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Residential Demand Response for Renewable
Energy Resources in Smart Grid Systems

Laihyuk Park, Yongwoon Jang, Sungrae Cho, and Joongheon Kim

Abstract—With the current state of development in demand
response (DR) programs in smart grid systems, there have been
great demands for automated energy scheduling for residential
customers. Recently, energy scheduling in smart grids have
focused on the minimization of electricity bills, the reduction
of the peak demand, and the maximization of user convenience.
Thus, a user convenience model is proposed under the consid-
eration of user waiting times, which is a non-convex problem.
Therefore, the non-convex is reformulated as convex to guarantee
optimal solutions. Moreover, mathematical formulations for DR
optimization are derived based on the reformulated convex
problem. In addition, two types of pricing policies for electricity
bills are designed in the mathematical formulations, i.e., real-
time pricing policy and progressive policy. With real-time pricing
policy, convexity is guaranteed whereas progressive policy cannot.
Then, heuristic algorithms are finally designed for obtaining
approximated optimal solutions in progressive policy.

Index Terms—Smart Grid, Residential Energy Resources,
Convex Optimization, Demand Response

I. INTRODUCTION

In the last few decades, global electricity consumption
has dramatically increased and fluctuated in uncertain ways,
causing blackouts. Due to the unexpected peak electricity
demands, a significant electricity supply is required. One
promising solution to this problem is the use of smart grid
systems envisioned as a future power system [1]–[3]. The
smart grid systems are capable to reduce the electricity peak
and induce effective electricity consumption through various
price policies, demand response (DR) control methodologies,
and state-of-the-art smart equipment in order to optimize
electricity resource usage in an efficient way [4]–[6]. With
the current state of development in smart grid systems, there
in a strong demand for automated scheduling schemes on the
consumer side in residential smart grid systems. Fig. 1 shows
the up-to-date concept of residential smart grid systems. As
shown in the Fig. 1, the overall composition of the system
contains a retailer, advanced metering infrastructure (AMI),
load controller, scheduling manager, database, and a number
of appliances. DR is one of the key technologies for smart
grid systems and there are two types of DR in the literature,
i.e., incentive-based programs and price-based programs [7].
The incentive-based DR program is designed to induce smaller
amount of electricity use at times of high market price or
when grid reliability is “jeopardized”. On the other hand, a
price-based DR program is defined as a tariff or program
established to motivate changes in the price of electricity
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Fig. 1: The concept of smart grid residential system architec-
ture

over time. In the price-based DR programs, the key function
is for scheduling the activation time of the requested load,
which can be shifted to reduce the electricity bill and peak
consumption. This paper focuses on price-based DR programs
because it is the dominant technology in the literature at this
moment. For the price-based DR programs, the utilities can
change the power consumption of customers via pricing, such
as time of use (TOU), critical peak pricing (CPP), extreme
day CPP (ED-CPP), extreme day pricing (EDP), and real-
time pricing (RTP). In these pricing policies, consumer real
time pricing information comes from the power grid retailer
or utility. In reactive pricing, real time pricing is formulated
via linear programming. The concept of day ahead pricing is
introduced in [8] which receives real-time pricing information
from the power grid retailer or utility. However, many com-
mercial retailers such as the Korea Electric Power Corporation
(KEPCO) have yet to support real time pricing. Instead of the
use of real time pricing, they follow a progressive scheme (also
called progressive pricing). In the progressive scheme, the
more one consumes electricity, the more one pays per power
unit (KWH). In the literature, the varieties of DR programs [9],
[10] have assumed the progressive scheme. The progressive
pricing is formulated via non-linear programming. In order to
solve this problem, [9] uses convex programming tools such as
the interior point method (IPM), and [10] designed a dynamic
programming-based solver.

Besides the electricity bill and peak consumption, recent
studies have additionally considered user convenience models.
Since there are various types of appliances, recent studies
considered simplified and limited models for appliances in
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order to formulate DR problems as relatively easy problems
(i.e., linear programming (LP) or convex problems).

