pre-loading of video chunks.
On the other hand, video stalling occurs when the layout stops
due to re-buffering, a user action, the end of video content, or
a permanent failure. To further investigate the correlation of
these terms to IoMT streaming systems, let the time for user
k to download a video chunk be formulated as

dck[t] =
rk[t].δk[t]

Rk[t]
. (13)

The video chunk is downloaded to the user’s device to be
decoded by the decoder on the user side. After decoding the
video chunk, it would be added to the buffer and ready for
playback. As the video is played, the data is retrieved from
the buffer and played in real time. The total time for user k
to download all the video chunks within time slot t is:

dtk[t] = dck[t].∆k[t]. (14)

Denote the buffered video time in the playback buffer
of user k, i.e., current buffer size, at time slot t as bk[t]
seconds. Whenever a video chunk is downloaded and decoded
completely, it is cached to the playback buffer and the buffered
video time increases δk[t] seconds. Intuitively, during a time
slot t, a volume of ∆k[t].δk[t] video time has been added to
the playback buffer while a volume of ρk[t] video time has
been played by the user, where ρk[t] must not be greater than
the length of a time slot. At the beginning of time slot t+ 1,
bk[t+ 1] can be calculated as

bk[t+ 1] = max{bk[t] + ∆k[t].δk[t]− ρk[t], 0}. (15)

Accordingly, a stalling event occurs if bk[t] + ∆k[t].δk[t] <
ρk[t] and the stalling time is equal to ρk[t]−bk[t]+∆k[t].δk[t].
In this case, bk[t+1] = 0 leads to a re-buffering event, which
helps to cache a sufficient number of video chunks before
continuing video stream playback.

In Dynamic Adaptive Streaming over HTTP, the video
quality is chosen by the video server, which was adaptively
adjusted according to the network condition of the user. Obvi-
ously, the perceived quality of video chunks can be modeled
as a concave function of video bitrate rk[t], i.e., the higher the
bitrate, the better quality can be achieved [31], following the
principle of Adaptive Bitrate Streaming. Hence, the quality of
the video chunk for user k is denoted as a concave function
of bitrate, Q {rk[t]}. An example of video quality selection
based on bitrate is available on an open-source ”Big Buck
Bunny” dataset [44] or in the work of [45]. For reference, the
minimum and maximum resolutions in [44] are 360p and HD
1080p, respectively. One of the most important factors which
directly impacts the user video experience is the variation in
quality between two sequences of video chunks. The quality
between them must align with each other, allowing the user
to smoothly change the quality at the chunk boundaries if
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necessary [46]. We formulate the adjacent quality variations
as follows

Vk[t] = Q {rk[t]} −Q {rk[t− 1]} , t = 1, 2, . . . (16)

The resolution fluctuation among chunks may cause un-
pleasant experiences for users. In particular, video resolution
increases (i.e., Vk[t] > 0) provide a better experience for
users and vice versa. In other words, the interval of Vk and
the quality of video chunks in the next timeslot should be
maximized.

C. Optimization Problem
The above equations have defined a discrete dynamic IoMT

streaming model by highlighting the two important metrics
which directly affect the QoE of users in downlink IoMT
streaming. Overall, the QoE performance of user k can be
expressed as follow

QoEk[t] = αVk[t]− (1− α)dtk[t], (17)

where the first and second terms are the video quality variation
and the latency, respectively, which associate with a balance
factor α. Subsequently, the QoE optimization problem for all
users is formulated as

max
rk[t],P[t]

K∑
k=1

QoEk[t]

s.t. C1: pc +

K∑
k=1

pp,k ≤ P,∀k ∈ K

C2:
K∑

k=1

Ck ≤ Rc

C3: Ck > 0, ∀k ∈ K
C4: bk[t] ≥ 0, ∀k ∈ K
C5: bk[t] + ∆k[t].δk[t] ≥ ρk[t],

(18)

where (C1) specifies the transmit power constraint for all users
must not surpass the total available power at the BS; constraint
(C2) use to ensure the total portion of all users’ common
rate is subjected to the total rate allocated for decoding the
common stream; constraint (C3) requires the common rate
assigned for each user to be positive. The buffering restriction
is demonstrated by the constraint (C4) and (C5), in which (C4)
is set to keep the buffer size cannot be a negative value, and
(C5) is the stalling event.

In theory, the optimization problem at (18) could be
addressed using the dynamic programming method [47].
Nonetheless, because of the non-convex linked rate expres-
sions and significant computational complexity, traditional op-
timization tools are inefficient and overly complex for solving
the problem. Particularly, the channel gains hk between user k
and BS fluctuates over time, resulting in uncertainty and unsta-
ble dynamic of the channel. Furthermore, the consideration of
imperfect CSIT and SIC in RSMA implies the problem cannot
be solved directly due to the lack of prior knowledge regarding
the channel state distribution and network conditions. To this
end, we proposed a DRL-based algorithm for a downlink
RSMA-based IoMT streaming system, capitalizing on the
ability of DRL to handle non-convex issues.

IV. PROPOSED SOLUTION

In this section, we provide a DRL technique called DDPG-
RMAVS, which is based on DDPG to solve the optimization
problem. First, we will discuss the fundamentals of DDPG and
why DDPG is best suited for the solution. We then evaluate
and define our problem as a MDP framework, and demonstrate
how to apply the DDPG-RMAVS onto our model.

