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Abstract

Edge caching, which offers application versatility and a range of benefits, has exerted a significant impact on the adoption and
development of fifth-generation networks and applications. While many extensive studies on edge caching have been proposed to
improve certain system features, a thorough tutorial providing insight into the role of edge caching on mobile data traffic processing
is still required. Motivated by these concerns, this study was designed to offer an exhaustive assessment of mobile edge caching. To
clarify the role of mobile edge caching techniques, a systematic overview of the state-of-the-art caching models and operations is
provided. Subsequently, a complete set of performance indicators is extensively investigated, including hit ratio, storage efficiency,
energy efficiency, spectrum efficiency, service availability, and latency, to comprehensively examine each of the caching policy
goals. Furthermore, an inquiry into the aforementioned metrics is conducted using popular technological methodologies, such as
machine learning, game theory, and optimization techniques. In addition, common use cases and applications for the observation
and assessment of caching methods in practice, are described. Finally, the remaining research challenges and future directions of
edge caching are discussed.
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1. Introduction

The last decade has witnessed a dramatic increase in mo-
bile data traffic while fashioning a trend for the foreseeable fu-
ture. The exchange of data and information is expected to be
ultra-high-speed, exuberant, and secure. According to the Cisco
Global forecast highlights report [1], internet users will reach
5.3 billion with 29.3 billion connected devices by 2023. Thus,
a massive increase in mobile data traffic is anticipated. As for
fifth-generation (5G) capability, it is expected that more than
10% of the worldwide mobile devices will have access to the
network. Although 5G is capable of offering 1000 times higher
throughput, sub-millisecond service latency, and up to 90 per-
cent total energy savings [2], the technology is facing key per-
formance challenges, such as throughput, latency, and energy
efficiency, to accommodate the increasing mobile traffic. Thus,
to accommodate the growing traffic volume, advanced connec-
tivity, such as beyond 5G and 6G in the future, and the expan-
sion of the system internal capacity are critical. Furthermore, a
large amount of popular content is being requested repeatedly
and asynchronously, generating in turn a large amount of re-
dundant data, causing a waste of computational resources and
energy over networks [3].
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Edge caching appears to be a feasible solution for the en-
hancement of many aspects of networking, such as capacity,
energy efficiency, adaptability with diverse applications, and
experience/data trade-off. Cache techniques are thus feasible
choices for concurrently resolving these issues with data pro-
cessing and information fusion in network delivery. Conceptu-
ally, the caching technique is the process of temporarily storing
the copies of frequently used data in an easily accessible loca-
tion, making the data always available in time with better acces-
sibility. Thus, time and resources are saved because users do not
have to request the data again from the original source. More-
over, mobile edge caching systems [4] have been considered in
problems related to capacity, data processing speed, and cost
reduction. These improvements are critical to the fact that most
of the data or content in networks are reinstated asynchronously
by many user equipment (UEs) [5].

The ever-growing distributed data render conventional cloud
computing inadequate for the transport of data over a congested
backbone network to a remote cloud, e.g., macro base station
(MBS) [6]. Cloud computing is constrained by unpredictable
network latency and high bandwidth, making it vulnerable to
the demanding requirements of latency-sensitive applications
[7, 8, 9]. Under these scenarios, multiaccess edge computing
extends the client-server architecture by introducing interme-
diate components located at the network edge to improve ap-
plication responsiveness and proximity to UEs [10]. As a ma-
jor function of multi-access edge computing platforms, multi-
access edge caching (MEC) utilizes the storage capacity of BSs
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Figure 1: Information fusion on delivery through mobile networks.

throughout the network to perform content placement during
off-peak hours, thereby lessening fickle network traffic and re-
ducing congestion and latency. As a practical example, Xunlei,
one of the largest content download service providers in China,
has adopted a new service that leverages user bandwidth and
storage capacity for the implementation of edge caching [11].
Xunlei provides cloud processors (CPs) with edge resources to
allow content replication and supply to neighboring UEs. The
emergence of MEC technologies has disrupted the traditional
notion of mobile radio access networks.

1.1. Motivations

Fig. 1 presents an overview of mobile information fusion on
delivery through multiple communication components of mo-
bile networks ranging from access to core tiers. Depending on
the specific purpose, services, and requirements, information
can be processed either partially or completely at various fusion
nodes, i.e., MEC servers. The contents cached on MEC servers
are diverse and originated from a variety of sources and nodes,
resulting in a massive volume of cachable data. In this context,
the information fusion techniques are leveraged to combine di-
verse sources of information in order to obtain the most depen-
dent, trustworthy, and accurate information. Information fusion
on MEC, in particular, combines various types of information
such as network state, content popularity, and user preferences,
as well as finds and analyzes a huge amount of contents, to se-
lectively cache contents of the highest quality. Furthermore, the
introduction of machine learning and artificial intelligence tech-
niques has improved MEC information fusion performance by
adaptively learning user information for future operations [12].
MEC information fusion has undoubtedly improved informa-
tion sharing capabilities and user satisfaction.

MEC transforms mobile access infrastructure into power-
ful computation and storage entities, providing cloud comput-
ing with benefits and capabilities at the edge of mobile net-
works [13]. MEC can provide pervasive and agile computa-
tion, augmenting services for mobile users, irrespective of time
and location. It is distinguished by a diminutive latency and
high bandwidth, and offers access to real-time radio deploy-
ment of applications and services [10]. Furthermore, MEC has
improved features, compared to traditional network infrastruc-

tures, which enable the performance of specific tasks that could
not be achieved before, for example, application-aware perfor-
mance optimization, big data analytics, and decentralized con-
tent caching [14]. The advent of MEC inspired the research
community to develop MEC-enabled network models such as
information-centric networks (ICNs), heterogeneous networks
(HetNets), cloud radio access networks (CRANs), content de-
livery networks (CDNs), and device-to-device (D2D) networks.
Each network model has distinctive properties and features; hence,
the caching mechanism should be modified to adapt to the tar-
geted network model [15]. However, these works do not clar-
ify the dynamics of caching use cases and corresponding al-
gorithms at each stage and location of information fusion of
delivery through the networks. These key aspects are the prime
motivation for this survey.

1.2. Contributions

Overall, the major contributions of our work can be sum-
marized as follows:

• First, a reference framework of state-of-the-art MEC sys-
tems is provided to support information fusion on the de-
livery throughout networks. In particular, caching mech-
anisms and their properties were investigated to clarify
the advantages and benefits MEC provides to the user
data. Additionally, several caching strategies for effec-
tive content caching were mentioned with the aim to pro-
vide readers with a brief overview on the basics of MEC
working principal.

• To technically evaluate the roles of MEC in this context,
cutting-edge MEC solutions are investigated following a
systematic taxonomy of performance metrics such as hit
ratio, storage efficiency, energy efficiency, latency, spec-
tral efficiency, and service availability as well as their
variants. Each metric was followed by current optimiza-
tion efforts, illustrating the progress in increasing overall
performance of MEC.

• Next, effective caching modeling analyses to achieve the
aforementioned performance objectives are reviewed. Here,
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the caching modeling techniques are classified into in-
formation theoretic, game theoretic, and machine learn-
ing formulation categories. The integration of different
caching models with the emerging intelligent approaches
can significantly improve caching properties.

• Prime application scenarios of MEC for information fu-
sion are provided to support data services and recent up-
dates on practical case studies in the field are described.
Throughout this part, the objectives are to highlight the
vast potential of MEC, demonstrating the beneficial im-
pacts on human modernization, hence encouraging ef-
forts on perfecting this technology.

• Finally, open challenges are highlighted to drive future
research optimizing system performance to flexibly adapt
to dynamic changes in environment conditions in differ-
ent network scenarios as well as increasing user demands.

The remainder of this paper is organized as follows. First,
existing works on developing the caching framework and op-
erations are investigated and the main components of a typical
caching policy are clarified. Next, state-of-the-art caching pro-
posals are taxonomized by referring to the evaluation metrics
of caching performance, including hit ratio, storage efficiency,
energy efficiency, latency, spectral efficiency, and service avail-
ability. Subsequently, different approaches to caching models
are classified from various perspectives. Then, typical applica-
tion scenarios are analyzed to reveal caching potentials. Finally,
open challenges and directions for future research on cache al-
gorithms are discussed to conclude the paper. For convenience,
key abbreviations are alphabetically listed in Table 1.

2. Caching at the Wireless Mobile Edge

In traditional caching mechanisms, reconfiguration is re-
quired to exploit caching technology in MEC-enabled networks.
Traditional caching schemes do not carefully consider the char-
acteristics of wireless networks, such as dynamic traffic load
and interference [9]. The advantages of MEC, as explained in
Section 1, fit perfectly with the caching mechanism. Specifi-
cally, caching storage, that is, cache memories installed at BSs,
should be deployed close to UEs to reduce the transmission dis-
tance when a UE requests cached files. These close-range trans-
missions avoid interference reduction, alleviate spectral con-
gestion, construct reliable communication links, and relax the
waiting time of the UE. Second, the location awareness of MEC
provides reliable input data for cache policies that predict the
UE request pattern and mobility. The caching policies release
optimal predictions to indicate which files should be pre-fetched
from the CS during off-peak hours, that is, when the number
of UE requests is remarkably low. These files are expected
to be repeatedly and asynchronously demanded by UEs, which
means that duplicated file transfers will not occur. Interestingly,
the caching policies would be an optimal technique for MEC-
enabled networks because they solve the bottleneck of fronthaul
traffic among macro BSs (MBSs), small BSs (SBSs), and UEs

Table 1: Key abbreviations.

Abbreviation Description
ABR Adaptive Bitrate
AP Access Point
BS Base Station

CCU Caching Control Unit
CN Core Network

CRAN Cloud Radio Access Network
CS Content Server
CU Cache Unit
DL Deep Learning

DNN Deep Neural Network
DQL Deep Q-Learning
DQN Deep Q-Network
DRL Deep Reinforcement Learning
EE Energy Efficiency

EPC Evolved Packet Core
GT Game Theory

HetNets Heterogeneous Network
ICN Information Centric Network
ILP Integer Linear Problem
ISP Internet Service Provider

LCD Leave-Copy Down
LCE Leave-Copy Everywhere
LFU Least-Frequently Used
LRU Least-Recently Used
MBS Macro Base Station
MEC Mobile Edge Caching
MIP Mixed-Integer Problem
ML Machine Learning

MNO Mobile Network Operator
PPP Poisson Point Process
QoE Quality of Experience
QoS Quality of Service
RB Resource Block
RL Reinforcement Learning
RR Randomized Replacement
SA Service Availability

SBS Small Base Station
SE Spectral Efficiency

SINR Signal-to-noise-ratio
SPS Service Provider Servers
TL Transfer Learning
UE User Equipment
VoD Video-on-Demand
VN Vehicular Network

as well as backhaul traffic when popular content only needs to
be sent once to local BSs rather than multiple times.

There are three typical scenarios for content transmission in
MEC-enabled cache-enabled architectures [16].

• If the material requested by a UE has already been cached
in the local BS to which the UE belongs, the content is
provided directly from the BS to the UE, without incur-
ring additional transmission costs.

• If the requested material is not found in the local BS but
has been pre-fetched by another BS in the decentralized
caching domain, it is transferred from that BS to the UE
via the local BS, incurring low transmission costs.

• If the requested material is not cached in any local BS,
the pull request is routed to the CS, incurring a signifi-
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cantly high overhead. This is sometimes referred to as
the worst-case scenario.

After this section, the readers are expected to have an inti-
mate acquaintance with the main components of caching mech-
anism, including (i) cacheable content, (ii) caching locations,
(iii) caching phases, and (iv) caching strategies.

2.1. Cacheable Contents

The main purpose of caching is to allow objects and con-
tent to be reused. A series of theoretical studies have been con-
ducted to study cacheable content detection in MEC-enabled
networks. In particular, one key area that has been studied is
caching policies, which have as mission the detection of cacheable
objects to store in resource blocks (RBs) inside storage units in
cache units (CUs), because the performance of any caching al-
gorithm is inherently related to the nature of the content. The
cacheable contents are interpreted by a certain segment of UEs
as high popularity and frequently requested demands, which
rely entirely on UE behavior [17]. For instance, in modern
social networks, cacheable content is regarded as movies and
video clips [18]. Although the UE request patterns are usually
indeterminate and non-stationary, modern caching algorithms
are still capable of properly approximating the pattern and re-
turning some remarkable reactions when dealing with real mo-
bile data traffic. A probabilistic survey conducted by Tauberg et
al. [19] indicated that popular media content follows a power-
law distribution. This observation supports the argument that
the majority of UEs request only a small percentage of avail-
able content, intuitively referenced as trends or high-popularity
content. Therefore, these contents should be determined and
cached as close as possible to the UEs in caching policies.

However, not every object can or should be cached. Due
to the limited computing and storage resources of BSs, only a
limited amount of content is allowed to be cached at the same
time. Objects including information objects such as interactive
applications, security information, gaming, voice calls, and re-
mote control signals are not reusable and cannot be cached [20].
Another important consideration is that the cache content may
become stale and must be updated so that it is consistent with
the content of the server at the origin. Through simulations,
Fricker et al. [21] demonstrate that some mediums, such as
video-on-demand (VoD), are better cached by the MEC, while
others such as file sharing should be allocated at the CU of the
CS.

2.1.1. Content Popularity
Content popularity is assessed by the number of requests for

a certain content divided by the total number of requests from
users, generally acquired for a specific location during a defined
period [22]. Improving the prediction of content popularity can
enhance the efficiency of caching policies [23, 24, 25]. Content
popularity changes both spatially and temporally [26]. Using
empirical analysis, several video characteristics retrieved from
popular video service providers such as YouTube, can be used
to determine the overall popularity distribution, the distribution
within each video genre, the correlation of the popularity with

the age of the video and temporal locality [27]. Interestingly,
only 10 percent of the online videos account for nearly 80 per-
cent of the views, while the remainder of the videos account for
only 20 percent of the views [28].

The popularity of content has been reported to be amenable
to the Zipf distribution [29]. The distributions of files in the web
proxies are examples of such a distribution in the real-world
[30, 31]. Hence, popularity distribution learning determines the
distribution of content popularity as a uniform paradigm, and
therefore attempts to optimize the caching decision [32]. As
for the working principle, α is the exponent characterizing the
Zipf distribution [21], where α→ ∞ indicates a heterogeneous
distribution, whereas α→ 0 makes the distribution more homo-
geneous. Higher α results in fewer contents, account for most
of the requests. Meanwhile, a set of power law distributions
[33] can be used as a parameter of the content catalog size and
skewness. As reported by Wang et al. [34], the Zipf popu-
larity distribution determines the request rate if the size of the
requested content is constant. Another point worth mentioning
is that if the popularity of the files is the same, the request pat-
tern varies less. Consequently, the worst-case performance may
be slightly different from the average case [35].

In practice, content popularity is complex, heterogeneous,
and cannot be obtained in advance, given the content dynamics
and UE mobility in mobile networks [23]. In addition, content
popularity on edge devices has high randomness, leading to in-
accuracy in predicting popularity and worsening of the cache
performance [32]. In the short term, the dynamic essence of
UE-BS association in mobile networks makes the accumulation
of sufficient data at the MEC extremely challenging. To clarify
this point, the example in [36] is used to compare a D2D wired
connection and a wireless mobile network. Despite develop-
ments in UE mobility and resources, mobile network cache size
is small, leading to insufficient probability in predicting content
popularity compared to wired devices.