In [8], the authors relaxed the conditions of convex op-
timization problems for cost minimization as well as user
convenience maximization, which can be applied to a large
number of consumers. They formulated the DR problem as
an mixed integer non linear programming (MINLP) problem,
which is hard to solve in a polynomial-time. Therefore, they
approximated the problem as a convex problem by relaxing
the integer variables to continuous variables. By solving the
relaxed optimization problem, they obtained a suboptimal
solution. Although the convex programming tools in [9] or the
dynamic programming schemes in [10] can find approximate
solutions, they cannot guarantee optimality.

In this paper, the convex programming framework to guar-
antee an optimal solution in real time pricing policy is
proposed. As mentioned earlier, progressive schemes suffer
from being NP-hard problems. However, our scheme presents
a heuristic algorithm to solve NP-hard problems and obtain
an approximate optimal solution for minimizing the electric-
ity bill and peak consumption, as well as maximizing user
convenience.

In summary, compared with previous contributions in the
literature, the proposed schemes in this paper contributes the
following.
• The proposed algorithm considers both the electricity cost

and user convenience, which can be applied to solve the
non-convex problem.

• The techniques that can convert a non-convex problem
to a convex problem are proposed. By using these tech-
niques, the proposed user convenience formula can be
applied to solve the convex problem. Therefore, it is
possible to guarantee an optimal solution in the real time
pricing policy.

• For the progressive policy, a heuristic algorithm is pro-
posed to obtain an approximated near-optimal solution
for the given non-convex problem.

The rest of this paper is organized as follows. In Section II,
the demand response program is proposed and the correspond-
ing optimization problem is prsented. Section III presents a
technique for converting the mathematical optimization frame-
work of Section II to a convex form, which can guarantee
optimal solutions for real time pricing policy. In addition,
Section III also designs the heuristic algorithm which can
obtain approximated optimal solutions for progressive policy.
Section IV evaluates the performances and the conclusions of
this paper are summarized in Section V.

II. SYSTEM MODEL

This section formulates an optimization problem aims on
the minimization of the total pricing while preserving user
convenience. The purpose of this model is to shift the energy
consumption schedules within residential appliances in order
to optimize savings. To clarify, the purpose is not to reduce
the amount of consumed energy but to find optimal energy
schedules for each appliance that reduce the pricing and
maximize convenience.
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Fig. 2: Real time pricing example (The real-time prices are
used by Illinois Power Company on 15 December 2009) [11]
[12]

A. Energy Cost Model

In order to formulate required models, this paper defines
the notations for the set of appliances A, i.e.,

A = {a1, a2, a3, a4, · · · , aN} , (1)

where N is the total number of appliances in the smart grid
system. This paper also assumes that the time is divided into
equal timeslots t such that

t ∈ T where T = {1, 2, 3, · · · , T} . (2)

The timeslot can be represented by any unit of time, and
this paper assume that the unit time is an hour for simplicity.
Based on the definitions and notations, the energy schedule of
appliance i can be represented by

Si ,
[
s1i , s

2
i , s

3
i , · · · , sti

]
, (3)

where

sti =

{
1, if appliance ai is operating at t
0, otherwise.

This paper assumes that appliance ai consumes energy
Eon

i per each timeslot t during operation. Therefore, the
energy consumption of all residential appliances per timeslot
t (denoted as Et,A) can be modeled as follows:

Et,A ,
∑
ai∈A

gi · sti · Eon
i , (4)

where gi indicates that appliance ai is provided electricity
from power grids or renewable energy resources. If appliance
ai is scheduled by using renewable energy resources, gi is
set to 0. Otherwise (e.g., it is scheduled by using an energy
resource from the power retailer), it is set to 1.