A. Preliminaries

The IoMT streaming environment comprises of a high-
dimensional state space and an action space. Therefore, to
effectively extract features from complex state space S and
learn policies for action space A, deep function approximators
in DDPG were leveraged. Particularly, DDPG used a straight-
forward actor-critic architecture and parameterized the actor-
network µ(s|θµ) with weight parameter sets θµ, similarly to
the critic network Q(s, a|ϕQ) with ϕQ. The actor represents
the policy µ that deterministically selects action a based on
state s using parameters vector θµ, and the Q-value function
in the critic determines the performance of the action chosen
by the actor. The optimal accumulative Q-value of the critic
can be determined using the Bellman equation:

Q∗ (s, a|ϕQ
)
= max

a∈A,r,s′∼E

[
r(s, a) + γmax

a′
Q∗(s′, a′|ϕQ)

]
(19)

in which r indicates the reward received from the environment
after executing action a at state s; γ ∈ [0, 1] is the discount
factor to reduce the importance of future rewards; s′ and a′

are the next state and the next chosen action to be executed.
The DDPG algorithm interpolates between the optimal

policy and the Q-Learning approach. The main objective of
policy optimization is to identify a policy that deterministically
maps states to a specific action that maximizes the expected
return J(s|θµ), i.e, the expected reward starting from s, which
is done by the actor. As in Q-Learning, the critic is learnt using
the Bellman equation in (19). The actor is updated with respect
to the actor parameters following the policy gradient [48]:

∇θµJ(θµ) = E
[
∇θµQ

(
s, a|ϕQ

)]
= E

[
∇aQ

(
s, a|ϕQ

)
∇θµ (a)

]
= E

[
∇aQ

(
s, a|ϕQ

)
∇θµ (µ′(s))

]
(20)

Since DDPG is an off-policy algorithm, the on-policy ex-
ploration ability of DDPG can be limited and actions may not
be able to find useful learning signals at the start of training.
To overcome this, the original actor policy µ(s|θµ) is added
with a noise process N , i.e,

a = µ(s|θµ) +N (21)

in which the noise N can be generated based on the OU
process [49], or mean-zero AWGN [50]. Similar to DQN,
a replay buffer D is also introduced for DDPG to ensure
that it can learn from a variety of experiences and to de-
correlate datasets provided to learn the probability distribution.
The replay buffer is a finite-sized cache that consists of many
tuples in the form of ⟨st, at, rt, st+1⟩. These tuples contain the
information of state st, the action at to be executed at time t,
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the reward rt it perceived after the action, and the state st+1

after the action has been applied onto the environment. After
each time slot t, a tuple is uniformly sampled and stored in
D. The mini-batch B of the replay buffer is then used as input
for training Deep Neural Networks (DNN) models.

Another term worth being mentioned is the target networks,
which includes a target actor network µθtarg and a target critic
network Qϕtarg . These target networks ensure the chance of
convergence and stabilize the training for the original actor-
critic algorithm. Subsequently, we can retrieve the tuples in
batch B to calculate the mean-squared Bellman error (MSBE),

L(ϕQ) = Est,at,rt,st+1∼B

[(
Q(st, at|ϕQ)− yt

)2]
(22)

where Q(st, at|ϕQ) is the Q-value of action at chosen at state
st by the critic based on the parameters ϕQ. The target yt
is the optimal accumulative Q∗ (s, a|ϕQ

)
calculated based on

Bellman equation (19) and can be formulated as

yt = r(st, at) + γQϕtarg

(
st+1, µθtarg(st+1)

)
(23)

The objective is to minimize the MSBE loss, i.e, minimize (22)
and make the Q-function Q(st, at|θQ) to be as close as the
target yt as possible. For the sake of stabilization during MSBE
minimization, the parameters of target actor θtarg and the target
critic ϕtarg are updated once per main network update:

θtarg ← ρθtarg + (1− ρ)θµ

ϕtarg ← ρϕtarg + (1− ρ)ϕQ (24)

where the hyperparameter ρ≪ 1, sometimes is referred to as
the target network update rate.

B. Markov Decision Process framework

In this sub-section, we transform our system into an MDP
framework for DRL agents. In a IoMT streaming system, the
characteristics of video chunks are decided by the streaming
server based on the observations it received from the trans-
mission network and the feedback from users. Hence, we
considered the streaming server as the DRL agent and the
downlink IoMT streaming process as an environment. We re-
formulate the optimization problem (18) into MDP by defining
a tuple (S,A, r, γ) which includes a state space S, an action
space A, a reward function (r : S ×A → R), and a discount
factor γ, respectively.

State space: In practice, the IoMT streaming server consults
the network conditions to adaptively select the optimal quality
for the video chunk. For the RSMA transmission, the factor
which can affect the selection decision is the downlink channel
state Ĥ =

[
ĥ1, ĥ2, ..., ĥK

]
. Furthermore, the buffer b also

plays a crucial role in choosing the video quality, as a larger
buffer size at t allows the agent to be more flexible in selecting
higher video quality, even when stringent achievable rate
occurs. Concretely, at each time step t, the agent observes
the changes in these factors and feeds it into the state space,
which can be described as a tuple:

st = ⟨Ĥ(t),b(t)⟩ (25)

in which Ĥ(t) ∈ CM×K is the imperfect CSIT channel state
of K users and b(t) ∈ CK is the available buffer size at time
t of all K users. The state st will have the dimension of
((M + 1)×K).

Action space: Given the state st, the DRL-based model
determines an action based on policy µ. In particular, the
agent seeks the quality for the video chunks in timeslot t
Q {r(t)} ∈ CK for all K users and the transmit power matrix
P(t) ∈ CM×(K+1) of K users in addition with one common
message. Since the video quality is the concave function of
video bitrate, the video quality part can be replaced by the
video bitrate. The action space at is a tuple:

at = ⟨r(t),P(t)⟩ (26)

where r(t) ∈ CK is the bitrate vector of all K users. The
action at has a dimension of (K +M × (K + 1)).