2.1.2. User Preference
User preference is defined as the likelihood of content re-

quested by a particular user within a specific time period [22].
Indeed, it is natural for UEs to have a strong preference for spe-
cific content categories [37] reflecting a certain UE propensity.
User preferences may have unintelligible differences depending
on their contexts, such as geographic location, personal charac-
teristics (e.g., age, gender, personality, mood), or device char-
acteristics [38]. Most recent studies on proactive caching pre-
sume that the popularity profile of content items is perfectly
assumed, or denoted based on the Zipf model or its variants
[16, 39]. Based on these assumptions, caching algorithms usu-
ally model the UE request pattern as a probabilistic parameter
and attempt to determine the caching policies optimally. Qin et
al. [40] developed an evolving social network based on affili-
ation networks that could scale immediately and rapidly when
a new UE or new content enters the network. Guan et al. [32]
proposed a scheme called PrefCache using a preference learn-
ing approach to learn user video preferences in real time, im-
proving the hit ratio to 12%, and helping to save 92% memory
/ 98% CPU overhead.
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2.1.3. Prediction Uncertainty
The performance of proactive caching algorithms is affected

by the prediction accuracy of the content popularity and user
preference. In particular, erroneous information affects the like-
lihood of locating the requested files in the cache, which is re-
ferred to as the hit ratio. This metric usually reflects the accu-
racy of caching performance, as its value is proportional to the
number of cached contents requested by the UE in real mobile
data traffic. Prediction techniques for the estimation of content
popularity profiles usually require a large amount of aggregated
data to obtain more accurate results. The prediction uncertainty
is also affected by UE mobility. The mobility models repre-
sent the movement and changes in the location, velocity, and
acceleration of UE over time. Xu et al. [41] studied how un-
certainty in prediction can affect cache system performance and
proposed a generative adversarial network (GAN) scheme as a
solution to 5G-enable MEC. The results show that their algo-
rithm outperformed other state-of-the-art algorithms by 15%.
In another study [42], uncertainty in popularity prediction sig-
nificantly affects the performance of edge caching time, espe-
cially in video transmission. A Markov-modified caching strat-
egy was proposed, which could be activated when the number
of user historical access records was not large. Using the pro-
posed scheme, the hit ratio, accuracy, and speed were improved.

2.2. Caching Locations

The performance of the data retrieval response time in caching
can be affected by the distance between data and user. As
mentioned, the caching technique minimizes the transmission
of data over the MEC and allows data to be served immedi-
ately upon request, thereby directly improving response time
and bandwidth utilization. By optimizing the location for data
caching, service delay can be reduced, making the location op-
timization problem an important aspect in the implementation
of 5G and 6G technologies [43, 44].

Given the geographical and temporal variability of mobile
data traffic, the global content distribution may not always be
available to satisfy all local demands. Therefore, caching lo-
cations should predict local content popularity for a proactive
cache content placement in lieu of a global one. Insights into
the deployment of caching locations can be acquired by defin-
ing performance metrics, such as service availability, average
delivery rate, skewness of content popularity, storage size, and
target signal-to-interference-plus-noise ratio (SINR) [45]. The
caching locations over the edge networks are discussed as fol-
lows:

• MBS Caching: In heterogeneous networks, MBSs pro-
vide the largest coverage areas and ample storage resources;
thus, they can serve numerous users. Therefore, caching
at the MBS provides a better cache hit ratio, making MBSs
great candidates for implementing an edge cache. For
example, Ahlehagh et al. [37] demonstrated the effect
of MBS caching in video streaming services by showing
that significantly boosting the video quality can alleviate
the stalling probability of videos. Leveraging the wide

connection range of MBSs, vehicular networks are an-
other potential field for future development. In [46], a
proactive caching approach using federated learning was
proposed to resolve the problem of vehicle location sen-
sitivity during the caching process. MBSs act as routers
between the internet and roadside units (RSUs) to man-
age RSUs cache resources.

• SBS Caching: SBSs are considered a promising infras-
tructure to accommodate the exponential growth of wire-
less traffic in future 5G networks. They are densely de-
ployed within macro-cells according to a PPP and serve
the UEs from the local caches or CN through a finite
rate backhaul, helping achieve high-density spatial reuse.
Furthermore, they are characterized by a large storage
capacity and are deployed relatively close to end-users.
They have been identified as great caching candidates in
wireless networks because of their ability to reduce back-
haul traffic and minimize content access latency. Caching
at SBSs often results in higher energy efficiency (EE) be-
cause SBSs have more opportunities to idle, having low
transmission and circuit powers, although the cache ca-
pacity of each SBS is smaller than that of each MBS. In
the work of Bastug et al. [45], caching at SBSs assures
certain levels of service availability by simply increasing
the number of SBSs or the total storage size. In [47],
a software-defined networking (SDN) incentive caching
framework was proposed for a 5G vehicular network, for-
mulated as the Stackelberg game. In this scheme, SBS
allows vehicles to communicate with each other via V2V
by offloading cellular core links, enabling the caching
strategy to earn more SBS rewards, leading to higher
caching utilization. An application of SBS in a 6G envi-
ronment was introduced for autonomous driving in [48].
The authors pointed out the weakness of SBS in 6G de-
velopment and vehicular networks, which is the mobility
of users requiring a faster shift among SBSs. This can
cause a longer delay in content delivery, making it insuf-
ficient for QoE maintenance. One feasible solution is to
have a cache strategy with a reinforcement learning ap-
proach to select the cached content in the local cache,
edge server, and SBS.

• User Devices: Modern UEs are continually equipped with
more computational resources and larger storage capa-
bilities (e.g., several gigabytes). This presents opportu-
nities for storing popular content that can be reused by
nearby edge users. The QoE of users can be significantly
improved by caching contents in UEs when device-to-
device (D2D) transmission is preferred over UE-BS trans-
mission. The D2D is promising in relaxing traffic conges-
tion and shortening the transmission distance to increase
the spectrum efficiency (SE) and decrease the latency of
UEs. For example, a caching D2D-based communication
scheme was proposed in [49], which considers the so-
cial relations between users with common interests, thus
defining the cacheable contents to be placed at UEs in
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off-peak hours. This example illustrates the benefits of
caching in UEs.

2.3. Caching Phases
There are three main phases in the caching mechanism: cache

placement, cache delivery, and cache replacement [18]. In this
subsection, the differences between these phases are analyzed.

First, the network is non-congested throughout the cache
placement phase, and the system is primarily restricted by the
size of the cache memory [27]. BSs cooperatively cache con-
tent into their own respective storage. In the next phase of cache
delivery, the network is crowded and the system is primarily
confined by the content request rate from UEs. The local BSs
search for corresponding content and deliver them to the UE. If
no such content is available, the BSs fetch them from the core
network and transmit them to the UE. Finally, the replacement
phase immediately occurs when a BS detects the content being
transmitted through it. The caching policies determine the new
content to cache and select the cached content to be replaced
with the new content. The caching phase performance is evalu-
ated by the status of system parameters, for example, fronthaul
and backhaul links, energy, and storage.

A majority of recent studies on edge caching have mainly
focused on solving the problems of caching phases. In partic-
ular, the caching algorithms proposed in these papers targeted
some important features of the caching phases to optimize the
targeting metrics. Theoretically, caching decisions are often
characterized as binary variables (0 or 1) to train the cache units
(CUs) to either cache or skip the contents, respectively. An ef-
fective caching decision can significantly reduce energy waste,
transmission latency, and cost.

2.3.1. Cache Placement Phase
The objective of cache placement is to maximize the cache

hit ratio [50]. In other words, content is placed in the cache with
the assumption that the content has a high probability of being
requested by users and it will be available when a pull request
is made to the cache. The cache placement consists of sub-
problems, such as deciding the size and position of each cache,
choosing the material from a library to store at selected nodes,
and determining how to download content to these cache nodes
[24, 25, 51, 52]. The ultimate goal of caching control units
(CCU) is to minimize the cost of cloud services by intelligently
selecting the cache contents. With predictable content popular-
ity, through data analytics and CCUs, popular content can be
cached locally before requests from UEs arrive at the caching
locations [22]. Cache-enabled networks begin the cache place-
ment phase only when there is a small number of requests, that
is, off-peak hours. During the cache placement phase, the spec-
tral resources, computing devices, and storage are frequently
assumed to be free and without interference. The expensive
computational elements of caching algorithms, such as the pre-
diction of future trends of content requests, are also suggested
to be implemented in this phase. Learning-based algorithms,
such as machine learning or deep learning, can produce excel-
lent performance but require a large amount of data and time
for training.

As shown in [53], cache placement and bandwidth (BW) are
collaboratively optimized in a frequency-division multiple ac-
cess (FDMA) setup to minimize edge server energy, computa-
tional cost, capacity, and latency. The authors used Lagrangian
duality and the ellipsoid method to solve the resource alloca-
tion problem, and then used a heuristic algorithm to update the
cache placement. In [54], the utility is resolved in the cache
placement phase of a large-scale information-centric network
(ICN). A distributed cache placement scheme was devised with
the goal of pushing popular material to the edge network while
maintaining less popular content at the core. A collaborative
technique was also suggested for retrieving material from the
content-store of the nearest neighbor as well as a cache replace-
ment policy depending on content popularity.

2.3.2. Cache Delivery Phase
With cache delivery, or content delivery, the main issue is

determining how to deliver content to a user who requests it.
During the content delivery phase t, each user requests a selec-
tion of files from the file library F ≡ {1, 2, ...,F} locally. The
edge nodes determine the availability of the requested file. If
the requested file has already been cached locally, it can easily
be delivered to users almost without cost. On the other hand, the
SBS must retrieve the requested file from the cloud by using a
backhaul link if the file is not already cached, thus resulting in
a significant cost due to potential electricity price surges, pro-
cessing costs, or a large delay, leading to a drop in QoS and
user dissatisfaction [55, 56, 57]. A common assumption is that
the files in the system can be divided into equally sized chunks,
and the transmission of one file can be transmitted in a single
slot. In MEC-enabled networks, D2D caching and multi-hop
caching are the best networks for enhancing the cache delivery
phase because they enable neighboring UEs to create peer-to-
peer connections, and disseminate cached material as needed
by other UEs.

2.3.3. Cache Replacement Phase
To ensure that the cached content is always accessible and

satisfies user demands, the CCU replaces existing content in
the cache by caching new ones prior to UE requests and remov-
ing the no-longer-popular contents from the cache as needed
[58, 57, 59]. Each replacement algorithm can be considered
as a trade-off between cache hit ratio and delay. The caching
policies must justify the performance of the cache-replacement
phase when new files are requested while prioritizing the most
popular content. Caching policies can easily adapt to rapid
changes in the content distribution owing to a well-structured
cache-replacement phase. Conventional replacement algorithms
such as least frequently used (LFU), least-recently used (LRU),
leave-copy everywhere (LCE), leave a copy down (LCD), first-
in-first-out (FIFO), and randomized replacement (RR) are often
treated as baseline algorithms to examine the efficacy of newly
proposed algorithms because of their simplicity [60]. The de-
tails of these baseline algorithms are discussed in the next sub-
section. As mentioned in Section 2.2, [46] also incorporates
a mobility-aware cache replacement policy, which enables net-
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work edges to add/evict content based on vehicle mobility pat-
terns and preferences.

2.4. Caching Strategies

The cache content can directly influence the performance
of the content delivery network, thereby affecting the QoE of
users. Learning what, when, and how to cache, or having an ef-
fective caching policy, is a critical issue in mobile edge caching
[50]. It is crucial to estimate the gain behind a content by as-
sessing its present popularity, projected popularity, storage size,
and placement of existing clones across the network topology.
In this subsection, the categorical classes of caching algorithms
are reviewed before delving into their definitive metrics.

2.4.1. Conventional Caching Strategies
Some baseline caching policies can be listed as LRU, LFU,

LCD, LCE, and RR. Many of them have long been implemented
in a real system because of their simplicity and reasonable per-
formance. The common values of these baselines are easily
implementable and have low complexity. However, all of them
have critical problems that cannot be addressed, and hence they
need to be replaced or modified in future networks.

• LRU: LRU believes that the probability of recently re-
quested data to be repeatedly requested in the future is
higher than other data. Therefore, when the cache stor-
age reaches its maximum capacity, it replaces the least
recently referenced objects [61, 62, 63]. However, there
is not enough information for the LRU to decide which
content to drop, limiting it only to the time of the last
reference.

• LFU: LFU uses the object popularity as the primary fac-
tor [64]. When the cache storage is full, it discards the
content that has the lowest object popularity. However,
new contents that just entered the cache are likely to be
eliminated because of their low early counter, even though
they might be utilized often subsequently.

• LCD: In LCD, the requested content is only saved at the
cache location from which the requests came, i.e., local
SBSs.

• LCE: In LCE, objects move gradually from the CS to-
wards the UEs and are stored at any cache location they
propagate through. The CUs in this caching algorithm
can quickly incur an overhead.

• RR: RR randomly discards any content in the cache stor-
age when space is running out, and thus obviates the need
for any information on that content. Intuitively, because
RR has no concrete indicator, the performance is usually
poor due to instability [65].

2.4.2. Centralized Caching vs. Decentralized Caching
Recent studies do not provide enough information for a com-

prehensive overview of centralized and decentralized caching.
The choice of caching strategy is made from the perspective of

the user (e.g., user data management) or control (e.g., making
caching strategy). Centralized caching, as the name implies, re-
quires a central base station to implement caching policies. In
addition, the caching replacement and delivery phases in cen-
tralized caching schemes are consistent and synchronized [66].
For example, when a new UE is connected to a network, all
cache must be reconfigured. An advantage of this model is its
simple implementation and homogeneous connection. How-
ever, the model is vulnerable to security threats because all
caches are under a central BS, making them less energy efficient
and dependent, leading to weaker performance. By contrast,
decentralized caching, that is, distributed, operative caching,
typically saves cache space by avoiding replication of cache
contents in neighboring caches [67, 68].

Compared to centralized schemes, decentralized ones have
a random placement phase; cache content is independent of
other caches, and therefore has higher flexibility and consumes
less energy during configuration. Recently, federated learn-
ing (FL) models have been widely exploited, in which central-
ized control and decentralized agents are combined to acceler-
ate learning convergence and prediction accuracy. In [69], Ji
et al. proposed a decentralized random caching scheme, us-
ing maximum distance separable (MDS) coding, to ensure that
all files can be recovered by the (coded) symbols cached into
the network, with high probability. When the network size in-
creases, this scheme achieves order optimality. Overall, the
decentralized random caching scheme appears to be practical
because all UEs cache randomly and independently their as-
signed fraction of coded symbols of the library files, without
considering whether the symbols have already been cached by
other UEs. In a recent study on both centralized and decen-
tralized caching [39], a deep reinforcement learning framework
with Wolpertinger architecture was introduced to maximize the
cache hit ratio in centralized schemes, and the cache hit rate as
well as transmission delay in decentralized schemes.