In order to prevent blackout situations, energy consumption
at time t ∈ T should be less than BO, i.e.,

Et,A ≤ BO. (5)
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As mentioned earlier, two types of pricing models are
considered in this paper, i.e., real time pricing and progressive
pricing. Fig. 2 shows the real time pricing. The system with
real time pricing assumes that the power retailer sends the day-
ahead electricity pricing to the residential smart grid system. If
the energy utility supports real time pricing, the cost function
can be defined as follows:

Bt (Et,A) , Et,A · pt, (6)

where pt is the electricity price at time t. At this time, the
cost function can be formulated with linear programming
framework.

On the other hand, if the system assumes that the utility
supports the progressive pricing, the cost function can be
described as a quadratic cost function for the power generator
in [9], which can be modeled as follows:

Bt (Et,A) , αtEt,A
2 + βtEt,A + γt, (7)

where αt ≥ 0 and βt, γt ≥ 0 at each hour t ∈ T .
Based on the assumptions and definitions, the price function

Pt can be obtained as follows:

Pt = Bt

(∑
ai∈A

gi · sti · Eon
i

)
. (8)

In order to model the renewable energy resources, several
constraints are models as follows:

RER(t) = RER(0)+∫ t−1

k=0

c(t)−
∑
a∈A

(1− gi) · sti · Eon
i ,∀t ∈ T , (9)

where RER(t) is the expected available electricity power
stored by energy storage systems (ESS) and RER(0) is the
ESS power from the beginning of the day. In (9), c(t) is an
expected charging amount from renewable energy resources.
The considering smart grid system assumes that ESS has max-
imum battery level RERmax, and the constraint is formulated
as follows:

0 ≤ RER(t) ≤ RERmax,∀t ∈ T . (10)

B. User Convenience Model

The considering smart grid system assumes that a user can
set their preferred begin operation time and end operation time
for each appliance using a smartphone or IHD. In order to
model the user convenience for a given appliance, the begin
timeslot of appliance ai and the end timeslot are denoted by
Cbegin

i and as Cend
i , respectively, where

Cbegin
i < Cend

i (11)

where Cbegin
i ∈ T , Cend

i ∈ T . For example, the system
assumes that the user wants the dishwasher to start after 13:00
and finish before 18:00. Then, the user must set the begin time
and end time of the dishwasher as 13:00 and 18:00, respec-
tively. In this case, Cbegin

i = 13 and Cend
i = 18. Denoting by

ρi which is the number of required timeslots for operating
appliance ai, ρi is less than or equal to Cbegin

i − Cend
i .

However, the operation of an appliance can be scheduled
earlier or later than the user’s setting. In this case, the user
convenience decreases and dissatisfaction increases. Then the
user convenience can be formulated using Cbegin

i and Cend
i .

Denoting wt
i as the dissatisfaction degree of appliance ai, wt

i

is given as follows:

wi
t ,


κ
(
Cbegin

i − t
)
, t < Cbegin

i

0, Cbegin
i ≤ t < Cend

i

κ
(
t− Cend

i + 1
)
, Cend

i ≤ t,

(12)

where κ is a slope of dissatisfaction degree, which is used by
the user to set the sensitivity with time.

Therefore, the user convenience function of appliance ai
can be expressed as follows where t ∈ {1, . . . , T}, T , |T |:

U(ai) = −
∑

t∈T w
t
i · sti

ρi
. (13)

C. Objective Function

The optimization problems based on two objectives are
formulated in the smart grid system where the two objective
functions are for energy cost minimization and user conve-
nience maximization, respectively.