State Transition Probability: A state transition probability
alters the state of an environment between consecutive time
steps. Following the Markov property, the state transition
probability can be expressed as

P (st+1|st, at) = P (Ĥt+1,bt+1|Ĥt,bt, rt,Pt) (27)

where the state st+1 of the next time step (t+ 1) is only
depend on the current state st and the chosen action at at
time step t.

Reward: As mentioned in the previous subsection, in each
time slot, the agent tries to find an optimal policy µ∗ which
maximizes the expected reward, for which the Q-value func-
tion can be formulated as in [51]

Q(st, at|ϕQ) = E

[
T∑

t=1

γt−1(rt|st, at)

]
(28)

where the optimal policy is mathematically expressed as

µ∗ = argmax
µ

Q(st, at|ϕQ), ∀st ∈ S

In our proposed system, the optimization objective is to
maximize the QoE of all users throughout the entire IoMT
streaming session. Therefore, the reward rt can be calculated
as in equation (18)

rt(st, at) =
K∑

k=1

(QoEk[t]− pk[t]) (29)

We introduce the term pk[t] as the penalty received for action
at that does not satisfy the constraint (C5) in (18). This
constraint is set up to avoid an empty buffer and a stalling
event occurs. In particular, the penalty pk[t] for user k at time
step t is defined as follows:

pk[t] = Φ (bk[t] + ∆k[t].δk[t], ρk[t]) (30)

where the function Φ is equal to 10 if the calculation of the
buffer at the next time step bk[t] +∆k[t].δk[t] is less than the
video playtime ρk[t], which leads to an empty buffer at next
time step (t+1) and re-buffering event occurs. Conversely, Φ
is set to be 0 if the buffer size is larger than ρk[t], ensuring the
streaming session can continue without any disruption. With
this penalty setup, the agent would have to consider the trade-
off between the video quality Q {rt} with the buffer size bt

in low total achievable rate Rk scenario.
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Fig. 3: DDPG-RMAVS algorithm.

C. Algorithm Methodology

At the beginning of each timestep t, the agent located in the
gNB generates an observation st as in (25), and then determine
the action at using policy µ. Subsequently, the action is
performed onto the environment, which in turns feedback the
next state st+1 and the reward rt. The reward is defined in (29),
which consist for the QoE and the penalty term. As previously
mentioned in IV-A, the policy µ is structured to select which
action results in highest accumulative reward rt. Hence, our
objective is to maximize the QoE by increase video quality
and minimize latency while avoiding the penalty.

The policy parameters θµ in actor network determine
action at based on (21), henceforth create a tuple of
(Ĥ[t],b[t], r[t],P[t]). From Ĥ[t] and P[t], the total achievable
rate R[t] can be calculated using (4)→(9). Furthermore, as
the video bitrate r[t] is selected within the action at, the play
time δk[t] is determined in (10), as well as the number of
downloaded chunks ∆k[t] in (11) and cached chunk Ωk[t+1]
in (12). These variances are used to calculate the latency dt[t]
and the buffer capacity bk[t+ 1]. Moreover, the video quality
Qr[t] is the concave function from video bitrate vector r[t],
hence we can also derive the adjacent quality variation V [t].
From V [t] and dt[t], QoE can be measured in (17), therefore
the reward rt is calculated using the equation (29).

From the aforementioned analysis, the action at are directly
impact the reward rt, as high bitrate action r[t] would resolve
on maximizing the quality variation term V [t] and reverse. Ad-
ditionally, the power allocation matrix P[t] greatly improves
the achievable rate R, therefore allowing RSMA to download
higher bitrate video. The action also needs to consider the
penalty term, for keep generating µ(s|θµ) with high r[t] can
inevitably causing the buffer to drain, hence stalling events
occur.

D. Complexity Analysis

This section investigates the complexity of the proposed
DDPG-RMAVS algorithm on optimizing video latency and

quality variation. Our implementation relies on fully connected
DNN for actor and critic networks, hence we derive the
computational complexity based on the DNN workload. In
IV-B, we have defined the dimension of state space S =
((M+1)×K) and the action spaceA = (K+M×(K+1)). As
can be seen from Fig.4, the DNN structure of actor network
and critic network are identical, each contains of one input
layer, two hidden layers, and one output layer.

Denote na
1 and na

2 as the number of neuron nodes in the
first and second hidden layer of actor network, respectively. In
the training process, the agent performs backpropagation and
feed-forward propagation to determine action at from state
st. Hence, the complexity of the actor network in training for
each step is formulated as in [52]

Oa
train = O

(
(S)2 + (na

1)
2 + (na

2)
2 + (A)2

)
(31)

Correspondingly,we express the computational complexity
for the critic network as

Oc
train = O

(
(S +A)2 + (nc

1)
2 + (nc

2)
2
)

(32)

with nc
1 and nc

2 are the nodes available at the two hidden
layers in critic network. Furthermore, because the DNN struc-
ture of the target actor network and target critic network are
similar to the main networks, in addition to the utilization of
both the main and target networks during training process, the
computational complexity of DDPG-RMAVS during training
is computed as

Otrain = 2× E × S × B × (Oa
train +Oc

train) (33)

where E to be the number of training episodes and S be
the number of steps in an episode.

For the decision-making process, the backpropagation in the
main actor network is omitted due to the joint action selection
to interact with environment. Henceforth, the computational
complexity during the decision-making is only determined
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by the forward propagation of neural network, which can be
computed as

Odm = E × S × B × (Sna
1 + na

1n
a
2 + na

2A) (34)

We observe that the complexity of the proposed algo-
rithm is polynomial and practical in scenarios where the
environment can be dynamically scaled up. Considering K-
dimensional input, the computational complexity of such al-
ternative optimization like semi-definite relaxation [53] can
up to O(K6+1), whereas for DDPG-RMAVS, the complexity
rises only to K2 during training process and reduces to K
in decision-making, which greatly reduces the execution time
and computational resources.