2.4.3. Coded Caching
Data types are crucial to any cache policy and are separately

divided into coded and uncoded data. The caching policy prob-
lem is framed as an integer optimization problem for uncoded
data, which is frequently an NP-complete problem. On the
other hand, the caching policy for coded data is considered an
optimization issue in linear programming that can be addressed
in polynomial time. Uncoded transmission consists of packets
from the same file for the use of each channel, whereas coded
transmission is a combination of multiple packets from differ-
ent files [70]. Without loss of generality, it is assumed that the
algorithms work with coded data as coded caching algorithms
and otherwise as uncoded caching algorithms.

Coded caching is widely used in other fields of research
based on caching techniques as a class of communication method-
ologies [70, 71]. The idea of caching was introduced in the
fundamental work of Maddah et al. [72] as a new term for in-
formation theory community, coded caching, which promises
unprecedented gains. In the proposed paradigm in Fig. 2, an
unbounded K number of users can each accommodate up to
M cache files, connected to a single server via a shared-link
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Figure 2: Coded caching scheme [73].

broadcast network. This server is accessible to a library which
contains N equal-length segments of cacheable content. Coded
caching works in the first two phases of the caching, placement,
and delivery phases. First, during the replacement phase, users
cache the received files sent by a server. These files are random
and do not know the user preference or demand. Second, in the
delivery phase, each user can demand a file. Based on these
demands and caches, the server broadcasts coded messages to
all users via a shared link so that it can satisfy all user demands.
The goal of coded caching is to reduce the worst-case number
of transmissions in the delivery phase, normalized by file size
(referred to as worst-case load, or load), among all potential de-
mands [73]. The load achieved by coded caching (R), proposed
by Maddah [72], is formulated as follows:

R =
K(1 − M

N )
KM
N + 1

, ∀M =
Nt
K

: t ∈ {0, 1, . . . ,K}. (1)

Furthermore, coded caching uses fewer RBs to serve multi-
ple concurrent users with different video demands compared
to uncoded caching. Niesen et al. [74] presented practical
and numerical examples to illustrate the effectiveness of coded
caching via multi-casting and applied it to delay-sensitive con-
tent. To evaluate the effectiveness, in terms of the spectral ef-
ficiency of coded caching algorithms, many authors [74] at-
tempted to maximize the global coding gain, which is the ra-
tio of the bandwidth between the uncoded and coded schemes.
Some recent works on coded caching, such as [75], improved
the caching strategy in ultra-dense networks with maximum-
distance separable (MDS) coding by using reinforcement learn-
ing approaches, and Wan et al. [76] enhanced the privacy of
users by introducing a novel shared-link caching model with
private demands.

2.4.4. Reactive Caching vs. Proactive Caching
The current reactive caching networking model, in which

UE traffic requests and flows must be served immediately upon
being dropped or upon arrival, result in outages. Consequently,
the current small-cell networking model is incapable of address-
ing peak traffic needs. Thus, large-scale implementation is de-
pendent on costly site acquisition, installation, and backhaul ex-
penditures. These flaws are expected to worsen as the number
of connected devices grows and ultra-dense networks emerge,
putting the present cellular network infrastructures under strain
[22].

According to replacement algorithms, a reactive caching
policy chooses whether to cache the item after it has been re-
quested. Popular reactive caching strategies, the least recently
used (LRU) and its modified version, probabilistic LRU (p-
LRU) [61], are made available to tackle time-varying content
popularity in a heuristic approach. The LRU replaces the cache
element with a new file, which is not used or requested for a
long time, as determined by the insertion time parameter. The
most recognizable advantage of this algorithm is the ease of im-
plementation. In [77], as an optimum multi-level cache content
placement approach, a non-cooperative Hierarchical Reactive
Caching (nCHRC) algorithm is suggested to study the effect of
popularity time on cache hit ratio, backhaul traffic, and delay.

Proactive Caching is a significant enabler of 5G wireless
networks through the deployment of small cell networks. The
proactive strategy takes advantage of the existing MEC and en-
tails the development of predictive radio resource management
techniques for 5G network optimization. In mobile networks,
proactive caching relies on mobility prediction to locate the UE
next location, and hence, the SBS must pre-fetch the content.
During peak traffic periods, poor backhaul link connections can
quickly become overloaded, reducing the QoS of UEs [78].
One way to overcome this constraint is to transfer the exces-
sive load from peak to off-peak hours. Caching achieves this
transition by retrieving the expected popular material, such as
reusable video streams, to store them in SBSs supplied with
memory units and reuse them during peak traffic hours [79].

In comparison, Bastug et al. [22] examined two cases that
used the spatial and social structure to demonstrate the effec-
tiveness of proactive caching. For backhaul congestion, they
suggested using a technique in which content is cached proac-
tively during off-peak demand based on content popularity, user
correlations, and content trends, taking advantage of the social
network structure by predicting the set of significant users who
would cache strategic material. The spectral efficiency and hit
ratio rate are increased by 22% and 26%, respectively because
of the simulation setup, compared to reactive algorithms. In
[37], the performance of reactive and proactive caching at the
MBS was investigated. A video-aware backhaul and wireless
channel scheduling approach, along with edge caching, was
presented. The results show that the video capacity may be con-
siderably improved while the video stalling likelihood is mini-
mized. However, with prediction error, the hit ratio of proactive
caching may perform worse than that of reactive caching [80].
As an interesting suggestion, in [81], Jiang et al. jointly lever-
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aged both proactive and reactive caching in their proposed pol-
icy to maximize cache hit ratio in fog radio access networks
(F-RANs). The suggested policy can quickly track multiple
popularity trends with spatial-temporal popularity and user dy-
namics while maintaining low computing complexity.

2.4.5. Cooperative Caching
Cache capacity has always been a critical issue to address.

As the number of users increases, and so does the variety of
requested content, cooperative caching appears to be an effec-
tive caching solution for reducing content request time and im-
proving user QoE. Recent studies have demonstrated that coop-
erative caching is the most successful caching strategy for the
optimization problem in the cache placement phase and has at-
tracted a lot of attention. The working principle of cooperative
caching is to allow edge servers to collaborate with distribut-
ing data items via internal connections. Thus, the load capacity
of each server is reduced as well as UE access to more content.
The goal of cooperative caching is to fully use idle servers while
avoiding storing too many redundant data copies with assured
data retrieval time.

In [82],the hierarchical cooperative caching problem in fog
radio access networks (F-RANs) was investigated to identify
the optimal policy. A brainstorm optimization (BSO) using
a penalty-based fitness function for individual assessment was
proposed to overcome the storage capacity limitation. The re-
quest delay for the content was reduced using the proposed
scheme. Another work [83], presented a cooperative edge caching
strategy based on deep reinforcement learning (DRL) for effi-
cient collaboration among distributed edge servers. The cache
hit rate can be enhanced by developing a suitable incentive
function and a multi-agent actor-critic method, resulting in greater
cooperative caching performance. Cooperative caching can also
be applied in vehicular networks because it enables a vehicle to
retrieve data from several cache servers simultaneously. In [84],
a cooperative caching scheme was proposed for two request
types: location-based and popularity-based. Content placement
and portions are metrics for delay and cost optimization prob-
lems, respectively. This problem is formulated as a multi-objective,
multi-dimensional, multi-choice knapsack problem and resolved
using an ant colony optimization-based algorithm.

2.5. Summary and Discussion

In this section, four main components of edge caching were
thoroughly analyzed, including cacheable content, caching lo-
cation, caching phases, and caching strategies. In the first part
methods for the effective selection of suitable content for caching
were presented, based on content popularity, user preference,
and prediction uncertainty. A high cache hit ratio is achieved
when there is a high probability of caching relevant content,
thereby improving the wait time for users and saving energy
and computational resources for the caching system. Moving
the cache near end-users has also been considered a promising
research direction. As the number of UEs with diverse applica-
tions rapidly increases, having a cache close to users can lever-
age UE resources, lowering the computing strain of the base

stations, and decreasing latency. MBS has the highest cover-
age and hence the highest computing power and cache capac-
ity. However, there is a considerable distance between MBS
and users, resulting in lengthier wait times for content requests
and responses. SBS, on the other hand, has a narrower sig-
nal range. The high density and proximity to consumers, make
SBS particularly effective for transmission of data. As user de-
vices are becoming more powerful in terms of computation and
storage, using UE is an option worth considering. There are
three major steps in caching: placement, delivery, and replace-
ment. The goal of the caching phase is to regulate the flow of
content in both the cache system and the user perspective. Con-
tent is cached to achieve the highest cache ratio in delivering
to the user and in refreshing the cache content. Finally, select-
ing an optimum caching technique may optimize the caching
process, significantly enhancing the speed and cache hit ratio;
LRU, LFU, LCD, LCE, and RR are examples of typical con-
ventional caching techniques. Some current advanced caching
strategies that have been thoroughly researched include decen-
tralized/centralized, coded, reactive/proactive, and cooperative
caching. A suitable strategy may be chosen based on the present
scenario, purpose, and caching framework. A promising ap-
proach for the future is multiple caching algorithms operat-
ing together to enhance data sharing and communication across
edge servers.

3. Performance Metrics

In this survey, a set of evaluated metrics that are used to
characterize the caching algorithms are proposed and a system-
atic overview of the caching algorithm targets that have been
achieved thus far is provided. The set of metrics include (i) hit
ratio, (ii) storage efficiency, (iii) energy efficiency, (iv) latency,
(v) spectral efficiency, and (vi) service availability, as shown in
Fig. 3. The details of each metric and the achievements of the
scholars who proposed the metrics are clearly explained in the
following subsections.

3.1. Hit Ratio

A cache hit event occurs when a file j requested by the user
i is presented in the cache and can be served immediately. Sim-
ilarly, a cache hit ratio is the possibility that files requested
by users are already cached in the caching space. This cri-
terion illustrates the percentage of cached files used, which is
an effective parameter for caching performance evaluation. Ta-
ble 2 summarizes some recent approaches in the development
of caching algorithms using the hit ratio metric.

Roberts et al. [91] state that the memory-bandwidth trade-
off relies heavily on the hit ratio, which calculates the propor-
tion of downloaded throughput saved by a given-size cache, and
evaluates the hit rate using the Che approximation assuming
LRU replacement under IRM. In [31], Song et al. maximize
the hit ratio using a greedy method to identify the best cache
location, which is complex and independent of file library size.
Optimal cache placement balances the trade-off between chan-
nel diversity gain and cache diversity gain. As a result of recent
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Table 2: Prime examples of hit ratio studies.

Ref. Technical Management Cache phase Merits
approach model

[17] Active Learning Centralized Cache Placement & Replacement Improve content popularity prediction speed while maintaining high
cache hit ratio.

[22] D2D caching Centralized Cache Placement Propose proactive networking paradigms to substantially reduce peak
data traffic demands via caching strategic contents at both BSs and
UEs.

[25] Deep learning Centralized Cache Policy Apply LV and NN to evaluate, quantify, and predict UE content re-
quests, which are then used to select the most interesting UE content
to cache at SBSs. The networks eventually benefit from higher hit
ratio, spectral efficiency, and storage efficiency .

[57] Knapsack Decentralized Cache Placement & Delivery Using Knapsack in conjunction with Zipf distribution to store highly
popular materials and to entertain partial queries with significantly
improved hit ratio.

[58] MDP Decentralized Cache Replacement Propose a versatile approximation of ICN caching systems to model,
analyze different caching schemes, and acquire useful insights into
ICNs.

[68] Transparent
learning

Centralized Cache Placement Propose a machine learning framework based on transparent comput-
ing, which trains data at the MBS and locates the test models on the
client side.

[85] Vehicular Named
Data Network

Centralized Cache Replacement Separate messages into three categories, analyzing their respective
spatial-temporal characteristics, and implement suitable caching strat-
egy based on analyzed information.

[86] Gray model Centralized Cache Policy Apply gray model, which has high accuracy in predicting the se-
quence of content popularity and tracking the trend of UE content
interest.

[87] Deep reinforce-
ment learning

Centralized Cache Replacement Require no knowledge of the content popularity distribution. Never-
theless, it improves and stabilizes the long-term cache hit ratio with
reduced runtime.

[88] Iterative Centralized Cache Replacement Improve the LFU algorithm by adding object size to the formula of
weight.

[89] Machine learning Centralized Cache Replacement Utilize the advantages of RNN to predict the next location of UEs as
well as the associated content of interest.

[90] Graph theory Centralized Cache Placement Propose a simple greedy caching algorithm that topologically sorts the
UEs, CUs, and BSs to find the shortest content delivery path.

Figure 3: Evaluation metrics for caching algorithms.

advancements in learning techniques, the popularity of content
can be anticipated by tracking user request frequency and pre-
vious data evaluation [22], and then proactively cached. Based

on the observation that UEs are likely to visit certain sites on a
regular basis [92], Tang et al. [89] use the recurrent neural net-
work (RNN) model to predict the future position and interest of
the UE,, based on historical traces, and then update the cached
content of SBSs at the projected location to subsequently serve
to the UE. The author proposes an equipment-assisted caching
multimedia framework to lease and adjust edge IoT equipment
adaptively to match the temporal and geographic changes in
UE needs. The framework can also be combined with the LRU
and LFU algorithms to optimize caching replacement strategy,
which considerably improves the hit ratio and reduces data ac-
quisition time.

In [86], Xiaoqiang et al. presented a cache policy based on
the betweenness centrality and content popularity prediction,
by using a gray model [93] to improve the hit ratio, shorten
the access distance, and reduce the transmission delay. The be-
tweenness centrality reflects the role and influence of nodes in
the network; the higher the betweenness, the more the number
of content distribution paths through it, and the more likely it is
to get a cache hit. Bernardini et al. [94] designed the most pop-
ular content (MPC) strategy, a content popularity caching strat-
egy for CCN, where only popular content is cached by nodes.
The MPC caches less content while maintaining a higher hit
ratio than the default caching strategy of CCN [18]. The hit
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ratio grows continuously and consistently over time because it
needs to assess popular contents to cache them, as well as to
dramatically reduce the number of replicas of elements, which
enhances network storage efficiency. In [68], Guo et al. pro-
posed a transparent learning-based framework together with an
incremental learning process to improve the cache hit ratio. An-
other recent interesting caching approach proposed by Chen et
al. [85], which used to increased the average cache hit rate,
hop count and cache replacement times in vehicular network-
ing environment. Realizing the insufficient of TCP/IP protocol
for data transmission, the authors have leveraged the emerging
Named Data Network (NDN) technology to effectively cache
contents by explicitly divide forward messages into three types
and analyze the spatio-temporal properties of each type. Com-
pared with the existing LCE, Pro(0.7), and Pro(0.2), the pro-
posed solutions achieved 50% better performance in the three
mentioned metrics.

In general, the assessment of cacheable material is performed
in two parts: whether to cache the arriving content and whether
to delete the content that was cached before. These two steps
are carried out using the selection algorithm and prediction cache,
respectively. In [57], Furqan et al. presented a collaborative
caching approach that matches each UE request to any of the
caches inside the hotspot to reduce the traffic load to the EPC as
well as the transmission delay rate and cache hit ratio. The au-
thors also employed the knapsack problem in conjunction with
the Zipf distribution to increase flexibility and reduce coding
necessity to indicate the rank of extremely popular stored con-
tent, which is determined by the number of content requests
made by UEs in a time unit. These contents are then selec-
tively cached in the hotspot. In [88], Ma et al. proposed a
low-latency, high-hit rate cache replacement policy for a web
cache which considers time, frequency, and the cost value of
Web objects, to design a new weight calculation method based
on cost. The algorithm replaces the largest weighting and cost
objects when the cache space is about to run out. Bommaraveni
et al. [17] used an active learning strategy to discover the best
content popularity. By forecasting content popularity with high
accuracy, new content can be cached in the placement phase,
and the system can also learn about user preferences to replace
cached contents with new ones in the replacement phase. The
results suggest that the popularity of learning new material is
increasing at a faster rate while retaining a high cache hit ratio.