The parameter λ is introduced as a weight factor to combine
the energy cost model and user convenience model. For a fair
comparison of two models, the scaling denominators, i.e., ΓB

and ΓU are also introduced. The ΓB is an expected maximum
electricity bill per timeslot (i.e., all appliance are scheduled
in one timeslot.) and the ΓU is an expected maximum user
convenience per timeslot (i.e., all appliance are scheduled to
the farthest time slot in their preference time.), respectively.
The objective function is obtained as follows with (5), (8), (9),
(10),and (13):

minimize
sti,gi

T∑
t=1

{
λ

ΓB
·Bt

(∑
ai∈A

gi · sti · Eon
i

)
+

(1− λ)

ΓU
·
∑
ai∈A

wt
i · sti
ρi

}
(14)

subject to ∑
ai∈A

sti · Eon
i ≤ BO (15)

0 ≤ λ ≤ 1 (16)
T∑
t

sti = ρi (17)

RER(t) = RER(0) +∫ t−1

k=0

c(k)−
∑
a∈A

(1− gi) · sti · Eon
i (18)

0 ≤ RER(t) ≤ RERmax,∀t ∈ T . (19)
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III. PROPOSED OPTIMIZATION FRAMEWORK

A. Re-Formulation: Convex Form

As shown in (12), wt
i is a function of t. The formulation

of user convenience (13) is non-convex since there exists the
multiplication of a function wt

i and a variable sit [13]. There-
fore, the defined objective function (16) is NP-complete and
non-convex. For non-convex optimization problems, heuristic
search algorithms such as genetic algorithm, simulated an-
nealing, and tabu search can find approximated near-optimal
solutions but the techniques cannot guarantee optimality.
Therefore, the proposed objective function in previous section
is re-formulated in order to eliminate non-convex terms.

In order to reformulate the given objective function, the
parameter W ∗ is additionally introduced, which is a redun-
dancy constraint. The defined parameter W ∗ is an arbitrary
and sufficiently big number which is larger than all of the
wt

i . Therefore, it is obvious that the addition of following
constraints is possible.

wt
i ≤ W ∗, (20)
0 ≤ wt

i . (21)

Theorem 1: For the given non-convex formulation, intro-
ducing

wt
i ≤W ∗ · sti (22)

instead of (20) makes the formulation convex.
Proof 1: The proving procedure consists of two steps. The

first step is for showing that (22) is equivalent to (20); and
the next step is for showing that the proposed optimization
framework with (22) is convex.

For the first step (i.e., showing that (22) is equivalent to
(20)), we have to show that the two equations are equivalent
when sti = 0 and sti = 1.

Suppose that sti = 1. In this case, it is obvious that

wt
i ≤W ∗ · sti

∣∣
sti=1

, (⇒) wt
i ≤W ∗ · 1, (23)

by (22) and this equals to (20).
On the other hand, suppose that sti = 0. For the non-

convex formulation in previous section, sti = 0 means that the
appliance ai is not scheduled at time t. Thus the corresponding
dissatisfaction degree of appliance ai at time t cannot exist,
i.e., the optimization formulation in previous section will
obviously return wt

i = 0. The (22) with sti = 0 can be as
follows:

wt
i ≤W ∗ · sti

∣∣
sti=0

, (⇒) wt
i ≤W ∗ · 0 = 0, (24)

and thus wt
i = 0 because wt

i is definitely non-negative. As
shown in the wt

i values with (22) and (20) for each sti = 0
and sti = 1, it is clear that (22) is equivalent to (20). Finally,
the first step is proved.

For the second step, it should be proved that the proposed
optimization framework with (22) is convex. With (22), all
wt

i · sti terms can be converted to wt
i because they equals due

to the first step as following Table I.
After this converting procedure, the all non-convex terms

with the multiplication of two variables are eliminated, i.e., the
terms contain only one linear variable wt

i which is obviously

TABLE I: Elimination of Non-Convex Terms

wt
i · sti wt

i

sti = 0 0 0 by (22)

sti = 1 wt
i wt

i by (22)

convex [13]. Therefore, there are no non-convex terms in the
proposed optimization formulation.