The pseudo-code of DDPG-RMAVS algorithm for optimiz-
ing QoE in RSMA-based IoMT streaming system is shown in
Algorithm 1. Fig.3 demonstrates the general working princi-
ples of the proposed algorithm. Fig.4 illustrates the procedure
of generating the action a from actor network and Q(st, at)
from critic network (the red line operation in Fig.3). The
denotations of parameters used in the algorithm are clearly
explained in Table II.

Algorithm 1 DDPG-RMAVS

1: Initialize: Initialize the buffer size b and number of video
chunks cache at 5GMS server Ω of state s(t0) to be 0.

2: Initialize the weights θµ and ϕQ of DNN actor network
µ(s) and critic network Q(s), respectively.

3: Initialize target weight θtarg ← θµ of the target actor µ′

and the target weight ϕtarg ← ϕQ of the target critic Q′.
4: Initialize replay buffer size D and mini-batch B.
5: for episode← 1 to E do
6: Initialize state s[t0] based on (25).
7: while t ≤ S do
8: Agent in BS observe state s[t]
9: Actor generates action a[t] according to (26)

10: Compute reward r[t] according to (29)
11: Observe next state s[t+ 1] based on (15)
12: Store tuple (s[t], a[t], r[t], s[t+ 1]) in buffer D
13: Sampling batch B tuples from D to train DNN
14: Update ϕQ by minimizing loss in (22)
15: Update θµ from policy gradient in (20)
16: Update target networks based on (24)
17: t++
18: end while
19: end for
20: Return θµ

∗

V. PERFORMANCE EVALUATION

A. Simulation Settings
The simulation is conducted on a GPU-based server with

NVIDIA GeForce RTX 3090 Ti. The CPU is Intel(R)
Core(TM) i9-12900K 3.20 GHz with 64G RAM. The soft-
ware environment is set with Anaconda using Pytorch 2.0.0,
CUDA 11.8, Python 3.9.16, and Gym 0.26.1. Using PyTorch
and Python programming, we generate the IoMT streaming
environment and train the agent.

TABLE II: Simulation parameters

Parameter Value
Number of antennas on BS, M 14
Number of users, K 10
Base Station bandwidth, w 1 MHz
Power, P 23 dBm
Noise variance, σ2 -170 dBm/Hz
SIC error, ξ 0.1
Imperfect CSIT, ϱ 0.8
Chunk size, Π 3 Mb
Timeslot duration, τ 3 seconds
Max/min bitrate of codec 0.1 Mbits/22 Mbits
Number of training episodes, E 2000
Number of steps per episode, S 700
Actor hidden layer nodes, na

1 & na
2 1024 & 512 nodes

Critic hidden layer nodes, nc
1 & nc

2 512 & 256 nodes

1) RSMA System Settings: The environment comprises one
BS and K number of users in downlink IoMT streaming
transmission using RSMA. The number of antennas on BS
is set to be M = 14 simultaneously serving K = 10 single-
antenna users. In RSMA, each user is allocated a portion of
available bandwidth, which is divided among users in a fixed
manner, hence the bandwidth is assumed to be the same for
all users regardless of the number of users. We assigned a
bandwidth of w = 1 MHz to evaluate the algorithm’s efficacy
in scenarios with restricted bandwidth and to eliminate any
predisposition towards consistently high available rates, which
would otherwise result in obtaining the maximum bitrate for
every user. The noise variance σ2 at the transmitter is selected
to be −170 dBm/Hz and the total power P allocated by the
BS for all users is 23 dBm.

The state of the environment is defined as in (25). Firstly,
we attempted to randomly initialize the imperfect channel
state matrix Ĥ = H+E by identifying the perfect chan-
nel state matrix H = [h1,h2, ...,hK ] and the error matrix
E = [e1, e2, ..., eK ]. Each error channel vector ek ∈ E is
identically distributed and drawn from complex Gaussian
distribution, CN (0, σ2

e,k) with σ2
e,k = P−ϱ. For the simulation,

we set ϱ = 0.8. Subsequently, we initialize the buffer size
b ∈ CK . At t = 0, the buffer is empty due to no video data
having been downloaded, i.e., b[t0] = 0. Additionally, for the
portion of Ck in (6), we assumed that each user has the same
portion, i.e., C1 = C2 = . . . = CK .

2) IoMT Streaming System Settings: For IoMT streaming
characteristics, we determined the chunk size Π = 3.106 bits
and the time duration for each timeslot τ = 3. We trained the
agent for S = 700 for each episode. Additionally, we assumed
the maximum video bitrate supported by the video codec is 22
Mbps and the minimum bitrate is 100 Kbps. The video bitrate
is also sorted into different ranges that are identical for each
distinct video quality based on Youtube live streaming bitrate
selection guide [54]. After the actor-network of DDPG has
output the bitrate for time slot t, the bitrate is assigned to be
equal to the closest relevant bitrate minimum range of video
quality. There are 10 different quality categories considered in
this paper, which are 360p, 480p, 720p, 720p @60fps, 1080p,
1080 @60fps, 1440p @30fps, 1440p @60fps, 4K @30fps,
and 4K @60fps. For example, based on the CSIT and the
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Fig. 4: Actor-Critic network interaction.

buffer size of user-k at timeslot t, the actor model predicts the
appropriate bitrate rk[t] to be 2.67 Mbps. According to [54],
this bitrate falls into the category of 720p @60fps and 1080p,
of which the bitrates are 2.25 Mbps and 3 Mbps, respectively
(we only consider the minimum range). We will assign the
bitrate into 720 @60fps quality, i.e.,rk[t] = 2.25 Mbps, which
is the lower range to ensure the system does not violate the
buffer constraint.