3.2. Storage Efficiency
Storage efficiency measures the efficiency of physical stor-

age devices, including UE cache storage [78, 51, 97]. The cache
storage size is finite; therefore, caching decisions must be made
considering space constraints. This means that as content is
placed in the cache; the storage eventually becomes full, lead-
ing to the eviction of some objects already in the cache accord-
ing to certain criteria, such as frequency (LFU-LRU [100]) of
access. In practice, there is also a trade-off between delivery
delay and storage efficiency. A higher storage capacity indi-
cates a greater burden on the data transmission speed. There-
fore, coded caching can be used as a possible solution to in-
crease storage capacity by encoding files into smaller chunks.

In [101], the authors tried to find an optimized solution to bal-
ance the trade-off: maximize storage capacity while ensuring
minimum delay in delivery.

In [78], Sadeghi et al. proposed an RL-based caching method
that uses a Q-learning algorithm to apply optimum policy live,
allowing CCUs at SBSs to learn, track, and perhaps react to
the underlying dynamics. Sadeghi et al. also provided a lin-
ear function approximation to make this approach scalable, re-
ducing the complexity and memory requirements. Assuming
UE interest is known, Hachem et al. [95] proposed a coded
multilevel popularity-aware memory allocation framework that
aggregates non-uniform content popularity into no more than
three or four different single-level subsystems in order to ef-
ficiently address the trade-off between the transmission cost at
MBS, and the storage cost at the SBSs and the access cost at the
UEs resulting from connections to multiple SBSs. The afore-
mentioned work of Abani et al. [51] also resolves the storage
efficiency problem by leveraging the ICN flexibility of caching
anywhere. The storage redundancy is eliminated, and the cache
hit ratio increases. Di et al. [96] combined proactive caching
rules with offloading decisions and analyzed the amount of off-
loadable tasks to dramatically increase the hit ratio and stor-
age economy, particularly in the case of SBSs with small cache
sizes. The cache policy considers the task popularity as well
as the sizes of the input and processed output to choose cache
tasks with small outcomes.

A cooperative caching strategy was presented in [98] to
overcome the problem of low storage capacity in mobile edge
caching. Because linking edge nodes in data communication
is a mixed integer nonlinear programming issue, a ICE Gibbs
sampling approach was utilized. Response times are consider-
ably lowered when the cache content is chosen with storage in
mind. Furthermore, synchronization of both storage and com-
puting resources improves the system performance. In [99], it
was stated that the problem of distributed storage in erasure-
coding can result in long latency. A time-to-live (TTLCache)
caching framework was proposed by dividing the aforemen-
tioned problem into three sub-optimization problems: access
optimization, window size optimization, and auxiliary variable
optimization. The mean-tail probability was characterized us-
ing the TTLCache policy and probabilistic selection. Table 3
summarizes recent studies concerning the storage efficiency.

3.3. Energy Efficiency
The downlink network energy efficiency (EE) was calcu-

lated by dividing the average number of bits sent by the av-
erage energy used [110, 111], which is comparable to the ra-
tio of the network average bandwidth to the BS average total
power consumption. It can also be interpreted as power con-
sumption when battery lifetime of user devices and electricity
bills at operation sites are taken into consideration. Optimiz-
ing EE in edge caching has been an interesting topic, yet diffi-
cult to solve, especially in deploying 5G and 6G scenarios. As
caching reduces delay and improves QoE for users, it is compu-
tationally expensive and energy intensive. Furthermore, in the
deployment of 6G technology, unmanned aerial vehicle base
stations (UAV-BSs) have emerged as a feasible way to enable
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Table 3: Prime examples of storage efficiency studies.

Ref. Technical approach Network model Cache phase Merits
[51] MDP ICN Cache placement Use entropy to measure the uncertainty of MDP-based mobility predic-

tions.
[78] MDP HetNets Cache delivery Propose a scalable algorithm that enables SBSs to learn, track, and possi-

bly adapt to the underlying dynamics.
[95] Optimization HetNets Cache placement Propose a scheme that carefully allocates UEs, based on prior knowledge

of their interest, and caches SBSs into different groups so that there are no
overlaps within a group, and then serves them separately.

[96] Joint optimization MEC Cache placement Combine caching policy with offloading decisions.
[97] Approximation ICN Cache replacement Build an eviction policy that mixes LFU and LRU to adapt to ICNs.
[98] Cooperative service Mobile Cache Placement Reducing workload and increase cache storage for edge nodes by coopera-

tively sharing content. A two-layer, Gibbs-sampling-based ICE algorithm,
was proposed to solve the scheduling problem.

[99] Joint optimization Erasure-coded storage Cache Delivery Jointly optimize mean-tail latency to improve systems with low storage
performance.

Table 4: Prime examples of energy efficiency studies.

Ref. Application
scenario

Network
model

Technical
approach

Management
model

Cache phase Merits

[55] Social network Mobile net-
works

Reinforcement
learning

Centralized Cache delivery Propose a RL method that achieves near-optimal per-
formance while keeping the computational costs at an
affordable level.

[102] Broadcasting HetNets MDP Centralized Cache delivery Find out the optimal multi-cast scheduling policy,
which is adaptive to the request queue state.

[103] IoT HetNets Randomized
rounding tech-
niques

Centralized Cache delivery Develops an algorithm that works well for the thou-
sands of attendees case, in which the UE requests for
content are delay-tolerant [104].

[105] SBS caching Hierarchical Optimization Decentralized Cache policy When the interference level is low, the backhaul ca-
pacity is tight, and the content popularity distribution
is skewed, the EE gain is substantial.

[106] Green networks MEC Game theory Centralized Cache delivery Build an algorithm that adopts the interference among
UEs and has a stable and optimal performance in terms
of network overhead.

[107] Big data HetNets Deep reinforce-
ment learning

Centralized Cache policy Integrate networking, caching and computing to even-
tually minimize the total energy waste of green Het-
Nets.

[108] ICV Vehicular
Network

Optimal stop-
ping theory

Decentralized Cache delivery Choosing edge node based on UE geographic location
to optimize the distance between cache and UE, hence
saving energy consumption.

[109] Video Stream-
ing

MEC Stochastic
mixed-integer
programming
(SMIP)

Decentralized Cache delivery jointly decide the energy-efficient caching of bitrate-
aware files and the scheduling of video requests.

internet access to remote areas [112]. With increasing mobil-
ity and computation ability, in addition to the variety of data
and content demands of users, it can be predicted that the en-
ergy optimization problem will become inevitably more chal-
lenging. The most common approach for energy solutions is to
optimize the trade-off between energy and other metrics, such
as resources, bandwidth, and latency, by using suitable caching
strategies.

In [102], Zhou et al. formulated the stochastic minimiza-
tion problem of the average delay, power, and fetching costs
(depending on the content size) as an infinite horizon average
cost Markov decision process (MDP). In the uniform case, the
derived optimal policy has a switch structure such that a content
is multicast to all users using the same transmission power and
partial switch structure of the nonuniform case. To provide ma-
terial to various consumers, different transmission powers are

necessary. A low-complexity suboptimal cache policy with a
switch structure is proposed to reduce computational costs. In
[105], Liu et al. derived the closed-form expression of the ap-
proximated EE, provided the circumstances under which the EE
could benefit from caching, determined the appropriate cache
size that optimizes the EE, examined the maximum EE gain
brought about by caching, and concluded that caching at SBSs
provides a bigger EE gain than caching at MBSs. A key ob-
servation is that when the interference content is reduced, the
backhaul capacity is restricted; the distribution of content pop-
ularity is biased; and the EE benefit is substantial. Somuyiwa
et al. [55] modeled the problem of proactive content caching of
a limited CU capacity UE as an MDP problem to maximize
the long-term gain of EE with a time-varying channel state.
The MDP problem was optimally addressed by a policy rep-
resentation characterized by low-complexity, cooperating with
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the policy gradient RL. In [103], Poularakis et al. proposed a
model that explicitly addresses the heterogeneity of the SBSs
with factors governing cache size and transmission cost (e.g.,
different energy consumption profiles [113]) and high variation
in the request patterns of the UE. Subsequently, Poularakis et
al. created an approximation caching method with guaranteed
performance and a heuristic caching strategy to reduce energy
expenses in cases of high demand for delay-tolerant materials.
In [107], He et al. proposed a framework for integrated net-
working, caching, and computing to improve the EE of green
HetNets. To deal with the high complexity of the system, He
et al. used a DQN to approximate the Q-value-action func-
tion. Energy consumption in edge caching is extremely im-
portant when edge users have high mobility, such as in vehic-
ular networks, because they need to track UE locations, opti-
mize the shortest route for content transmission, and ensure net-
work stability. In [108], an edge caching, energy-aware cache
node selection framework (OEECS) was introduced to address
the energy shortage problem of intelligent connected vehicles
(ICVs). As an optimal stopping problem, the technique selects
the ideal caching node based on the position of the vehicles.
Consequently, less energy is needed for content caching. From
a video streaming perspective, Li et al. [109] investigated the
trade-off problem between energy efficiency and video qual-
ity in adaptive bitrate streaming services. Li presented a com-
prehensive approach to jointly decide the caching of bitrate-
aware files and the energy-efficient scheduling of video queries
in an MEC-enabled adaptive streaming system by integrating
caching, transcoding, and backhaul retrieval. Energy optimiza-
tion was formulated as a two-stage stochastic mixed-integer
programming (SMIP) problem. The simulation results indi-
cate that the energy consumption and cache hit ratio of the pro-
posed scheme are more effective than those of the two strategies
compared: ABR-LRU and ABR-NonT. Table 4 presents recent
studies focusing on energy efficiency in caching systems.

3.4. Latency
The time interval between the file request by UE and file

delivery is referred to as latency. As application usage has in-
creased, prompting higher QoE demands, the response time has
become even more critical. It can be argued that latency is the
most important metric for evaluating system performance be-
cause it is the foremost item that users expect to be perfect.
This is why latency is always an important factor in technology
transitions, such as from 4G to 5G. According to digital trends
[126], the average latency of 4G is approximately 50 ms, while
this number drops by a factor of five, to only 10 ms on average
for 5G. In perfect scenarios, the latency can even reach 1 ms. In
addition, the waiting time for data retrieval is money wasted and
productivity lost. In many cases, delays translate into frustrated
users, leading to plummeting user satisfaction. The network la-
tency consists of three procedures: i) processing delay: the time
routers take to process the requested data, ii) queuing delay: the
routing queue time of data, and iii) propagation delay: the time
for data to be delivered to users. The use of latency-aware al-
gorithms has reduced the workload in communication networks
while improving QoS [90, 127].

A belief propagation [128]-based algorithm for decentral-
ized and collaborative caching is derived to solve the cache
placement problem to reduce average download delay, subject
to the storage capacity of BSs [115]. Each BS iteratively com-
putes and exchanges belief information on the local caching
method with surrounding BSs, collaborating on file transfers to
their shared UE. In [67], a primal-dual decomposition approach
was utilized to break down the problem and create an efficient
content caching and delivery system in heterogeneous cellu-
lar networks to reduce average download time. Al-Turjman
et al. [119] proposed a content demand ellipse (CDE) frame-
work to create an SBS placement algorithm to alleviate IoT in
ICN, determining the least number of SBSs in high-demand re-
gions (hotspots), so as to maintain an upper bound for the UE
delay, offload traffic from MBSs to SBSs, and minimize the
global delivery cost. An IoT-specific integer linear problem
(ILP) redistributes static/mobile SBSs to better release over-
head from MBSs for increased content accessibility; a traffic
analyzer based on CDE is used to address the problem. In [120],
Fan et al. introduced a popularity and gain-based caching sys-
tem to improve the hit ratio and minimize the UE request delay
by requiring fewer hops for data transfer. In [34], to maximize
overall income and spectral efficiency of the network, Wang
et al. formulated the computation offloading choice, resource
allocation, and content caching technique as an optimization is-
sue. The problem was then transformed into a convex problem,
decomposed, and the alternating direction technique of multi-
pliers, which is influenced by the primal-dual interior-point ap-
proach, was used to solve the problem quickly and realistically.
[129]. This decentralized approach converges rapidly after a
few rounds, reducing computation complexity while providing
comparable performance in terms of computing resources and
spectrum allocation to the corresponding centralized algorithm.

Regarding caching schemes, Dai et al. [121] created two
caching techniques that are fundamentally suited to CRAN and
increased the transmission latency and hit ratio. The first con-
siders UE mobility, while the second uses a Markov technique
to calculate the video segment popularity. To realize these two
schemes, Dai et al. constructed a CCU that contained a mobil-
ity estimator to obtain the probability of UE mobility, a band-
width estimator to evaluate the status of the bandwidth of the
BBU pool or individual RRH, a cache scheduler to accurately
manage the process of data caching and the replacement pro-
cess of CUs, and a UE video-segment-request table to record
the index of video segments requested by the UE. In [122],
Amer et al. described the latency per UE request in clusters,
from a queuing standpoint. The original delay minimization
issue was then equivalently changed to a particular form us-
ing a low-complexity greedy technique. This technique gen-
erates an effective cache placement policy to reduce the net-
work average latency and outage probability. In [114], Lei et
al. applied a deep learning approach to improve network per-
formance in terms of latency and EE, through near-optimal and
time-efficient solutions.

From a computation offloading perspective, Zhang et al.
[123] jointly formulated the optimization task of computation
offloading, content caching, spectrum, and computation resource
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Table 5: Prime examples of latency-aware studies.

Ref. Network model Technical approach Cache phase Merits
[34] HetNets Primal-dual interior-

point
Cache delivery Tackle the joint problem of computation offloading decision, resource alloca-

tion, and content caching strategy to maximize total revenue.
[52] MEC Decomposition Cache placement

and replacement
Jointly utilize the advantages of reactive caching and proactive caching to per-
form a low-complexity heuristic caching strategy.

[67] HetNets Decomposition Cache delivery Simultaneously increase hit ratio and decrease average downloading latency.
[114] HetNet Deep learning Cache placement Because the computing cost is transferred to the DNN training phase, consid-

erable complexity reduction in the delay-sensitive operating phase is possible.
[115] MEC Iterative Cache placement Present a low-complexity distributed algorithm which has comparable perfor-

mance to that of the centralized greedy algorithm.
[116] HetNet Iterative Cache placement Propose a polynomial time algorithm to enable dynamic caching placement in

HetNet.
[117] Mobile networks Suboptimal algorithm Cache delivery Get a lower-complexity distributed suboptimal method than branch-and-bound

method.
[118] HetNets Stochastic geometry Cache delivery Apply stochastic geometry theory to have a better understanding of average

network performance under fluctuating network node counts and placements.
[119] ICN Integer linear program

(ILP) optimization
Cache placement Propose a network that can be trained to adaptively construct an SBS placement

algorithm with AI techniques.
[120] ICN Substitution method Cache placement

and delivery
Refine the popularity level of chunks to provide fine-grained caching control.