Based on the [Theorem 1], (13) can be updated as follow:

U∗(ai) = −
∑

t∈T w
t
i

ρi
, (25)

and thus this equation is now non-convex. Therefore, the final
optimization framework will be as follows and note that this
is convex:

minimize
sti,gi

T∑
t=1

{
λ

ΓB
·Bt

(∑
ai∈A

gi · sti · Eon
i

)
+

1− λ
ΓU

·
∑
ai∈A

wt
i

ρi

}
(26)

subject to ∑
ai∈A

gi · sti · Eon
i ≤ BO (27)

0 ≤ λ ≤ 1 (28)
wt

i ≤ W ∗ · sti (29)
0 ≤ wt

i (30)
T∑
t

sti = ρi (31)

RER(t) = RER(0) +∫ t−1

k=0

c(k)−
∑
a∈A

(1− gi) · sti · Eon
i (32)

0 ≤ RER(t) ≤ RERmax,∀t ∈ T . (33)

B. Heuristic Algorithm

As aforementioned, cost functions should be selected for
either a progressive pricing (6) or real time pricing (7) for the
energy utilities’ policies. If the real time pricing is selected,
the result can be obtained via the derived formula in section I.
If the progressive pricing is selected, however, it is difficult to
obtain the result since the cost function is not convex form.
Therefore, a new novel heuristic algorithm should be designed
for obtaining an approximated costs. The heuristic algorithm
consists of appliance sorting and appliance scheduling. First,
the sequence of appliance scheduling by appliance sorting
should be determined. Second, we alternatively schedule each
appliance by computing the objective function. The scheduling
sequence is determined based on user convenience. For the
heuristic algorithm formulation, the system assumes that user
convenience of the appliance is more sensitive as the worst
case for expected user convenience becomes larger. Therefore,
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the sensitivity of user convenience for appliance ai (denote by
SCi) can be calculated as follows:

SCi = max(wt
i),∀t ∈ T . (34)

After sorting all appliance by SCi, the appliance scheduling
is conducted alternatively. If scheduling of appliance ai is
completed, the result will be stored in Xi where the Xi is set
of scheduling result by each time slot t and this is described
as follows:

Xi ,
[
x1i , x

2
i , x

3
i , · · · , xti

]
, (35)

where

xti =

{
1, if appliance ai is scheduled at t
0, otherwise.

If the scheduling sequence is i, the scheduling parameter
Si and energy resource parameter gi can be obtained with
following formulation.

argmin
Si,gi

T∑
t=1

 λ

ΓB
·Bt

i−1∑
j=0

gj · xtj · Eon
j + gi · sti · Eon

i

+

1− λ
ΓU

·
∑
ai∈A

wt
i

ρi

}
(36)

subject to
i−1∑
j=0

gj · xtj · Eon
j + gi · sti · Eon

i ≤ BO (37)

0 ≤ λ ≤ 1 (38)
wt

i ≤ W ∗ · sti (39)
0 ≤ wt

i (40)
T∑
t

sti = ρi (41)

RER(t) = RER(0) +∫ t−1

k=0

c(k)−
i∑

j=0

(1− gj) · xtj · Eon
j (42)

0 ≤ RER(t) ≤ RERmax,∀t ∈ T . (43)

In summary, the heuristic algorithm for calculating approx-
imated near-optimal solution is presented in Algorithm 1.
Given the set of appliance profiles, the scheduling sequence
is determined based on sensitivity of user convenience. After
scheduling sequence has been set, iterative scheduling is con-
ducted from the appliance with most sensitive user satisfaction.
Before proceeding to scheduling the next appliance (ai+1), the
scheduling information Xi will be updated.

To assess the performance of the heuristic algorithm in
terms of complexity, the computational complexity has been
analyzed in each phase as follows:

1) For the phase of appliance sorting, an insertion sort
algorithm is used in this paper and it requires n2

comparisons for the sorting procedure. Therefore, the
appliance sorting phase is quadratic with regard to the

Algorithm 1: The Heuristic Algorithm

1: Step 1: Appliance Sorting
2: for i = 0→ N do
3: Compute SCi with (34)
4: for j = 0→ i do
5: if SCj > SCi then
6: SWAP SCj and SCi

7: end if
8: end for
9: end for

10: Step 2: Appliance Scheduling
11: for j = 0→ N do
12: Schedule j-th appliance with (36), (37), (38), (39), (40),