The system level and IoMT streaming level simulation
parameters are summarized in Table II.

B. Convergence Analysis

To improve the certainty of the model study across different
random CSIT changes, we performed a Monte Carlo simula-
tion for over 2000 episodes. To begin, because the performance
of the algorithm is subject to hyper-parameter tuning, we
have investigated algorithm convergence by experimenting
with different values of hyper-parameters. We examined the
impact of hyper-parameter tuning on the proposed algorithm
based on changes in training rewards.

Initially, we trained our suggested model using varying
batch sizes B. We experimented with three batch sizes:
B = {16; 32; 64}, and the outcomes can be seen in Fig.5a.
The model experiences the slowest convergence with batch
size B = 32, converging around 800 episodes. On the other
hand, the largest batch size, B = 128, leads to the quickest
convergence, occurring after roughly 300 episodes. However,
as training continues, the training reward for B = 128
gradually decreases compared to the other two due to dimin-
ished stochasticity and a lack of exploration caused by the
excessively large batch size. In particular, the training rewards
at episode 2000 with B = 128 is approximately -11500, which
is about 8.7% worsen than B = 32 and 20.87% than B = 64.
The most stable batch size appears to be B = 64, as its

convergence is relatively similar to that of B = 128, occurring
around 400 episodes, but be able to achieve the highest final
training reward among the three sizes.

We examined three different discount factors for our model,
denoted as γ = {0.9; 0.95; 0.99}. As the discount factor
approaches to the value of 1, the model places greater em-
phasis on accumulating future rewards instead of focusing on
short-term gains. The results in Fig.5b reveal that the three
discount factors produce relatively similar outcomes. However,
the most stable and consistent convergence is achieved with
γ = 0.95. With this discount factor, the model begins to
converge after 400 episodes, and the subsequent episodes
display less fluctuation compared to those with γ = 0.99 and
γ = 0.9.

In Fig.6a, we demonstrate the impact of the actor-network
learning rate (LRA), critic network learning rate (LRC),
and soft target update rate (Tau) on the model. We selected
three sets of rates: (Tau, LRA,LRC) = (5e−3, 1e−3, 2e−3);
(1e−2, 2e−3, 7e−3); (1e−3, 5e−4, 1e−3), respectively. Upon
initial observation, it is apparent that higher learning rates en-
able the model to converge more rapidly. For Tau = 1e−2, the
model converges after just 250 episodes. However, the training
rewards at the convergence point are the lowest compared
to the other rates and barely increase afterward, suggesting
the possibility of overfitting. Conversely, with Tau = 1e−3,
the model converges around 450 episodes and achieves the
highest training rewards. Yet, as training continues, the rewards
decrease and ultimately result in the lowest rewards. For
Tau = 5e−3, the simulation results indicate that convergence
occurs after 350 episodes, and the learning process is adequate,
as the training rewards exhibit acceptable fluctuations for
exploration while the overall reward continues to increase and
attains the highest reward rate among the three sets. Therefore,
we chose the moderate rate set (5e−3, 1e−3, 2e−3) as the
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Fig. 5: Training rewards on different batch sizes and discount factor.
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Fig. 6: Training rewards on different learning rates and replay buffer sizes.

learning rates for our proposed algorithm.
In our final analysis, we assessed the influence of varying

replay buffer D sizes on the overall training reward. Fig.6b
displays the training rewards after training our model using
three different replay buffer sizes: D =

{
5e5; 1e6; 5e6

}
.

Our simulation results indicate that with D = 5e5, the
model converges most rapidly, but the training rewards exhibit
fluctuations and decrease as training continues. This may
indicate that the model is not learning sufficiently from its
past experiences due to the limited buffer size. For D = 1e6

and D = 5e6, the convergence is relatively similar, occurring
at around 320 episodes. Nevertheless, the buffer size of 5e6

appears to yield larger rewards and exhibit greater stability
than D = 1e6.

From the above analysis, we have come to the conclusion
of some optimal hyper-parameters which we would utilize for
DDPG-RMAVS model in order to achieve convergence: Batch
size B = 64, discount factor γ = 0.95, learning rates set
Tau = 5e−3, LRA = 1e−3, LRC = 2e−3, and replay buffer
size D = 5e6.

C. Balancing Parameter Selection

We have introduced the balance factor α in equation (17)
as a critical parameter with a significant impact on the per-
formance of DDPG-RMAVS. The value of α = [0, 1] adjusts
the priority of the reward function between video quality and
latency term. Given that the objective is to maximize the
QoE (17), the DDPG-RMAVS algorithm tends to prioritize
maximizing the video quality term over the latency term when
α is closer to 1, due to the higher rewards associated with
quality, and reverse. The selection of an appropriate α value
relies on user preferences. However, it is important to consider
the trade-off between video quality and latency, as it can also
impact other crucial metrics such as overall video quality,
delay, and buffer capacity. The influence of different α values
on these metrics is demonstrated in Fig.7.

In this analysis, we investigate the impact of different α
values on different metrics. The analysis is presented using
a double error graph in Fig.7a, where α values range from
0.0 to 1.0. The blue line represents video quality, ranging
from the score of 0.5 (lowest quality) to 5.0 (highest quality),
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whereas the red line represents video latency in seconds.
The data is collected from the performance of the DDPG-
RMAVS algorithm after 2000 episodes of training, and each
data point represents the average K users. Examining the
graph, it becomes evident that as α approaches 0.0, the video
delay reaches its minimum value, averaging at 1.9 seconds.
Conversely, the video quality also reaches its lowest point,
approximately around 1.4 score, indicating an average quality
close to 720p. As the α value increases, both video quality
and video delay experience an upward trend. The video quality
score rises from 1.4 at α = 0.0 to 3.4 at α = 1.0, indicating
an improvement in quality. Simultaneously, the average delay
increases from approximately 1.9 seconds at α = 0.0 to 2.55
seconds at α = 1.0. These findings demonstrate the trade-
off between video quality and latency, with an increase in α
leading to improved quality but also resulting in higher latency
values.