[121] CRAN MDP Cache placement
and replacement

Construct a CCU that fully utilizes the computational resources to solve the
optimization problems rapidly.

[122] MEC Queue theory Cache placement Apply the analysis of queue theory to an inter-cluster D2D caching scheme.
[123] MEC Iterative Cache placement Propose a low-complexity iterative algorithm to minimize latency.
[124] Mobile networks AI All phases Survey on AI approaches to optimize latency in 5G and beyond mobile net-

works.
[125] ICVN Named data network-

ing (NDN)
Cache Delivery
& Replacement

RSUC and ReA are proposed for cache updating and content delivery for road-
side devices design to provide up-to-date information with reduced latency.

allocation to minimize the latency of all computation tasks. Us-
ing the modified generalized Benders decomposition approach,
the optimal solution is achieved in polynomial computing com-
plexity time In [116], by loosening and dual decomposing the
problem of limited resources and QoS, Liang et al. obtained
the best solution to simultaneously offer proactive caching and
bandwidth provisioning. The results show that the average de-
lay of the system is reduced and the per-UE hit ratio is en-
hanced, which intuitively satisfies the UE QoS. Jiang et al.
proposed a decentralized algorithm to distribute data content
into clusters of SBSs based on the content state. When a con-
tent request, editorial change, or new arrival occurs, the algo-
rithm is updated. By sharing the content state on a regular ba-
sis, these clusters generate a global state list. This information
is then used to compute the optimal content distribution solu-
tion. In [52], Tran et al. suggested a low-complexity heuris-
tic caching policy that combines a proactive cache placement
method with a reactive cache replacement technique to provide
at least one-half of the ideal value. In addition, they presented
an online cache-aware request scheduling method that meets
a formal competitive performance condition, while allowing
the regulation of the content download pace and content ac-
cess delay in a flexible manner. In [117], the authors initiated
a low-complexity delay-oriented decentralized caching strategy
for mobile networks to minimize the expected total latency of
accessing the demanded content. This method can be oper-
ated in each BS, greatly reducing the signaling overhead among
them. Li et al. [118] created decentralized caching optimiza-
tion techniques via belief propagation (BP) by caching data
into SBSs to minimize downloading latency, based on network

structure. Furthermore, a fixed point in the proposed BP algo-
rithm is demonstrated to exist, and in some situations, the BP
algorithm is capable of converging to this fixed point. Within
a limited margin, the suggested decentralized BP algorithm ap-
proaches the optimal performance of the exhaustive search. Ad-
ditionally, a heuristic BP technique is developed to reduce com-
munication complexity.

Recent studies on improving caching latency include the
survey article of [124], which presents the implementation of
ultra-reliable low-latency communications (URLLC) in edge
caching using AI approaches, particularly deep learning (DL),
deep reinforcement learning (DRL), and federated learning (FL).
It was found that FL edge caching had the best performance
compared to the others. In another study by [125], two ap-
proaches for cache updating and content delivery at roadside
devices are designed to provide up-to-date information with re-
duced latency. In severely loaded ICVNs, roadside unit-centric
(RSUC) and request adaptive (ReA) schemes can reduce ser-
vice latency by up to 80% while ensuring content freshness.
Surprisingly, the average age of information (AoI)-latency trade-
off is not always present, and frequent cache updates can af-
fect both performance and reliability. Recent studies on latency
awareness and minimization in caching systems are summa-
rized in Table 5.

3.5. Spectral Efficiency
The rate of data delivered over a given bandwidth or spec-

trum band, in one second is characterized as spectral efficiency.
The spectral efficiency has units of bps (bit per second)/Hz. Be-
cause of the shortage of available spectrum resources, caching
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Table 6: Prime examples of spectral efficiency studies.

Ref. Network model Technical approach Management
model

Cache phase Merits

[40] Social networks Optimization Decentralized Cache placement Examine content delivery in wireless social network evo-
lution scenarios.

[74] CCN Approximation meth-
ods

Centralized Cache delivery Propose a coded caching algorithm that maximize possible
global coding gain, while respecting delay constraints of
video streaming services.

[130] ICN Integer programming Centralized Cache placement Propose a replication approach that scales with the ex-
pansion of the VoD service and the order of magnitude
speedup, as well as a simple strategy for predicting de-
mand for a new movie.

[131] HetNets Information theoretic
caching

Centralized Cache delivery Investigate an arbitrary population distribution to derive
a lower bound that takes into consideration all content to
enhance the advantages of coded caching.

[132] ICN Deep reinforcement
learning

Centralized Cache placement Adopt deep RL to process the CSI dataset from UEs, and
then design the optimal policy for UE selection.

[133] CRAN Convex optimization Decentralized Caching strategy Incorporate multi-cast beam-forming and content-centric
BS clustering.

[134] Wireless networks Random caching Decentralized Cache delivery In networks with user mobility, random caching methods
are more realistic than deterministic ones.

[135] N/A Approximation meth-
ods

Centralized Cache policy Attains an approximate optimal memory-rate trade-off

when hierarchically dividing the storage into levels.
[136] D2D networks D2D caching Decentralized Cache policy D2D caching networks may convert memory into band-

width (i.e., doubling the on-board cache memory on the
UEs doubly increases UE throughput).

[137] HetNets Iterative Centralized Cache delivery Considers the joint transmission scheduling and rate al-
location problem of SVC streaming over cache-enabled
HetNets.

[138] HetNets Integer programming Centralized Cache delivery Find the set of layer caching indicators to optimally select
the versions of the video file to be cached at SBSs.

[139] MEC Lyapunov optimiza-
tion

Centralized Cache placement Initiate a dynamic approach for VNs to serve ABR video
streaming services.

algorithms should preclude predictable content requests and con-
sider spectral efficiency as a vital requirement. Spectral effi-
ciency is used to evaluate the spectrum utilization of a cellular
system. The higher the efficiency, the more the users that can
be accommodated. The network throughput largely depends on
the interference level and increases with the number of active
users; therefore, expedient measures are required for network
improvement [111, 127].

Qin et al. [40] found that users with strong social relations
tend to request the same content; thus, content popularity is
sharply concentrated and increases the content delivery rate.
They proposed a routing scheme based on content popularity,
formulated the maximum delivery rate problem, presented the
evolution of users and content, and addressed optimal cache
placement. After validating the theoretical results using a real
data set [140], they demonstrated that the content delivery rate
significantly improved with their routing scheme. In [141], an
analytical framework was constructed based on optimal con-
trol theory and dynamic programming to design a cache re-
placement algorithm to best minimize server bandwidth cost.
The authors in [142] used transfer learning (TL) to predict con-
tent popularity, with the most popular materials being proac-
tively kept at the SBSs until their storage capacity was depleted.
This new caching procedure showed higher user satisfaction as
well as backhaul offloading gains in the case of sparse data and
cold start problems. Nevertheless, since each SBS caches the
most popular content individually, the same content is likely to

be cached by many SBSs, culminating in duplicated caching
and low caching performance. Tao et al. [133] formulated a
sparse multi-cast beam-forming (SBF) problem for each mul-
ticast group, minimizing the weighted sum of backhaul cost
and transmit power while adhering to QoS constraints resulting
from UEs served by the same cluster of BSs requesting the same
content. For simplicity, Tao et al. divided the original problem
into two categories. The first category is the optimization of the
content-centric BS clustering and is solved by approximating to
a smoothed l0-norm problem, using convex-concave procedure
based algorithms [143] to find an effective solution. The second
is the effect of different caching strategies on the overall per-
formance of CRAN and is addressed by sparse beam-forming
algorithms.

Considering the cache content, Christopoulos et al. [144]
derived which cache contents should either be broadcast or uni-
cast to evaluate the gain in terms of overall spectrum efficiency
and define the best content popularity threshold analytically
based on an obvious cost function. To this end, cooperative
multi-point joint processing techniques were used within an
analytic framework to establish the content popularity thresh-
old. In [16], Hou et al. proposed a decentralized caching sys-
tem based on the MEC architecture, with the goal of reduc-
ing transmission costs while enhancing QoS. In this study, a
learning-based technique was used to increase the accuracy of
content popularity prediction. Golrezael et al. [134] investi-
gated a cache-enabled wireless network that is resilient to UE
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mobility by considering the deterministic caching strategy for a
centralized version and random caching strategy for distributed
UE. The system utilizes D2D communication links with high-
frequency reuse, among UEs, to create large virtual caches, in
which file duplication is avoided as much as possible. The in-
cremental spectral efficiency obtained in this case, is on the or-
der of one to two magnitude.

Ji et al. [136] showed that the integration of D2D spec-
trum reuse and caching at the UE, yields a D2D network in
which any per-UE throughput is independent of the number
of users and increases proportionally with the cache capacity
of the UE. This means that caching in the UE can increase
throughput by orders of magnitude without requiring a new
bandwidth. In the proposed system, the optimal throughput-
outage trade-off is achievable in terms of strict scaling rules for
all system parameter scaling regimes. In [130], Applegate et
al. jointly considered constraints of storage, link bandwidth,
and content popularity as a mixed-integer program (MIP), and
employed a Lagrangian relaxation-based decomposition tech-
nique combined with integer rounding to find a near-optimal
solution with an order of magnitude speedup. The MIP-based
approach obtains the number of copies required for each video
where each copy is cached to save half of the total network
bandwidth consumption, compared to LRU or LFU cache re-
placement policies. In [74], Niesen et al. coded multicasting
for delay-sensitive services (with a strict deadline, e.g., video
streaming), and suggested a computationally efficient content
delivery method that makes use of coding possibilities inside a
particular coded caching scheme.

To save the valuable bandwidth of the server, Niesen et al.
merged requests as necessary to reduce the number of coded
multicast packet broadcasts. In [131], Zhang et al. defined an
arbitrary popularity distribution, which groups the most popular
contents and less popular contents separately. They further sug-
gest a new information-theoretical lower bound on any coded
caching strategy anticipated transmission rate, and demonstrate
that a simple coded caching technique achieves the predicted
transmission rate. The resulting transmission rate was at most a
constant factor, which is independent of the popularity distribu-
tion, away from the lower bound. In [135], Karamchandani et
al. proposed a content caching and delivery technique for a two-
level hierarchical coded caching network. This scheme uses
two basic approaches. The first provides possibilities for coded
multi-casting at each layer [27], whereas the second searches
for coded multi-casting opportunities across several levels. The
proposed caching technique achieves an approximately optimal
memory-rate trade-off by finding the appropriate combination
of these two types of programmed caching options. Both layers
can simultaneously operate at an essentially minimal rate. In
[137], Zhan et al. focused on transmission delivery for scalable
video coding (SVC) [145], scheduling the optimal transmis-
sion from SBSs to UE and allocating the SVC video transmis-
sion rate for different UEs to maximize the total transmission
rate while satisfying QoE requirements. Zhan et al. derived a
heuristic solution based on an iterative algorithm by relaxing
the constraints.

Within a constrained environment, Zhang et al. [138] de-

rived a near-optimal heuristic algorithm to obtain the layer caching
indicators to optimally select which versions of the video file
should cache locally at SBSs. Under the cache size constraint
of each SBS, the total amount of data traffic that can be sourced
from the local cache of the SBSs is maximized. In [150], Sun
et al. solved the joint optimization problem of maximizing the
revenue of CPs and backhaul usage by adopting a Lyapunov
optimization framework, and then recommended a caching pol-
icy based on projecting the total number of UE requests. In
[132], He et al. used deep RL to find the best interference align-
ment (IA) UE selection policy in cache-enabled opportunistic
IA [151] wireless networks with time-varying channel coeffi-
cients. A central scheduler collects channel state information
(CSI) from each UE. The integral system information is then
sent to the deep network to identify the optimum policy for UE
selection. In [139], Guo et al. proposed a time-scale dynamic
caching scheme that works at both the application layer and the
physical layer as well as for BSs in vehicular networks (VNs)
for ABR streaming without prior knowledge of channel statis-
tics. The Lyapunov optimization technique was employed to
obtain the optimal decisions of video quality adaptation, video
cache placement, and video data transmission. Table 6 lists re-
cent studies targeting spectrum efficiency in caching systems.

3.6. Service Availability
Service availability is built based on the minimum level of

QoS. While UEs cannot experience the remarkable latency and
the quality of content, they are affordable at some threshold
[16, 127]. In typical contexts, QoS directly reflects UE satis-
faction. Ji et al. [152] defined the outage-throughput trade-off

problem in D2D networks and suggested using a combination
of caching and coded multicast transmission to simultaneously
satisfy all UE requests simultaneously. The outage-throughput
pair is achieved if the cache placement and transmission strat-
egy meet both the minimal per-user average throughput via ac-
tive D2D lines and the average outage probability. Hou et al.
[16] reduced the transmission cost while improving the user
QoS. To obtain optimal video streaming quality, Qiao et al.
[146] formulated a dynamic proactive cache memory allocation
problem for UEs traveling across cells as an MDP. To provide
a universal and practical solution to the MDP, an approximated
cell-by-cell decomposition approach was proposed. The video
quality consistency (QoS) is maintained at a high level; the de-
lay effect is eliminated; and video stalling, which occurs when
the cached video material in the BS is insufficient to sustain
video quality for a set period, is reduced. In [147], the authors
optimized the effectively pleasurable video quality of all UEs
while avoiding playback delay in video streaming services and
offered an SBS association method for UEs to pick the right
quality to interact with the surrounding UEs, with cached re-
quested contents. In [127], Huang et al. proposed a D2D-
assisted VR video placement algorithm that was designed based
on user residence time, UE interest, and SBS popularity to max-
imize the QoE gain of all UEs. The SBSs communicate and
pre-cache the videos because of the estimated probability of a
UE entering each SBS. Distributing Internet services on cloud
servers on an ongoing basis is expensive and consumes a lot of
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Table 7: Prime examples of service availability studies.

Ref. Network model Technical approach Management
model

Cache phase Merits

[14] Mobile Edge
Network

ILP & Randomized
rounding & Game
Theory

Both Cache placement Minimizing cost when caching Internet services at edge
clouds and studying whether cooperative or individual
content sharing would be optimal.

[127] D2D networks Optimization Centralized Cache placement Develop a VR video caching algorithm to ensure high
QoE gain for UEs.

[146] 5G networks Decomposition
method

Centralized Cache placement Propose a memory allocation method to effectively
maintain non-real time video streaming quality when the
UE and BS have very short connection time for data
transmission.

[147] D2D networks Lyapunov optimiza-
tion

Decentralized Cache placement Propose a UE association algorithm for file delivery.

[148] Two-tier cellular
network

SDAS Centralized Cache replacement Work on information-centric coverage probability per-
formance, bring novel insights into the architecture of a
two-tier cellular network.