(41), (42), and (43).
13: Update the Xj .
14: end for

TABLE II: Simulation Parameters

ai mean of Eon
i (w/h) mean of ρi (time slot)

1 300 4

2 400 4

3 200 10

4 150 10

5 100 20

size of N , i.e., O(n2).
2) For the phase of appliance scheduling, the optimization

objective function (36) is computed. The complexity of
the procedure is linear with regard to the size of N .
Therefore, the appliance scheduling phase is quadratic
with regard to the size of N since it computes (36) for
N times, i.e., complexity O(n2).

Finally, the entire algorithm takes the computational complex-
ity as O(n2).

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed demand
response scheme is evaluated. For the performance evaluation,
the MOSEK optimization tool is used which is generally used
and popular in the literature [14].

The simulation parameters are as follows. In order to model
the charging of renewable energy resources, “Real Italian
Normalized PV Generation Profile” is used [15]. To compute
the quadratic cost function (7), assume that αt = 5/9,
βt = 0, and γt = 0 [9]. To demonstrate the performance of
the proposed scheme, small scale topologies and large scale
topology are configured. In the small scale topologies, the
heuristic algorithm are verified that it can compute approx-
imated near-optimal solutions. In the large scale topology,
it is verified that the proposed scheme algorithm efficiently
applies to large scale topologies for progressive and real time
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Fig. 3: CDF vs. Difference of electricity bill

pricing policies. Moreover, the existing scheme presented in
[11] is compared with the proposed scheme in this intensive

performance evaluation.

A. Approximation of the Proposed Scheme

Because the objective function is non-convex, it cannot
achieve good performance for large scale topologies. There-
fore, the heuristic algorithm is proposed as presented in
Section III-B. To verify the proposed algorithm, a small scale
appliance topology are generated in a random manner. Each
appliance has 5 parameters as follows and the parameters are
randomly generated. The first indicates the index of appliance
(ai). The second indicates the operating power (Eon

i ) and fol-
lows a Poisson distribution. The third indicates the operating
duration (ρi) and follows a Poisson distribution. The fourth
and fifth parameters indicate the preferred start time (Cbegin

i )
and preferred end time (Cend

i ) of appliance ai, respectively.
Cbegin

i and Cend
i are generated by a uniform distribution. To

approximately measure the proposed scheme, this simulation
assumes that the smart grid system has five appliances (N = 5)
and simulate for 60 days. For the simulation, parameters are
as shown in the Table II. Since there are a few appliances, an
optimal solution are computed using brute-force. Therefore,
the heuristic algorithm is compared with the optimal solution
with brute-force.

Fig. 3 shows the difference of electricity bill between the
optimal solution and the heuristic algorithm. As shown in
the figure, the heuristic algorithm guarantees more than 80%
optimal for all λ. Moreover, more than 99% of the difference
between the heuristic algorithm and optimal solution are less
than 1$.

Fig. 4 shows the electricity bill graph according to λ.
Both the results of heuristic algorithm and optimal solution
show that electricity bills increase as λ decrease. This is
because λ is more smaller, objective function considers the
user convenience rather than electricity bill. If λ is 0.1, the
maximum difference is about $2 and electricity bill is about
$204. Therefore, it is obvious that the heuristic algorithm is
more than 99% in the value of the optimal solution. Moreover,

0 0.2 0.4 0.6 0.8 1
185

190

195

200

205

210

215

220

225

230

λ

E
n

e
rg

y
 B

ill
 (

D
o

llo
r)

 

 

Heuristic algorithm

Optimal soulution

Fig. 4: Electricity bill vs. λ

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Difference of Σ U() (between optimal and heuristic)

C
D

F

 

 λ=0λ=0.1λ=0.2λ=0.3λ=0.4λ=0.5λ=0.6λ=0.7λ=0.8λ=0.9λ=1

Fig. 5: CDF vs. Difference of
∑
U

it can be observed that the heuristic algorithm works well
regardless of λ.