We further investigate the influence of different α values
on the buffer capacity. As previously discussed, a higher α
value prioritizes the video quality term in the reward function.
However, maximizing video quality under constrained network
conditions can lead to increased buffer drain. In Fig.7b, we
assess the average buffer capacity in seconds for 10 users
after the streaming session. It is noteworthy that the buffer
capacity gradually decreases as the α value increases. At
α = 0.0, the buffer capacity reaches a peak of approximately
2400 seconds, whereas it decreases to around 100 seconds
at α = 1.0. This indicates that when α is low, the DDPG-
RMAVS model transmits the video signal with the lowest
video quality, resulting in a smaller data size and minimal
delay. Consequently, the video signal consistently feeds into
the buffer.

Based on the aforementioned analysis, the trade-off between
maximizing video quality and minimizing video delay is
crucial for the model’s performance. To ensure stability and
overall satisfaction in QoE for all users, we determine an
appropriate α value of α = 0.4 for further implementation.
With α = 0.4, the video delay averages at approximately 2.2
seconds, while the video quality achieves a score of around
2.5, equivalent to a resolution of 1080p. Additionally, the
buffer capacity after the streaming session is approximately
1550 seconds, providing a sufficient amount to ensure smooth
streaming throughout the entire session with minimal interrup-
tions.

D. Perfect vs. imperfect SIC-CSIT

We further discuss about the impact of imperfect SIC-
CSIT to the convergence of DDPG-RMAVS algorithm. As
previously mentioned in III-A, the imperfect SIC occurs during
the decoding of private stream, hence the SIC noise were
added in the calculation of private stream SINR γp,k in (8).
The common message noise term ξ.pc|ĥH

k zc|2 were scaled
by the factor ξ ∈ [0, 1], in which ξ → 0 implies perfect SIC
scenario and all the common message has been successfully
decoded before decoding the private stream. Reversely, ξ → 1
illustrates an extreme case of imperfect SIC in which user k
cannot decode its common message. An increase of ξ would

directly reduces γp,k, leads to a decrease in total achievable
rate Rk.

On the other hand, the imperfect CSIT exists in the error
channel matrix E, as it represents the inconsistency of the
channel estimation. In III-A, we showed that the error variance
σ2
e were derived from E and scalable as σ2

e = O(P−ϱ), where
ϱ ∈ [0, 1]. For simulation, we have selected ϱ = 0.8. Since
P = 23 dBm, the value of σ2

e ≈ 0.08. As σ2
e is an uniform

Gaussian distribution of perfect channel matrix H, we can
calculate the distribution of E = [−0.5, 0.5] of H. Concretely,
at each timestep, the channel matrix H is randomly increase
or decrease an amount of E = ±50%H.

In Fig.8, we have compared the reward and the QoE after
training DDPG-RMAVS. Recall that for ξ = 0% and ϱ = 1,
perfect SIC-CSIT is achieved. As can be seen from Fig.8a, the
proposed algorithm can achieve highest rewards when SIC and
CSIT are perfect. As the SIC and CSIT are more imperfect, the
rewards decreases rapidly. Similarly, Fig.8b reflects the impact
of perfect SIC-CSIT on the average QoE for K users, where
the highest QoE is achieved when the channel is perfect. An
noticeable point is, the impact of imperfect CSIT affects more
on the performance of DDPG-RMAVS than imperfect SIC, as
despite the worst imperfect SIC, e.g. ξ = 10%, if the CSIT
is perfect, it can performs better than the case of perfect SIC
but imperfect CSIT.

We also compare the video quality and video delay in
different SIC-CSIT scenarios in Fig.9. It can be seen that
with perfect SIC-CSIT, users can receive highest video quality
while experience least video latency. The scenario of lowest
video quality and longest latency is given to the case of
ξ = 10%, ϱ = 0.8, which is the worst imperfect SIC-CSIT.

E. Performance of the Proposed Algorithm

In order to demonstrate the effectiveness of DDPG-RMAVS,
we compare its performance with the following optimization
algorithms:

• RSMA-based Video streaming with Soft Actor-Critic
(RVS): This algorithm is based on Soft Actor-Critic
(SAC) algorithm. The working principle of SAC shares
some similarities with DDPG since SAC is an off-policy
algorithm, a policy gradient method that is using actor-
critic architecture. However, several key advantages of
SAC over DDPG are the ability to learn stochastic
policies, incorporate entropy terms to encourage explo-
ration, and be less prone to hyper-parameter tuning [55],
[56]. Henceforth, theoretically, RVS can result in better
performance compared to DDPG-RMAVS in learning
continuous action space.

• Advantage Actor-Critic RSMA-based Video streaming
(A2C-RV): We employ the Advantage Actor-Critic (A2C)
algorithm as documented in [57], [58]. Similar to DDPG,
it follows an actor-critic structure, but the A2C operates
as an on-policy algorithm, thereby focusing on learning
from fresh experiences rather than relying on past events
(e.g., replay buffer). In parallel with RVS, A2C-RV opts
for actions by leveraging adjustable probability distribu-
tions and sampling methods. Instead of resorting to noise
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Fig. 7: Affect of different alpha values on video quality, delay, and buffer size.
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Fig. 8: Training rewards and QoE with different imperfect SIC-CSIT factors.

to promote exploration, it uses the inherent randomness
from the action distribution.