[149] Large-scale
WiFi

Optimization N/A Cache placement &
replacement

LEAD scheme was proposed to maximize long-term
gain for edge caching in large-scale WiFi networks de-
spite the heterogeneity of traffic.

resources in 5G and beyond networks. Caching services that are
regularly utilized in the edge cloud are an alternative method.
The work in [14] attempted to solve the problem of minimiz-
ing costs in two different scenarios. When there is no content
sharing among ISPs, an integer linear program (ILP) and a ran-
domized rounding algorithm are used. On the other hand, a
game-theoretical mechanism is used when ISPs share content.
Consequently, by allowing ISPs to cooperate and share data,
the system performance can be increased, and the cost can be
greatly reduced. Lyu et al. [149] implemented a large-scale
WiFi system with 8,000 access points (APs), serving approxi-
mately 40,000 users actively for two months. The problem of
deploying edge caching in these types of extensive WiFi scales
is the heterogeneity of the traffic load. The goal is to max-
imize the long-term caching gain by proposing a large-scale
WiFi edge cache deployment (LEAD) caching strategy. Table 7
summarizes recent studies on caching service availability.

3.7. Metrics Trade-off

The constraint of processing capabilities on edge servers
has undoubtedly impacted MEC performance. The amount of
cachable content grows in tandem with the rise in data traf-
fic. Meanwhile, user requirements are getting more demand-
ing over time, requiring MEC deployments to use more energy
in order to remain operational and maintain ideal features. To
maintain the quality of services under such resource limits, a
feasible solution is to efficiently trade-off the performance of
metrics and the quantity of cache contents in order to equally
divide resources and assure the flow of energy required to main-
tain the quality of MEC services. One of the most straightfor-
ward approaches is to trade-off monetary expenses for better
MEC operation, which means users must pay to get additional
computing resources. This method has been addressed in [153],
this approach has been discussed in which the QoE optimiza-
tion can be achieved by trade-off the latency and the costs. In
practise, however, most users are unwilling to spend extra to
optimize a strategy that they may have never heard of. Another

promising trade-off is to reduce the amount of cached contents
at MEC servers to save computing resources for optimizing
MEC metrics. By having suitable caching strategies, as have
been previously mentioned in 2.4, edge servers can select con-
tents which have high probability of being requested and cache
them, rather than caching a variety of different contents.

A consistent and realistic trade-off approach is to consider
each characteristic of MEC. For example, in [154], the authors
have considered caching both popular and unpopular contents
to increase the cache hit ratio, meaning trading off the storage
efficiency for hit rate. Similarly, Asheralieva and Niyato [155]
proposed an integrated contract theory-Lyapunov optimization
content sharing scheme which trade-off the network cost with
the total stability of edge caching system. In particular, by in-
creasing network cost, the content delivery delay which was
denoted as Lyapunov drift can be minimal, hence achieve more
stable state for caching system. In blockchain-enabled MEC
systems, for such energy expensive framework, Feng [156] has
trade-off the performance between MEC and blockchain by si-
multaneously considering user affiliation, bit rate distribution,
block generator scheduling, and computing resource allocation.
The simulation results demonstrated that the energy required
for the entire procedure could be lowered while still ensuring
acceptable MEC and blockchain performance. Most trade-off

approaches can be treated as optimization problems and ad-
dressed using optimization tools and algorithms. Nonetheless,
scientific paper nowadays can only maximise particular features
rather than considering the complete system as a whole, there-
fore the trade-off of all MEC properties has yet to be examined.

3.8. Summary and Discussion

In this section, six different characteristics for caching per-
formance evaluation were analyzed: cache hit ratio, storage ca-
pacity, energy efficiency, latency, spectral efficiency, and ser-
vice availability. For each metric, the network model, technical
approach, cache phases, and merits were specified. Many stud-
ies have been conducted to maximize the cache hit ratio. Al-
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though popularity-based caching is the most prevalent option,
it is difficult to precisely estimate the popular and appropriate
content for each user. As a result, having an effective caching
method can help the cache achieve high probability prediction.
Cache storage capacity is typically restricted, and in most cases,
the solution would not be to extend the storage, but rather to ef-
fectively select the contents to cache, or to cooperatively share
cache contents across edge nodes. As a result, the energy re-
quired to calculate and operate the cache system can also be
reduced. Energy optimization is crucial in 5G and beyond tech-
nology development, as edge clouds may now be utilized for
caching, computing, and pre-processing data on near end-user
devices in addition to storing. Another aspect that may lead
to insufficient energy usage is the execution of the optimiza-
tion algorithms. Furthermore, when the number of users and
requested items increase rapidly, the processing time may be
delayed, resulting in lengthy latency. Latency can occur at any
point in the caching process, not only while delivering content
to users. Latency is usually the first metric used by users to
evaluate system performance. High latency can negatively af-
fect the QoE of users, leading to plummeting user satisfaction.
Spectrum efficiency is defined as the bandwidth of edge caching
servers. Optimizing the spectral efficiency can boost user ac-
commodation. ISPs are working to expand spectral efficiency
when deploying 5G and 6G networks to provide reliable and
cost-effective service coverage. Massive MIMO is an example
of spectrum optimization. A system with high antenna count
that is resistant to frequency interference, improves the accu-
racy of beamforming towards the users. Next, the service avail-
ability of edge caching, is built based on the minimum level of
QoS to satisfy QoE. Last but not least, a discussion on trad-
ing computing resources was mentioned as a viable solution
for resource limits at edge servers. Despite various attempts
to tradeoff MEC aspects, there is a need for a more complete
and optimum approach that takes into account all MEC system
characteristics.

4. Caching Models and Techniques

4.1. Information Theoretic Caching

While most other techniques treat content placement as a
separate issue with unicast and multicast data transmission, information-
theoretic approaches exploit the advantages of cooperative place-
ment and coded transmission [70]. In the aforementioned work
of Maddah et al. [72], an information theoretic formulation for
the caching problem was introduced in coded caching consist-
ing of a placement phase and delivery phases. The purpose of
coded caching is to reduce the peak rate of the shared bottle-
neck link by adjusting the placement and delivery phases con-
currently to satisfy many UE requests with a single coded multi-
cast broadcast. In [157], the caching problem was formulated
as a distributed source-coding problem with side information.
Wang et al. [157] treated the requested data from UEs as a func-
tion of the request of the entire data. For the single-user case,
they established a single-letter assumption of the optimal rate
region and derived closed-form expressions for the special case

of uniformly distributed UE requests. Insights gained from the
single-user case were applied to the three two-user cases, and a
single letter expression of the optimal rate region was obtained
accordingly. In [158], an information-theoretical approach was
introduced to balance the trade-off between load and user pri-
vacy in caching systems, particularly in the caching placement
phase. Using the Pareto optimal method, privacy can be maxi-
mized with an optimal traffic load.

4.2. Game Theoretic Caching
Game theory is a mathematical modeling approach that at-

tempts to simulate a system in which players strive to maximize
their benefits. This model may fit MEC networks because BSs,
UEs, or even MNOs can be considered players. In game theory,
the algorithms are classified into two sub-groups: hierarchical
(Stackerlberg) games and matching games.

Hierarchical (Stackerlberg) games: In [159], Hu et al. rec-
ommended using game theoretic approaches for wireless proac-
tive caching with four typical scenarios in terms of problem-
solution pairs, including SBS caching and auction games, road-
side unit caching and contract games, D2D caching for mobile
users and coalition game, V2V caching and evolutionary game.
The authors define the vital requirements of each scenario and
match them with the game-theoretic approach capabilities. The
Stackelberg game is a strategy game in which a leader and nu-
merous followers compete for limited resources [160]. The
leader advances first, followed by the following: In [161], Su
et al. developed an edge-caching framework to cache layered
videos. Initially, they model the interaction between the UE and
BS by a Stackelberg game and the competition among the UEs
by a non-decentralized game. Using the backward induction
approach, the ideal strategy for each participant is determined,
resulting in a greater hit ratio and shorter latency of video con-
tent delivery. In [162], Li et al. investigated a commercial-
ized small-cell caching system consisting of a video retailer and
multiple CSs and proposed a Stackelberg game-theoretic frame-
work to jointly maximize the average profit of video retailers as
they lease their videos to the CSs and the individual CSs as they
rent popular videos from the video retailers and cache them into
their SBSs. The Stackelberg equilibrium (SE) is investigated by
solving a game-theoretic optimization problem, indicating ef-
fectiveness in pricing, hit rate ratio, and backhaul transmission.
Alioua et al. [47] also used a Stackelberg game to solve the
problem of V2V caching in vehicular networks.

Matching Games: The matching games provide solid math-
ematical tools suitable for studying the considered problem[163]
and are divided into three sub-categories: One-to-One, Many-
to-One, and Many-to-Many. In [164], Hamidouche et al. devel-
oped a many-to-many matching solution between the two sets
of SPSs and SBSs while considering the restricted capacity of
backhaul links, and then proposed a decentralized algorithm to
prove that a pairwise stable outcome can be attained. Each SPS
that hosts videos is associated with a set of SBSs so that relevant
videos can be cached. In contrast, the SBSs are associated with
a set of SPSs and, indirectly, with a collection of movies stored
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in those SPSs. Afterward, they compete to see which files to
be cached, at which SBS. The set of videos assigned to each
SBSs is strategically decided. The algorithm boosts the number
of satisfied requests (QoS) and significantly reduces the latency
of UEs.

4.3. Machine Learning
Online Learning: Online learning requires low-complexity

algorithms for future 5G networks, which have several latency-
sensitive applications. Recent research has examined the ef-
fect of online caching on improving the performance of cache-
enabled networks [165, 166]. To deal with unpredictable and
changeable content popularity among users, Muller et al. [165]
proposed a context-aware proactive caching method based on
contextual multi-armed bandits for wireless caching entities.
The algorithm changes the cached material by watching the
context information of the connected users regularly and then
observes the cache hits. In short, this algorithm learns the pop-
ularity of context-specific material on the Internet and increases
the expected hit ratio by at least 14%, compared to popular
cache placement algorithms, using a real-world dataset. Li et al.
[167] proposed a trend-caching algorithm to forecast the trend
(i.e., future popularity) of video content to make proper cache
replacement decisions, while the improvement in hit rate ra-
tio possibly exceeds 40%. This trend-caching algorithm learns
the interaction between the trend of content and the context in
which the content is requested. A training phase and a priori
knowledge of popularity distribution are not required.

Using processing capabilities and memory storage of smart-
phones, network operators may proactively serve the expected
peak-hour demands during off-peak periods [22]. When the
proactive network fulfills user requests ahead of their dead-
lines, the related data are saved in the user device, and when
the request is placed, the information is retrieved directly from
the cache memory rather than querying the wireless network.
Novel machine learning algorithms should be developed for this
purpose in order to establish optimal trade-offs between predic-
tions that result in retrieval of information users never sought
and requests that were not anticipated in a timely manner. Ma-
chine learning techniques can provide effective caching in 5G
cellular networks, allowing a CCU to learn, track, and even re-
act to the popularity of reusable content [168]. Bacstuug et
al. [168] tightened the connections of big data by introducing
a proactive caching architecture in which statistical machine
learning technologies are used to estimate content popularity,
as the first attempt to shed light on the enormous potential of
big data. Bacstuug et al. [45] presented an architecture to si-
multaneously handle the computation and implementation of
cache policy content prediction algorithms at BSs to tackle the
complex problem of content popularity estimation tied to the
spatio-temporal behavior of UEs. As a result, depending on
storage capacity, multiple caching advantages in terms of QoS
and spectral efficiency become conceivable.

Transparent Learning: Transparent computing (TC) [169]
was first proposed in 2004. The core idea of TC is that all data
and software, including operating systems, applications, and

UE data, are stored on the server side, whereas data computing
is performed on the client side. Zhang et al. [169] introduced
the superiority of MEC into TC through transparent learning
(TL) technique, which performs data training on the server and
stores the test models on the client side. The test models are
updated using incremental training. TL consists of three main
parts: a transparent client, transparent server, and edge nodes.

Deep Learning: With the heterogeneity of network traf-
fic and high randomness in content popularity and user prefer-
ences, deep learning is an acceptable approach for solving these
hard optimization problems. The survey conducted by Wang
and Friderikos [170] analyzed and compared in detail the state-
of-the-art deep learning approach used in recent research for
data edge caching, including supervised learning, unsupervised
learning, and reinforcement learning. They also highlighted
some difficulties in using deep learning, such as deployment
cost, dimension caching, and augmented reality (AR) applica-
tions caching. In [171], the authors proposed a deep learning
method to improve the QoE for users and decrease the workload
of networks. In particular, a proactive sequence-aware content
caching strategy (PSAC), which consists of two frameworks,
a convolutional neural network-based PSAC-gen and an atten-
tion mechanism PSAC-seq. Although the proposed schemes
can achieve the desired results, they have not proved their effec-
tiveness in real-world scenarios, and latency is not guaranteed.

Deep learning also has great applicability in the autonomous
car field; therefore, the integration of edge caching and self-
driving cars can receive many benefits by leveraging deep learn-
ing. Ndikumana et al. [172] proposed infotainment caching in
an autonomous car, where the caching system caches content by
analyzing passenger characteristics with minimum delay. The
caching process was divided into four parts: predicting con-
tent, retrieving, caching, and delivering content. Deep learning
was used during the first phase of predicting the content of the
cache. By using this scheme, 97.82% of the contents were suc-
cessfully cached with minimum latency.

Transfer Learning: Unlike typical machine learning algo-
rithms, which learn each task ground up, transfer learning (TL)
approaches, transfer knowledge from prior relevant tasks to a
target goal using fewer high-quality training data, to resolve fu-
ture issues more rapidly and to come up with better answers.
In [16], Hou et al. introduced a transfer learning-based de-
centralized proactive caching mechanism (LECC) to measure
content popularity and solve the optimal caching problem us-
ing a greedy method. The proposed algorithm outperforms
well-known caching policies such as LRU, randomized replace-
ment (RR), and centralized learning-based caching strategies
for cache hit rate, average content delivery latency (ADL), and
transmission cost. Furthermore, the performance benefits of
LECC are comparable to those of the popularity-aware greedy
strategy (GT) based on real content popularity, demonstrating
the efficacy of incorporating intelligent assessment of content
popularity through the use of TL-based techniques. In [23],
Bharath et al. demonstrated the connection among the popu-
larity distributions of UEs, SBSs, and BSs under independent
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Poisson point processes (PPPs) and proved the lower bound on
the training time of a TL-based approach to achieve a specific
level of estimated accuracy ε. This lower bound is inversely
proportional to λu and λr, which indicates the densities of PPPs
with respect to the UE and requests. It also scales as B2, where
B is the file size. The fundamental concept for 5G caching
stems from the fact that only a small proportion of requests are
answered during a caching period. This, along with the small
dimensions of cells, can make it difficult for SBSs to correctly
estimate the underlying content popularity. To address this is-
sue, the works of [173, 23] advocate a transfer-learning strat-
egy that leverages past knowledge gained from a proxy domain
(e.g., social networks) to enhance time-invariant popularity pro-
file estimations. Bastug et al. [174] used transfer learning to
alleviate data sparsity in the information on social networks.
Leconte et al. proposed a threshold policy named age-based
threshold for the timely exploitation of time-varying popularity
to improve the hit ratio rate. In addition, this study proposes
a system that incorporates global learning and local caching
to minimize wireless content access latency and minimize in-
curred traffic.