Fig. 5 shows the difference of the sum of user convenience
between the optimal solution and the heuristic algorithm. As
shown in the figure, the heuristic algorithm guarantees more
than 80% optimal for λ are 0 to 0.9. Moreover, the results
of heuristic algorithm except λ = 1 show the approximate
optimal solution less than 3. If λ is 1, however, there are a
lot of the difference between heuristic algorithm and optimal
solution. This is because that objective function tries to evenly
distribute energy consumption to timeslots. (i.e., there are no
rule time slot scheduling). However, it is not effect to the result
of objective function since user convenience is multiplied to
0 if λ is 1. As in the figures, if λ is 0, the user satisfaction of
heuristic algorithm are 100% consistent with optimal solution.
If λ is 0, the objective function will only consider user
satisfaction. Therefore, the results of appliance scheduling are
their preferred times (i.e.,

∑
U(·) will be 0). In the proposed

heuristic algorithm, each appliance is alternatively scheduled.
The first appliance is scheduled to satisfy its preferred time,
and then the next appliance will be scheduled to satisfy its
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preferred time. Therefore, the summation of user satisfaction
will also be 0 in the heuristic algorithm.

Fig. 6 shows the user convenience graph according to λ.
Both the user convenience of heuristic algorithm and optimal
solution increase as λ increase. Therefore, it is observed that λ
controls the user convenience efficiently. If λ is 0, both of the
heuristic algorithm and optimal solution 100% guarantee user
convenience. The sum of user convenience rapidly increase at
λ is 1. Moreover, there are a lot of difference if λ is 1. The
reason of that λ = 1 has abnormal result is the same reason
as before. As shown in the figure, it can be observed that the
sum of user convenience is more approximate than electricity
bill except λ is 1. This is because of scheduling sequence
is determined based on sensitivity of user convenience in the
heuristic algorithm.

B. Efficiency of the Proposed Scheme for Large Topology

In this section, the application of the proposed scheme is
simulated for the given large scale topology. To verify the
proposed scheme, the appliance set (N = 33) is designed.
Based on this topology, the performance of proposed algorithm
and comparison scheme [11] is measured. In the simulation,
the comparison schemes with δ = 0 and δ = 1 are evaluated. If
δ = 0, the comparison scheme only considers cost reduction.
If δ = 0.99 , the comparison scheme considers the delay cost
as well as electricity bill reduction. For a fair comparison, the
delay tolerance is set to the end of the day and the objective
function for the electricity bill follows (6), (7), and (8).

Fig. 7 shows the electricity bill graph according to timeslot
when progressive policy is applied. As shown in the figure,
electricity bill fluctuates by time slot if λ is zero (i.e., all
appliance is scheduled at preferring time). On the other hand,
electricity bill is relatively flat if λ is 1 (i.e., user convenience
is not considered). If λ is 0.5, the graph is smoothly changed
between graphs of λ = 0 and λ = 1. Therefore, it can be
found that λ efficiently controls the electricity billing costs.
In the figure, it can be found that appliance scheduling shifts
from t = 14 to t = 15 ∼ 17 to avoid peak load if λ is
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0.5. During t = 15 ∼ 17, the bill of the proposed scheme is
less than the bill of the comparison scheme. The comparison
scheme shifts the peak load to a later timeslot. On the other
hand, the proposed scheme can shift the load to an earlier or
later timeslot.