• Deep Q-Learning Video streaming RSMA-based System
(DQN-RV): This approach is constructed based on DQN
algorithm. As DDPG-RMAVS is similar to DQN-RV as
both use the Q-learning technique, the core difference is
the actor-critic architecture, as DQN-RV does not have
it. For this reason, DQN-RV is more suitable for discrete
action space tasks, rather than continuous tasks.

• Greedy Video streaming RSMA-based System (GVRS):
In GVRS, we utilize the Greedy method, a traditional
optimization algorithm. Here, the continuous action space
is transmuted into a discrete one, where the actions,
referenced in (26), are selected from a discrete collection
of available bitrates and power settings with the aim of
optimizing (17). To tackle the potential issue of action
value violation, we promptly normalize the power value
to fall within [0, 1], and adjust the bitrate to align with

the set of available options stated in V-A2.

The parameters used in the four aforementioned algorithms
are also similar to DDPG-RMAVS, which has been listed in
Table II. Additionally, since RVS and A2C-RV are actor-critic
architecture-based, the number of hidden layers and nodes
on both actor network and critic network are identical to
DDPG-RMAVS. For DQN-RV, the number of hidden layers
and nodes are identical to the critic network of DDPG-RMAVS.
We also performed hyperparameter tuning for both algorithms
and selected the optimal values for each of them.

In Figure 10a, we present the cumulative training rewards
over 2000 episodes for various algorithms. The DDPG-RMAVS
algorithm demonstrates the most promising performance with
an average training reward of -9000 per episode, surpassing
its closest competitor, RVS, by 11.1%. In contrast, GVRS
performs notably poorly, with the lowest average reward of
approximately -17000 per episode, 88.9% lower than that of
DDPG-RMAVS. This suboptimal performance in GVRS is at-
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Fig. 9: Video delay and video quality with different imperfect
SIC-CSIT factors.

tributed to its focus on maximizing rewards without adequately
considering penalties, resulting in negative rewards. The DQN-
RV algorithm maintains a relatively stable training reward
of approximately -14000 throughout the episodes, making it
the second-worst performer. A2C-RV exhibits early reward
fluctuations, likely due to probabilistic factors, but stabilizes
and shows a 14.3% improvement in reward from -14000 to
-12000 between the 250th and 2000th episodes.

In alignment with the findings on training rewards, we
further delve into the average QoE across all users. Fig.10b
illustrates the total QoE for all users at the final timestep (i.e.,
measured at the 700th timestep) across the 2000 episodes.
The proposed DDPG-RMAVS algorithm yields the highest
QoE score, averaging at about -13.5. Given that the total
number of users is K = 10, the average QoE per user
using DDPG-RMAVS comes to -1.35. Assuming the quality
variation component in (17) is negligible (e.g., the quality of
chunks is at its maximum and can no longer be increased),
the download time for a 3-second timeslot would equate to
1.35 seconds. Comparatively, the average QoE scores for RVS,
A2C-RV, DQN-RV, and GVRS are -15, -21, -20.5, and -23.5,
respectively. This indicates that DDPG-RMAVS offers a 10%
higher QoE than RVS, around 37% increase over A2C-RV
and DQN-RV, and a 42.6% improvement compared to GVRS.
Overall, it is evident that the QoE is reflective of the training
reward across all algorithms, showcasing the relevance and
efficacy of the training reward in predicting user experience
outcomes.

In Figure 11a, we examine the Q-loss of various actor-
critic algorithms, with exceptions for GVRS and DQN-RV.
Notably, GVRS lacks a loss function, and DQN-RV exhibits
significantly higher Q-loss values due to its unique calculation
method. The A2C-RV algorithm initially maintains a Q-loss
of approximately 1.5, a 60% reduction compared to DDPG-
RMAVS, which initially fluctuates but later stabilizes at an
average of about 4. However, after the 1750th episode, the Q-
loss in A2C-RV sharply rises to nearly 6, coinciding with the
period of rising rewards as seen in Figure 10a. In contrast, the

TABLE III: Comparison on runtime complexity (in s) of
DDPG-RMAVS vs. different algorithms

Algorithm K=2 K=5 K=10 K=20 K=50
GVRS 1.72 −− −− −− −−
DQN-RV 6.09 6.84 7.83 10.38 16.67
A2C-RV 6.79 7.4 8.23 10.41 17.32
RVS 9.81 10.58 11.17 13.89 20.47
DDPG-RMAVS 7.55 8.64 9.66 12.37 19.12

TABLE IV: Comparison on stalling events and buffer capacity
of user-1 on different algorithms

Algorithm Stalling event Buffer capacity
GVRS 482 519.38
DQN-RV 89 1994.14
A2C-RV 45 2953.21
RVS 15 2672.61
DDPG-RMAVS 9 4218.53

RVS algorithm experiences a peak Q-loss of 6 around the 600th
episode, which is 50% higher than the eventual stabilized
Q-loss of DDPG-RMAVS. The peak Q-loss in RVS rapidly
decreases over the next 400 episodes, ultimately stabilizing
at around 4, matching the stable Q-loss of DDPG-RMAVS.
In summary, due to its consistent maintenance of a stable
Q-Loss, the DDPG-RMAVS algorithm emerges as the most
preferable, with a 33.3% lower Q-loss compared to the peak
values observed for A2C-RV and RVS.

