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Abstract—Development of smart grid technologies has
created a promising atmosphere for smart cities and en-
ergy trading markets. Especially, traditional electricity con-
sumers evolve into prosumers who produce as well as
consume electricity in modern power electric systems. In
this evolution, the electric power industry has tried to in-
troduce the notion of local energy markets for prosumers.
In the local energy market, prosumers purchase electricity
from distributed energy generators or the other prosumers
with surplus electricity via a local power exchange cen-
ter. For this purpose, this paper proposes joint geometric
clustering and truthful auction schemes in the local energy
markets. The proposed clustering scheme is designed for
distribution fairness of the distributed energy generator for
serving prosumers, where the scheme is inspired by expec-
tation and maximization (EM)-based unsupervised learning.
Moreover, this paper proposes an auction mechanism for
truthful electricity trading in a local energy market. In or-
der to guarantee truthful electricity trading, the proposed
auction mechanism is constructed based on the Vickrey-
Clarke-Groves (VCG) auction, which was proven to guaran-
tee truthful operations. The Hungarian method is also con-
sidered in addition to the auction. The simulation results for
the auction verify that the utilities of local market energy
entities are maximized when the prosumers are truthful.

Index Terms—Smart grid, Local power exchange center,
Clustering, Local energy market, VCG auction.

I. INTRODUCTION

DEVELOPMENT of smart cities and energy informatics
technologies considers the clean energy agenda including

climate change, transitions to low-carbon energy, and potential
renewable energy resources [1], [2]. Recently, technologies
related to renewable energy resources, such as advanced me-
tering, energy storage systems (ESSs), and energy communica-
tions, have dramatically evolved [3], [4]. These developments
create opportunities for energy consumers to evolve into
prosumers. In other words, prosumers are able to consume as
well as produce electricity using renewable energy resources in
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Fig. 1: A reference system model for local energy market

a smart city. As the number of prosumers increases, leading
electric power companies such as the Korea Electric Power
Corporation (KEPCO) have currently introduced the concept
of local energy market, which allows electricity trading among
prosumers. KEPCO has recently established local power ex-
change centers for local energy markets in Korea.

Fig. 1 illustrates the concept of local energy market. As
presented, a local energy market consists of prosumers, dis-
tributed energy generators, and a local power exchange center.
A prosumer who needs electricity can request electricity from
the local energy market. Then, prosumers who produce more
electricity than they need can auction their surplus electricity.
At this time, the local power exchange center acts as broker for
electricity trading, i.e., determining the matching and pricing
for electricity trading. The previous research results of energy
prosumers aimed to reduce both the cost of energy production
and the usage of the power grid and thus could not consider
the concept of a local power exchange center.

This paper proposes novel algorithms of clustering for
organizing local energy markets and auctioning for truthful
electricity trading.

For clustering, this paper proposes a geometric local market
clustering scheme based on unsupervised learning algorithm
concepts [5]. Electricity loss increases rapidly as the trans-
mission distance increases. Therefore, prosumers are geomet-
rically clustered. The proposed scheme clusters all prosumers
based on a location when the number of clusters is given.
Accordingly, the proposed scheme can be used if the electric
power industry introduces any number of local energy markets.

As shown in Fig. 1, this paper assumes that several dis-
tributed energy generators are public facilities for producing
electricity such as a public thermal power station. In this paper,



the distributed energy generator has a different meaning from
the distributed energy resource (DER), which refers to smaller
power sources from renewable energy such as photovoltaic
or wind turbines. Since the distribution of generators is im-
portant for energy market fairness, the proposed clustering
scheme considers distribution fairness of the distributed energy
generators. The proposed geometric clustering method has
a different purpose than locational marginal pricing (LMP)
[6], which is a pricing system that includes marginal costs,

supply costs, and congestion in the grid under geographical
considerations. i.e., the proposed clustering scheme presents
the local energy market organization method considering both
geographical location and fairness.

For auctioning, this paper proposes a truthful electricity
trading scheme based on the Vickrey-Clarke-Groves (VCG)
auction. The VCG auction consists of sealed-bid auctions
for ensuring truthful actions in electricity trading. The VCG
auction is a special case of Vickrey auction, where each bid
should be the true value to maintain utility. This paper assumes
that participants of the auction consist of 1) a seller who
is a prosumer with surplus electricity, 2) a buyer who is a
prosumer with power shortage, and 3) an auctioneer who is
a local power exchange center. In the auction, buyers request
the electricity demand to auctioneer, and the demand will be
an item of the auction. Then, each seller will bid for item,
and bidding reflects the actual cost that can be influenced by
the geometric relationship with the seller along with the cost
function. Therefore, the proposed scheme prevents electricity
monopolies and ensures market efficiency.