Fig. 8 shows the sum of electricity bills according to λ when
progressive policy is applied. As shown in the figure, electric-
ity bill for the proposed scheme increases as λ decreases since
objective function consider electricity bill as λ is greater. On
the other hand, the bills for the comparison schemes almost
did not change according to λ. It can be found that the user
satisfaction model of the comparison scheme is not applicable
to quadratic progressive policy. In addition, it can be seen
that the electricity bills rapidly increase at λ = 0 for all
schemes. Especially, the result of the comparison scheme with
δ = 1 is much greater than the results of the other schemes at
λ = 0. The reason is that the scheduling can be concentrated
to a single timeslot since λ = 0 induces the electricity bill
increasing; and the comparison scheme with δ = 1 does
not consider user satisfaction (i.e., it randomly schedules
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appliances). Interestingly, the bill of proposed scheme is less
than the bill of the comparison scheme with δ = 0.99. In
the proposed scheme, user satisfaction degrees that belong to
the preferred time are the same. In the comparison scheme
with δ = 0.99, however, the earlier timeslot has a greater user
satisfaction although the timeslot belongs to the preferred time.
Moreover, the bill of the proposed scheme is less than the bill
of the comparison scheme with λ = 1. This is because the
proposed scheme can shift the load to earlier or later timeslot
as shown in the previous figure.

Fig. 9 shows the electricity bill graph according to timeslot
when real time pricing policy is applied. As shown in the
figure, electricity bill fluctuates by time slot if λ are 0 or
1. The result is difference with progressive policy if λ is 1.
In the figure, electricity bill rapidly increases at timeslot 24.
This is because appliance scheduling is concentrated at low
electricity pricing time. If λ is 0.5, the graph is smoothly
changed as graphs of λ = 0. Therefore, it can be found that
λ also efficiently controls the electricity bill when real time
pricing policy is applied. For the comparison scheme with
δ = 1, appliance scheduling is concentrated at timeslot 24
since δ = 1 only considers electricity bill reduction. In contrast
with the comparison scheme with δ = 0.99, the scheduling of
the proposed scheme is somewhat concentrated at timeslot 4.
As shown in Fig. 2, t = 23 ∼ 24 is the first low price period
and t = 4 is the second low price period for all timeslots. If
the number of request timeslots is greater than the number of
first period timeslots and the begin time is later than timeslot
4, the proposed scheme will schedule at timeslot 4. However,
the comparison scheme cannot schedule to an earlier timeslot.

Fig. 10 shows the sum of electricity bills according to λ
when real time pricing policy is applied. As shown in the
figure, electricity bill increases as λ decreases since objective
function consider electricity bill as λ is greater. If real time
policing is applied, it can be observed that the changing
of electricity according to λ is less abrupt than progressive
policy. This is because, progressive policy is represented by
quadratic function. In contrast with the progressive policy, the
comparison scheme with δ = 0.99 efficiently controls λ in the
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Fig. 10: Electricity bill vs. λ (real time pricing policy)

real time pricing policy. The comparison scheme with δ = 1
has the same results for the electricity bill from λ = 0.1 to
λ = 1 since it only considers electricity bill reduction. At
λ = 0, the reason for the different results among the three
schemes is the same as the reason for the progressive results.
If they only consider user satisfaction and the period of the
preferred time is greater than the operation time, the electricity
bill will randomly be different. At λ = 1, the bill for the
proposed algorithm is less than the bill for the comparison
scheme since the proposed scheme can schedule at timeslot 4,
as seen in the previous figure.

V. CONCLUDING REMARKS

This paper proposes optimization formulations and corre-
sponding algorithms for residential smart grid demand re-
sponse systems for renewable energy resources. For the for-
mulation, the electricity, renewable energy resources, and user
convenience models are designed in order to satisfy demand
response management for various electricity bill policies. In
real time pricing formulation, non-convex programming is
originally used and reformulation framework is proposed for
converting the given non-convex to convex which can guar-
antee optimal solutions. Furthermore, the additional heuristic
algorithm for progressive pricing formulation is designed for
obtaining approximated near-optimal solutions. Via intensive
simulations with the customized simulation software based on
MOSEK optimization tool, it has been shown that the proposed
heuristic algorithm presents near-optimal performance that
is close to the optimal solutions. The proposed algorithm
assumes that the operation and requests of the appliances are
perfectly known in advance. Future research will focus on an
appliance scheduling based on appliance usage patterns using
machine learning algorithms.
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