In Figure 11b, we illustrate changes in video bitrate dur-
ing a streaming session. Each session starts at the lowest
bitrate (360p) and aims to maximize it for improved user
experience. GVRS consistently prioritizes the highest bitrate,
risking buffering and penalties. On the other hand, the pro-
posed DDPG-RMAVS algorithm starts at the lowest quality,
fluctuating between 0.5 and 1.5 in the initial 250 timesteps
but subsequently surges to nearly 5, an approximate 900%
increase. A2C-RV achieves a peak score of 3.5 (1440p) around
the 430th timestep but settles at 2 by the session’s end.
RVS exhibits significant bitrate fluctuations, resulting in the
lowest quality score among the algorithms. Lastly, DQN-RV
maintains stable video quality, with a score mostly around 1.8.

Table III demonstrates the runtime of DDPG-RMAVS com-
pares with other algorithms on different number of users K.
Each column contains the training time on 700 steps on one
episode in seconds. The GVRS has the lowest runtime at 1.72
seconds, representing the lowest complexity algorithm. This is
true because GVRS has a finite and discrete action to choose
from. Thanks to this, despite the increasing number of users,
GVRS runtime barely change. For the other four algorithms,
as K increases, the runtime progress due to space complexity
increment. Among them, algorithm DQN-RV has the lowest
complexity due to one actor-critic network instead of main-
target actor-critic, hence results in second-best lowest runtime.
For A2C-RV, the runtime is relatively 1 second lower than
DDPG-RMAVS and 2 seconds than RVS. Meanwhile, RVS
although having similar complexity as with DDPG-RMAVS,
the entropy term is the key factor for higher computational
complexity.
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Fig. 10: Different model comparison on average training rewards and QoE.
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Fig. 11: Different model comparison on Q Loss and perceived video quality on one user.

We conduct an in-depth analysis of how DDPG-RMAVS
impacts user experience by examining buffer capacity and re-
buffering events throughout the streaming session, as detailed
in Table IV. Notably, DDPG-RMAVS stands out with the
largest buffer size at 4218.53 seconds and the lowest incidence
of stalling events, with just 9 instances, the fewest among
the algorithms considered. This represents a 42.88% increase
in buffer size compared to the next-best algorithm in buffer
capacity, A2C-RV, and a 40% reduction in stalling events
compared to RVS, which excels in mitigating stalling. RVS,
A2C-RV, and DQN-RV end with final buffer sizes of 2672.61
seconds, 2953.21 seconds, and 1994.14 seconds, respectively.
Despite having a smaller final buffer size, RVS experiences
fewer stalling events than A2C-RV, enhancing its overall
stability and appeal. Conversely, GVRS exhibits the smallest
buffer size at 519.38 seconds and the highest incidence of
stalling events, averaging 482 occurrences over 700 timesteps.
This behavior can be attributed to GVRS’s aggressive bitrate

selection approach, which prioritizes maximizing (17) without
considering buffer penalties, resulting in frequent re-buffering
events and reduced user experience.

VI. LIMITATIONS AND FUTURE WORKS

In this section, we delve into certain limitations not ad-
dressed in this research. These may arise from assumptions
made during the simulation execution or inherent disadvan-
tages within the model itself. By shedding light on these lim-
itations, we aim to identify and suggest promising directions
for future research.

A. Limitations

• Ratio of common message decoding rate: In section
III-A, we have mentioned that the decoding rate for the
common message of all users Rc is the sum of rates for
decoding the common message of user k Ck. In practice,
the ratio for the rate Ck of each user contributing in Rc
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varies. This can depend on the interference, the distance
of the user to BS, or other factors that affect the SINR of
each user. In this research, we assumed that the portion
of Ck for each user is equal for every user. Henceforth,
the calculation of the total transmission rate Rk for each
user can be affected by this.

• Impact of linear precoding: The impact of linear pre-
coder z has not been clarified in this research. The most
important usage of linear precoder is its beamforming
capability, which helps users to accurately decode its
intended message, increasing interference management
and enhancing robustness [59], [60]. Nevertheless, the im-
plementation of a linear precoder subsequently increases
the complexity of the system model and, hence was not
considered for the simulation in the scope of this study.

B. Future Works

We propose several potential avenues for future exploration
in light of the aforementioned challenges. First, existing
research, such as Yang et al. [61] and Hieu et al. [23],
which explored common message rate allocation could serve
as a reference for future enhancements. Further investigations
could be conducted on the precoding problem, particularly
its beamforming capacity, to understand its impact on video
streaming parameters like latency and stability. Furthermore,
analyzing the implementation for high mobility users could
provide a clearer perspective on the effects of unpredictable,
imperfect CSIT. Another worthy pursuit is the development of
an AI prediction model to anticipate the magnitude of ek and
fluctuations in buffer capacity.

VII. CONCLUSION

This study delves into the QoE optimization challenge,
focusing on video quality and latency within a multi-user
downlink RSMA-based IoMT streaming system under imper-
fect CSIT and SIC conditions. Through an analysis of the
communication channel and IoMT streaming model, we un-
derscored factors directly influencing performance. Following
this, we formulated an optimization problem aimed at maxi-
mizing user QoE through joint optimization of video bitrate
selection and power allocation. We converted this problem
into an MDP framework, leading to the proposal of a DRL
strategy, the DDPG-RMAVS, which is grounded in the DDPG
algorithm. Simulation outcomes displayed a significant per-
formance superiority of our proposal over SAC-based, A2C-
based, DQN-based, and Greedy-based counterparts, as well
as a remarkable convergence. In particular, DDPG-RMAVS
displayed an 11.1% enhancement in training rewards relative
to RVS, a buffer size 42.88% greater than that of A2C-RV, a
33.3% reduction in Q-Loss when compared with peak values
registered by RVS, 54.84% higher video quality compare
with peak values of A2C-RV, and 85% less stalling events
than DQN-RV. Despite these achievements, further research
opportunities linger, including exploring aspects such as the
ratio for common message decoding rate, the impact of linear
precoding, and the fluctuations in CSIT changes. These areas
are poised for future exploration.
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