Reinforcement Learning: Through interactions with the net-
work environment, the optimum stochastic strategy is learned
using reinforcement learning (RL) approaches. When a user in-
teracts with a cache, most of the time the cache system does not
have prior information on users, such as network condition, lo-
cation, and content preferences. Caching can effectively cache
after several iterations of learning the behavior of users. For
example, when a new account is created, YouTube can only
provide the user with some common popular videos, which
may not be what the user wants to watch. After the user has
searched and watched some particular videos, the caching sys-
tem learns the genre of those videos, and can use them to cache
more relevant content in the future. In [175], Wei et al. used an
actor-critic [176] deep reinforcement learning method to min-
imize the transmission delay of all contents in a HetNet with
the SBSs acting as relays. In this case, to assist the actor in ad-
justing the stochastic policy, the DNN is employed as a value
function approximation. These solutions assume that the ser-
vice of the current user requests can be completed before the
next request arrives, and hence no buffer is required to store
user requests. During peak hours, however, the user request
rate is high. Many user requests will be dropped if there are no
queues or buffers to hold incoming user requests when the sys-
tem is busy. Thus, the aforementioned scheduling algorithms
may not be adequate for peak-hour schedules. In [177], secure
edge caching is proposed to address the vulnerabilities of edge
caching systems to cyberattacks as well as cost insufficiency.
To resolve the selfish reaction of caching devices that incur a
cost burden, a Stackelberg game scheme was used to encourage
content-sharing cooperation between the ISP and cache device.
As for the reinforcement approach, Q-learning was conducted
to solve the security issue.

Deep reinforcement learning (DRL) is an advanced combi-
nation of reinforcement and DL techniques that approximates
the Q value-action function using a deep Q network [178]. It
can be said that with most of the hardness characteristics of op-

timization problems in edge caching, DRL is the most promi-
nent, effective, and most common approach to solving these
disputes. Google Deepmind uses this strategy in various games
and achieves acceptable results [178, 179]. Wang et al. [180]
proposed a federated DRL-based cooperative edge caching scheme
to tackle the computational resource shortage in the edge caching
process. As mentioned in Section 2.4.2, FL is the integration of
one centralized caching decision-maker, which applies a com-
mon caching strategy to all decentralized cache systems called
”agents”. In this study, these agents are base stations. FADE
uses the information of the first cache from the BSs as input and
feeds it to the decision-maker. Once the optimal cache strategy
is generated, it is sent back, and applied to all BS caches. Hav-
ing a federated scheme may not provide the best caching strat-
egy for each BS; however, it is optimal for the global system.
This would help the decision-maker use less computational re-
sources for decision learning, instead of having to learn each
BS. Offloading backhaul traffic, latency, and performance in-
sufficiency decrease, and the cache hit ratio improves.

In vehicular edge caching, [181] also used a DRL approach
and blockchain to perform secure and optimal caching in ve-
hicles. In particular, the authors constructed a riskless, high-
secure caching for BSs, then leveraged DRL and the geographi-
cal location of the vehicle to generate an optimal caching scheme.
Finally, the proof of utility (PoU), a novel block verifier se-
lection mechanism was developed to speed up the block ver-
ification process. Integrated DQL was introduced in [182] to
support MEC at vehicular network. The rise of intelligent con-
nected vehicles have created an enormous task offloading bur-
den for MEC servers. The proposed idea was to develop a dis-
tributed computation offloading scheme to efficiently utilize re-
sources from all connected vehicles and minimize the execu-
tion time for offloading tasks. It can be said that the scheme is
similar to the above mentioned FL approaches, since it jointly
consider the entire nodes for optimizing overall performance.

4.4. Summary and Discussion

Edge caching methods have been divided into three main
techniques: information theoretic caching, game theoretic caching,
and machine learning. There is a paucity of contemporary stud-
ies utilizing information theory. Information theory is typi-
cally used to solve optimization problems in content placement
mostly because it is outdated and the implementation is com-
plex making it less prevalent than other methods. The game the-
oretic technique emulates optimization issues as a game strat-
egy to optimize the result rewards and increase the caching
strategy learning process. The two most common game theo-
ries are the Stackerlberg game and the matching game. Game
theory may also be utilized to boost cache competition while re-
ducing player selfishness to obtain the greatest effective shared
benefit for the global system. Finally, machine learning has gar-
nered much attention from today’s scholars and is regarded as
the simplest and most successful method for solving optimiza-
tion issues. This is an inevitable trend because machine learn-
ing offers easy, cost-effective, and effortless solutions. On the
flip side, future solutions will heavily rely on machine learning,
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unknowingly giving it data and inputs, and expecting an easy
solution, rather than addressing the underlying problem.

Nevertheless, to be able to deploy ML and AI approaches
such as DL and DRL onto MEC requires an intensive amount
of energy sources from edge servers. This has raised the need
for solutions to the energy efficiency problem. One traditional
solution is to directly provide energy for BSs and edge servers
through wired connectivity. Tethered or ground wired connec-
tion for terrestrial BSs has been used for its simplicity. An-
other alternative is to optimize the resource allocation capabil-
ity by efficiently distributing energy for different tasks in order
to decrease energy bias while guaranteeing overall system per-
formance. The primary idea for this method is comparable to
the trade-off technique, as previously discussed in Section 3.7,
which means the resource allocation for edge servers was con-
sidered as optimization problem. Nevertheless, using this solu-
tion also has to consider utilizing ML, which may potentially
resource costly. To this end, an idea that has recently been con-
sidered as possible and highly promising is the utilization of the
energy supply of edge devices. Instead of heavily rely on the
resource storage of edge servers, this attempt allows MEC sys-
tems to leverage the abundant resource from UEs. FL and split
learning are some of the latest techniques which were formed
based on this idea. The collaboration between edge servers and
UES can even further enhance the security and privacy of user
data.

5. Application Scenarios

5.1. Social Media Platforms

The rise of social media platforms such as Facebook, Insta-
gram, and Twitter has created valuable opportunities to develop
algorithms to exploit the social relationships among users. So-
cial relationships are characterized by external influences, such
as media and friends as well as user interactions and links. For
example, a dynamic social network can comprise students, fac-
ulty, and staff of a university in which interactions between UEs
are inferred from e-mail headers (timestamp, sender, and list
of recipients) and are matched with personal attributes (status,
gender, age, number of years in the community) [183, 184]. By
leveraging the link between user data, their social interests, and
their shared interests, the accuracy of forecasting future occur-
rences (i.e., user geographic placements, next visited cells, re-
quested files) may be greatly increased. The new nodes attach
to existing nodes with a probability proportional to the node
degree [40]. The vast bulk of data flow from social networks
will continue to impact the way people acquire information
[40, 161]. Because UEs with strong social ties tend to seek the
same material, the distribution of content popularity is highly
concentrated [40]. In addition, social networks can evolve and
stabilize the delivery rate despite the increase in network size.

The diverse content environment in social media platforms
may be a burden on UE energy, resulting in a tremendous delay
in data transmission. An efficient content-centric edge caching
integrated with ML approaches is considered an optimized so-
lution for the aforementioned issue. Aftab et al. [185] proposed

a community-based clustering framework to predict the com-
mon interests of users and used a hybrid scheme with a combi-
nation of mini-batch K-means and DBSCAN for edge caching
contents to address this problem. The results indicate that la-
tency and energy inefficiency can be greatly reduced by caching
content near end-users.

5.2. Economy

The edge caching technique has a significant impact from
the economics perspective. By predicting and caching popu-
lar contents and storing them near end-users, it becomes possi-
ble to save on computational resources, thereby decreasing the
cost. Gharaibeh et al. [166] studied the problem of content dis-
tribution in content-centric networking (CCN) and proposed an
online CCN caching method which operates per basis and does
not need precise content popularity to reduce the overall cost
paid by the content provider (CP).The total cost is calculated as
the sum of the caching expenses consisting of the payment to
the ISP in return for caching its content items, retrieval charges,
and the estimated cost of losing UEs to other CPs. Moreover,
edge caching significantly reduces the latency of content de-
livery, thereby improving the QoE of users. By ensuring user
satisfaction, ISPs can attract new users to subscribe to their ser-
vices, thereby increasing their profits. In [186], QoE was en-
hanced through a deep reinforcement learning approach for big
data architecture in edge caching, at a lower cost. However, the
work did not consider working in a heterogeneous environment,
privacy and security, or on-device caching.

5.3. Web Caching

The most prominent websites are experiencing significant
congestion as a result of millions of requests every day, regard-
less of special events. Web caching [187] is a technique that
may dramatically improve end-user web surfing while also sav-
ing bandwidth for service providers. In particular, a web cache
is a temporary storing location for data material retrieved via the
Internet. The most popular web browsers cache web pages that
have been visited by UEs and enable access to already cached
pages/content by simply clicking on the back button. At the net-
work level, objects can be cached on proxy [188] and on web
servers at the network edge, ISPs, regional and national Inter-
net hubs, etc. Hasslinger et al. [189] investigated the effect
of different item sizes on web cache speed as well as overhead
and proposed a class of rank exchange caching strategies. As
a result, for objects of varying sizes, the update effort was esti-
mated to increase by a ratio of 2-3. The average update effort
per request remained constant, while the update speed scaled to
millions of requests per second. Another recent work on op-
timizing web caching performance [190] used Knapsack solu-
tions for caching, considering Belady’s optimum strategy for
clairvoyant caching. They also compared the caching perfor-
mance between the LRU and GreedyDual schemes and found
that LRU was completely outperformed due to its inflexibility
in complicated networks.
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5.4. Internet of Things (IoT)

According to the Cisco Annual Report 2020 [1], the In-
ternet of Things (IoT) has experienced an explosive exponen-
tial increase, whereby IoT devices are expected to reach 14.7
billion in 2023. This indicates that IoT technology has enor-
mous growth potential, followed by technologies that it is in-
tegrated with, particularly edge caching. In brief, IoT is an
interconnection among devices, computers, and systems that
exchange data and information through the Internet. When in-
tegrated with edge caching, IoT data can be stored at the net-
work edge, thereby reducing delays in data transmission using
backhaul links [83]. It also increases energy efficiency and re-
duces cost by improving backhaul link utilization and minimiz-
ing retrieval time for IoT data. However, in practice, the limited
cache storage of edge servers and nodes, in addition to com-
munication overhead in terms of cache coordination and global
management of the in-network storage resources, make the im-
plementation of an efficient IoT-edge caching system complex.
Given the discrete nature of IoT, there are also security and ef-
ficient resource utilization concerns. This issue is also stated
in [191] where the offloading rate is maximized to improve the
caching probability. First, they present a framework to formu-
late cache hit as a stochastic problem. Subsequently, an im-
proved caching probability conversion (CPC) algorithm based
on the Monte Carlo method is developed to resolve and opti-
mize. Another study by Sheng et al. [192] also used DRL to en-
hance the energy efficiency and cache hit ratio in IoT systems.
The advantage actor critic (A2C)-based algorithm is designed
to maximize long-term energy savings while ignoring IoT data
popularity characteristics. In [193] the problem of edge cache
hit ratio is considered using IoT with Blockchain, a potential
paradigm for decentralizing a single trustworthy entity conven-
tional ledger, which is an emerging technology in cryptocurren-
cies and internet security. The Markov decision process is used
to improve the node selection strategy of content deployment,
QoS is increased; bandwidth waste is decreased; and the hit ra-
tio is boosted. A disadvantage of works on IoT edge caching is
that they make a perfect scenario assumption in the simulations,
rather than considering the real-world.

5.5. Video Streaming

Video streaming services are expected to cover 74% of the
total data traffic by the end of 2024 [194], becoming the most
popular type of online entertainment service. The surge of video
streaming service giants such as YouTube, Tiktok, and Twitch
has allowed more users to access video from their devices. In
addition to the development of mobile devices and the number
of smartphone subscriptions skyrocketing over time, user ex-
pectations for video streaming have also increased. User behav-
iors change as network capabilities grow, and this is expected
to further increase when 5G services become accessible. High-
definition (HD) video streaming at 720p and 1080p resolutions
is expanding, and the average resolution of a YouTube video is
already up to 720p. Video services place a large demand on low
latency, making resource allocation highly challenging [195].

Furthermore, at the time this survey was being conducted, Face-
book announced that it would deploy Metaverse in virtual real-
ity and augmented reality environments. This will lead to a
revolution in the field of video streaming in 5G/6G with an ex-
plosion in video traffic. To meet the demands of video transmis-
sion while satisfying the QoE of users, edge caching has been
considered as a feasible solution.

The survey in [196] provided a comprehensive overview of
edge caching, as well as edge computing and communication in
video streaming. The authors briefly explain the usage of MEC-
integrated systems to exploit UE resources to provide network
satisfaction in terms of QoS/QoE, data rates, latency, etc. They
also state current challenges in video edge caching, such as stor-
age limit, sustainability, security, and privacy. In practice, video
caching is complicated because of the diversity of request pat-
terns as well as its dynamic essence. In the aforementioned
work of [83], a cooperative approach was introduced to reduce
latency and cost. However, the similarity of requests among
nearby edges may be quite dynamic and different, thereby lim-
iting the benefits cooperative caching can bring. For this reason,
Wang et al. [197] proposed the MacoCache scheme, a multi-
agent deep reinforcement learning (MADRL)-based method to
resolve these issues. In a real-life scenario, the latency and cost
of the system can be reduced by 21% and 26%, respectively.

Adaptive bitrate (ABR) video streaming services are an-
other solution for ensuring desirable video transmission. By
analyzing the user maximum network condition and the highest
adaptable bitrate, ABR requests, from the video server, suitable
video chunks in which quality corresponds to the analyzed bi-
trate. Thus, users are guaranteed to receive the highest video
quality and lowest latency possible, even with limited network
connectivity and increased QoE. In [184], the problem of max-
imizing video bitrate was formulated as an integer linear pro-
gram (ILP) and solved with an online iterative greedy-based
adaptation (OIGA) algorithm. The simulation results show that
the video bitrate can be maximized because of the flexibility
of the algorithm in video popularity and retention rate adap-
tation. Zhang et al. [198] also attempted to use ABR to im-
prove the QoE of users in a super-resolution edge-integrated
system called VIdeo super-resolution and CAching (VISCA).
One aspect that makes this work outstanding compared to oth-
ers is that the framework was tested in a real-world environ-
ment whereby video quality increased by 28.2%–251.2% and
re-buffering time dropped by 16.1%–95.6% for all scenarios
considered, proving the functionality of the framework.

Virtual reality (VR) and augmented reality (AR) video stream-
ing are also noteworthy. VR has a wide range of applications,
from entertainment services such as video streaming, gaming,
and social media platforms (i.e., Metaverse) to medical and mil-
itary simulations. According to the Ericsson Mobility Report
2018 [194], for every five minutes of video streaming, approxi-
mately 12GB of VR with 1080HD resolution and 28 GB of 25
Mbps AR are generated. Old technologies may have held back
the development of VR because of high requirements placed on
bandwidth, latency, and computational resources. Nevertheless,
with the deployment of 5G technology and beyond, a rise in VR
is inevitable. In [199], the authors stated the problem of exceed-
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ing the bandwidth requirements in VR video streaming, makes
it difficult to deploy in a live-streaming setup. To resolve this
problem, long short-term memory (LSTM) networks are used
to predict the growth of content requests and to prefetch content
to caches. Their solution when compared with other algorithms,
such as least frequently used (LFU), least recently used (LRU),
and first in first out (FIFO), outperformed the others in terms of
delivered video quality, cache hit ratio, and backhaul link usage.
Liu et al. [200] introduced a deep deterministic policy gradient
(DDPG)-based framework to address the issue of simultaneous
resource allocation and replica selection in blockchain-enabled
fog radio access networks (F-RANs). As a result, less energy
was consumed owing to efficient resource utilization and a good
load trade-off.

5.6. Device-to-Device Communication
Device-to-device (D2D) communication is a feasible solu-

tion in assisting MEC to offload traffic [201]. D2D enables
nearby users to communicate directly with each other, featur-
ing high bandwidth efficiency, high data rates, and low delay
[202]. On the other hand, because D2D is heavily dependent on
users’ willingness to share data and content, creating a trusted
framework among users in which privacy and security are en-
sured is critical. Zhang et al. [201] proposed a consensus
mechanism based on a partial practical Byzantine fault toler-
ance (pPBFT) protocol to guarantee the latency and security of
the scheme. In addition, they formulated the caching placement
and smart contract execution nodes (SCENE) selection as an
MDP problem and solved it using the DRL approach. In the ap-
propriate domain of low outage probability, the throughput of a
D2D caching network performs similarly to that of coded multi-
casting [27], while the architecture is substantially simpler for
actual implementation. This network throughput increases lin-
early with cache size and is proportional to the number of files,
but the number of users has an impact on the result. Further-
more, the D2D caching network takes advantage of intensive
spatial reuse, that is, repeating the same file several times in the
network such that any user can find the desired content at a short
distance with a high probability as a result of many concurrently
active links being supported in the same time slot. Therefore,
D2D caching networks are well suited to dealing with scenarios
in which a small library of popular files is requested by a high
number of UEs.

D2D and edge caching are also considered as solutions to
avoid duplicate content downloading from the cloud. In [203],
the authors evaluated the vulnerability in the cache-replacement
phase of a real-world D2D edge caching policy (i.e., adaptabil-
ity, privacy). A weighted distributed DQN model (WDDQN)
was introduced to solve the aforementioned problem. In terms
of the request hit and offload rates, the proposed approach out-
performs the FIFO, LRU, LFU, and centralized DQN schemes,
and it also has a faster convergence speed than the centralized
DQN model. Another work [204] proposed distance-based and
priority-class-based cooperative cache replacement algorithms
to study the effect of video characteristics on system behavior,
thereby improving energy consumption and increasing service
capacity.

5.7. Summary and Discussion

Edge caching is critical in the deployment of 5G/6G tech-
nology because of its versatility and broad variety of applica-
tions. First, social networks profit immensely from edge caching
because caching and presenting users with relevant material
based on user preferences improves QoE and hence attracts
more users to the platform. However, abusing user interests
may potentially disclose personal data; therefore, privacy and
security are important issues to address. The variety of mate-
rials on social media also results in delays and computing re-
source strain. Edge caching assists ISPs in saving a significant
amount of money on service rollout and content delivery to sub-
scribers. There is reduced computational stress on the system
as a result of utilizing edge resources and storage, providing
ISPs with additional opportunities to deploy services. The re-
duction in latency during the distribution phase also results in
more clients expressing a more favorable opinion of the service
increasing the likelihood of subscription, which results in in-
creased profits for ISPs. Web caching is a clear illustration of
this, in which favored websites are cached and prefetched to
some extent to reduce user access time and provide additional
services to consumers.

Another point worth considering is the use of edge caching
in the IoT industry. Edge caching is regarded as the ultimate
app, elevating both technologies to greater levels. As the num-
ber of IoT devices has increased, a large amount of data and in-
formation need to be stored, evaluated, and transported across
the system. Caching at edge networks close to the end user
minimizes retrieval time and the backbone network burden. Us-
ing edge computational resources, analyzing and computing
data at the edge node help reduce the computational stress on
the global system. Nonetheless, security and efficient utiliza-
tion are problems that should be carefully examined through-
out system operation when using IoT-edge caching. Because
of the increase in video demand, edge caching in video stream-
ing has emerged as a viable field of development. By providing
users with their favorite videos and content, popularity-based
caching may make full use of the possibilities in this sector.
Finally, edge caching improves D2D communication by pro-
viding stable connectivity, high spectrum efficiency, and low
latency. However, it relies significantly on the desires of both
parties and makes compromises to provide data, necessitating a
highly secure transmission network.

6. Open Challenges

First, as a fundamental requirement of 6G networks, mas-
sive user density of 107 active connections is expected to be
served in a 1-square-kilometer area [205]. Supporting such an
large number of concurrent connections is considered a chal-
lenging issue for MEC systems in upcoming applications be-
cause the limited resources at the MEC are expected to pro-
cess a large amount of user traffic to meet high user demand.
Moreover, each user request may ask for different service qual-
ity sets. To this end, multiple aspects of MEC systems must
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be jointly optimized to simultaneously satisfy the system per-
formance to improve user experience. In particular, an intel-
ligent and powerful mechanism to efficiently exploit big data
generated by dense user devices in real time is important for
information-centric systems.

Second, the data heterogeneity of the spatiotemporal distri-
bution of traffic originators makes it difficult to design optimal
caching solutions to handle the entire user traffic. Spatiotempo-
ral heterogeneity negatively impacts the convergence of optimal
solutions, while user traffic properties continuously fluctuate in
uncertain environments. For instance, pollution IoT devices in
smart cities generate periodic report messages to the networks
for processing, while transportation IoT devices monitor ve-
hicular conditions and send their sensing data to the networks
when predefined events occur, such as road jamming and acci-
dents. This data traffic may be additionally affected by stream-
ing flows from residents who use social video sharing services
to disseminate their views. Obviously, each type of user traffic
requests a specific caching approach for efficient processing.

Third, although contextual adaptability has been consid-
ered in recent studies, there is a lack of thorough investigation
on practical scenarios with comprehensive constraints in real-
izing real implementations. In addition, next generation net-
works comprise numerous new user devices and applications.
Hence, the contextual adaptability of MEC to information fu-
sion should be addressed to achieve significant improvements
in advance, as this feature is directly related to the service expe-
rience of the user. Moreover, intelligent contextual adaptability
is vital to enable smart applications to personalize and localize
services for individual circumstances.

Fourth, latency has been considered as one of the major
metrics in caching techniques for real-time services. Conse-
quently, latency continues to play an important role in future
networks such as 6G and beyond, but with much higher require-
ments, that is, ultralow latency. Along with the rapid develop-
ment of mobile cloudification and virtualization technologies
[206], caching techniques empowered by these infrastructural
capabilities are expected to provide information fusion in real
time within ms delay. This stringent requirement becomes more
challenging when incorporating other system performance and
user experience optimization objectives, which the MEC must
face and jointly handle.

Fifth, to improve user experience, modern content services
aim to accommodate users with high-fidelity visualization and
rich information. Obviously, high fidelity requires a large space
to cache the content, powerful computational resources to pro-
cess the data, and a wide wireless spectrum for user access.
Such requirements become a big issue as relevant resources in
networking devices are limited, while concurrent user connec-
tions exponentially increase. Hence, multi-resource manage-
ment should be considered as one of the key targets for future
research in MEC systems. Depending on particular application
scenarios, the high fidelity can be traded with other metrics to
achieve a balance between system performance and user expe-
rience. For instance, video resolution can be considered as the
objective of a maximization problem, while latency and service
availability act as strict constraints in video streaming systems

assisted by edge caching technologies.
Sixth, information autoprocessing has recently become a

dominant feature in intelligent environments that are equipped
with AI capabilities. Under these circumstances, the informa-
tion is refined at networking devices by extracting, adding, re-
moving, and fusing, to generate the desired knowledge. To this
end, AI has the advantage of automatically identifying data pat-
terns and learning context. Although utilizing AI for this pur-
pose has been proven feasible, further studies should be con-
ducted to develop efficient and practical solutions. On the other
hand, a tradeoff between autoprocessing accuracy and resource
consumption costs in terms of time, space, and energy must
be considered, especially when advanced AI algorithms are ap-
plied.

Last but not least, security and privacy remain open chal-
lenges in MEC studies as a result of the sensitivity of user
data and internal/external attack threats rendering systems vul-
nerable. In particular, mutual authentication between user de-
vices and MEC is important to initially protect their transac-
tions against unauthorized entities. In addition, to efficiently ex-
ploit and process the information and context in user data, both
system and user authorization and accounting must be strin-
gently designed to manage user data privacy. To this end, AI
and blockchain technologies are promising candidates for fu-
ture research. Furthermore, security and privacy should be jointly
considered while optimizing the system performance and user
experience metrics.

7. Concluding Remarks

Edge caching has had a considerable influence on the growth
of the telecommunication sector, notably in the development
of new 5G/6G technologies and applications. The MEC ap-
proach enables data and information fusion to be processed on
delivery at fusion nodes on edge servers. The growing devel-
opment of data traffic and mobile devices, in addition to in-
creasing user expectations, are the grounds for affirmation that
MEC promises to prosper in the future. This paper was pro-
vided to give a comprehensive overview of state-of-the-art edge
caching utilization in data processing and information fusion
for delivery through mobile networks. The goal of this survey
is to introduce the current status of MEC development by re-
viewing recent research and discoveries in many areas of MEC.
We began by carefully investigating caching systems and their
operations in order to demonstrate the function of MEC in in-
formation fusion with in-network computing capabilities. In
addition, we have described the features that were used to eval-
uate the performance of three commonly used caching methods.
By providing relevant works on optimizing MEC under various
models and metrics, we help readers stay up to date on the most
recent MEC development efforts. We discovered the rise of ML
and AI technologies to boost the caching productivity of edge
servers after reviewing these studies. However, despite their
efficacy, the use of these algorithms might result in additional
resource costs on edges. To this end, a discussion on difficul-
ties is presented to address the crucial challenges in these ar-
eas. Although edge caching raises many concerns that need to
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be solved, promising technologies such as AI and blockchain
can be incorporated to build appropriate solutions for the chal-
lenges, and thus, these technologies deserve greater attention in
future research.

Acknowledgement

The-Vinh Nguyen and Anh-Tien Tran contribute equally to
this study. Nhu-Ngoc Dao and Sungrae Cho are the correspond-
ing authors. This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea govern-
ment (MSIT) (No. 2021R1G1A1008105).

References

[1] Cisco, Global–2021 Forecast Highlights, (Accessed on October 15,
2021) (2020).

[2] L. Bariah, L. Mohjazi, S. Muhaidat, P. C. Sofotasios, G. K. Kurt,
H. Yanikomeroglu, O. A. Dobre, A prospective look: Key enabling tech-
nologies, applications and open research topics in 6G networks, IEEE
Access 8 (2020) 174792–174820.

[3] Y. Ruan, C. Joe-Wong, On the economic value of mobile caching, in:
IEEE INFOCOM 2020-IEEE Conference on Computer Communica-
tions, IEEE, 2020, pp. 984–993.

[4] S. Gu, Y. Wang, N. Wang, W. Wu, Intelligent optimization of availability
and communication cost in satellite-UAV mobile edge caching system
with fault-tolerant codes, IEEE Transactions on Cognitive Communica-
tions and Networking 6 (4) (2020) 1230–1241.

[5] F. Zhou, N. Wang, G. Luo, L. Fan, W. Chen, Edge caching in multi-
UAV-enabled Radio Access Networks: 3D Modeling and Spectral ef-
ficiency optimization, IEEE Transactions on Signal and Information
Processing over Networks 6 (2020) 329–341. doi:10.1109/TSIPN.

2020.2986360.
[6] W. Yu, A. Najafi, Y. Nevarez, Y. Huang, A. Garcia-Ortiz, TAAC: Task

allocation meets approximate computing for Internet of Things, in: 2020
IEEE International Symposium on Circuits and Systems (ISCAS), IEEE,
2020, pp. 1–5.

[7] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing re-
search, IEEE access 8 (2020) 85714–85728.

[8] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, D. O. Wu, Edge
computing in industrial internet of things: Architecture, advances and
challenges, IEEE Communications Surveys & Tutorials 22 (4) (2020)
2462–2488.

[9] B. Xia, C. Yang, T. Cao, Modeling and analysis for cache-enabled net-
works with dynamic traffic, arXiv preprint arXiv:1609.05586 (2016).

[10] Huawei, IBM, Intel, Nokia Networks, NTT Docomo, Vodafone,
Mobile edge computing - introductory technical whitepaper, Available:
https://portal.etsi.org/portals/0/tbpages/mec/docs/

mobile-edge_computing_-_introductory_technical_white_

paper_v1%2018-09-14.pdf, [Online; Accessed 15-Oct-2021]
(2018).

[11] L. Chen, Y. Zhou, M. Jing, R. T. Ma, Thunder crystal: a novel
crowdsourcing-based content distribution platform, in: Proceedings of
the 25th ACM Workshop on Network and Operating Systems Support
for Digital Audio and Video, ACM, 2015, pp. 43–48.

[12] Y. Zhang, C. Jiang, B. Yue, J. Wan, M. Guizani, Information fusion for
edge intelligence: A survey, Information Fusion 81 (2022) 171–186.

[13] U. Sa’ad, D. S. Lakew, S. Cho, Edge caching for content sharing in ve-
hicular networks: Technical challenges, existing approaches, and future
directions, in: 2021 International Conference on Information Network-
ing (ICOIN), IEEE, 2021, pp. 770–775.

[14] Z. Xu, L. Zhou, S. C.-K. Chau, W. Liang, Q. Xia, P. Zhou, Collab-
orate or separate? Distributed service caching in mobile edge clouds,
in: IEEE INFOCOM 2020-IEEE Conference on Computer Communi-
cations, IEEE, 2020, pp. 2066–2075.

[15] L. Li, G. Zhao, R. S. Blum, A survey of caching techniques in cellu-
lar networks: Research issues and challenges in content placement and

delivery strategies, IEEE Communications Surveys & Tutorials 20 (3)
(2018) 1710–1732.

[16] T. Hou, G. Feng, S. Qin, W. Jiang, Proactive content caching by exploit-
ing transfer learning for mobile edge computing, International Journal
of Communication Systems 31 (11) (2018) e3706.

[17] S. Bommaraveni, T. X. Vu, S. Chatzinotas, B. Ottersten, Active content
popularity learning and caching optimization with hit ratio guarantees,
IEEE Access 8 (2020) 151350–151359.

[18] A.-T. Tran, D. S. Lakew, T.-V. Nguyen, V.-D. Tuong, T. P. Truong, N.-N.
Dao, S. Cho, Hit ratio and latency optimization for caching systems: A
survey, in: 2021 International Conference on Information Networking
(ICOIN), IEEE, 2021, pp. 577–581.

[19] M. Tauberg, Power law in popular media, Avail-
able: https://medium.com/@michaeltauberg/

power-law-in-popular-media-7d7efef3fb7c, [Online; Ac-
cessed 30-Oct-2021] (Sep 2018).

[20] G. Paschos, E. Bastug, I. Land, G. Caire, M. Debbah, Wireless caching:
Technical misconceptions and business barriers, IEEE Communications
Magazine 54 (8) (2016) 16–22.

[21] C. Fricker, P. Robert, J. Roberts, N. Sbihi, Impact of traffic mix on
caching performance in a content-centric network, in: 2012 Proceedings
IEEE INFOCOM Workshops, IEEE, 2012, pp. 310–315.
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