In summary, the proposed schemes contribute as follows:

• Clustering fairness: The proposed clustering algorithm
is based on the geometric information of the prosumers
and finds appropriate locations for the local power ex-
change centers. In addition to the location information,
the clustering operation functions under the consideration
of fairness of distributed energy generators.

• Truthfulness auction mechanism: The proposed auction
mechanism is constructed based on the VCG auction,
which is well known for its truthfulness. Also, the truth-
fulness of the VCG auction has been proven [18]. Via
intensive evaluations, it has been shown that the utilities
of each consumer are maximized when evaluating truthful
behaviors; thus, the proposed scheme is proven to be
truthful.

• Computational efficiency: The proposed optimization
problem for geometric clustering is NP-hard. Therefore,
this paper proposes a scheme inspired by the expecta-
tion and maximization (EM)-based learning algorithm to
solve the problem in polynomial time. In addition, the
proposed auction matching is also NP-hard; thus, the
proposed scheme solves the problem using the Hungarian
method, which is a well-known polynomial-time method
for finding matching that meets the minimum cost.

The rest of this paper is organized as follows. Section II
conducts literature surveys. In Section III, a geometric clus-
tering scheme for fairness is proposed. Section IV proposes
truthful auction for energy trading. Section V evaluates the

performance of the proposed clustering and auction schemes.
The conclusions of this paper are given in Section VI.

II. RELATED WORK

There have been several studies on the communications
and networks of distributed micro grid systems [7]–[9]. An
interconnection architecture of multiple micro grids is pro-
posed in [7]. The proposed algorithm in [8] investigates
the robust distributed control scheme to achieve the desired
power regulation by coordinating distributed energy genera-
tors. The distributed controller monitors the power mismatch
in neighbor micro grids and regulates power flow among
different micro grids. In [9], the probabilistic minimal cut-set-
based iterative methodology is proposed for micro grid inter-
connection planning. The interconnection planning enhances
the reliability and the economic operation of micro grids.
These interconnection schemes are focused on solving island
problems such as low reliability and limited energy generation
capability. Therefore, it is difficult to apply interconnection
schemes to local energy market clustering. In [10], the micro
grid clustering scheme is proposed under the consideration
of communication and control requirements. They take into
account the latency and reliability of the communication
systems for optimization formulation. In smart city’s local
energy market, reliability and latency problems will be solved
by a low cost, high performance network interface such as
WiFi. Previous research [7]–[10] has taken into account the
power quality aspects, i.e., the characteristics of the distributed
power generation units, the distributed energy storage units,
and the distributed reactive source for micro grid clustering.

Several studies have focused on energy market auctions
[11]–[17]. In [11], a real-time implementation of multi-

agent-based game theory reverse auction models is proposed
for a micro grid. The proposed algorithm in [12] focused on
efficient double auctions along with proportional allocation of
electricity among its buyers. In [13], an auction mechanism is
proposed under the consideration of Stackelberg game theory.
In [14], a risk-based auction strategy is implemented in which
an agent can assess the risk associated with a bid or ask under
current market conditions and bid/ask accordingly to maximize
the profit. These papers proposed customized auction algo-
rithms for energy markets and analyzed the algorithms through
game theory. The main purpose of these papers is to efficiently
purchase the required amount of energy at the lowest cost,
although the auctions did not present plans to avoid monopo-
listic resources. [15] proposed the reverse auction architecture
based on a second-price Vickrey auction for truthful bidding.
However, since the market environment in [15] consists of
one buyer and multiple sellers, it is not suitable for a local
energy market consisting of multiple buyers and sellers. The
VCG auction is used in [16] as an auction well known for
truthful trading [18]. However, detailed auction mechanisms
are not presented in [16], preventing a clear understanding.
In [17], the VCG auction mechanism with a linear problem
is proposed, and its truthfulness is mathematically proven. In
contrast with bidding done by the seller in the present paper,
it is done by the buyer in [17].



III. GEOMETRIC CLUSTERING FOR LOCAL ENERGY
MARKET

This section formulates optimization problems for geomet-
ric unsupervised learning, i.e., clustering, for local energy
markets. The purpose of this mathematical model is to for-
mulate local energy market clustering under the consideration
of distribution fairness among distributed energy generators.

A. Motivation
This paper investigates a geometric unsupervised learning-

based clustering algorithm for local energy markets. To the
best of our knowledge, currently existing clustering algorithms
have focused on the sustainability of clustering groups under
consideration of the characteristics of each entity. However, the
prosumer, an entity of the local energy market, contains the
characteristic of being able to sell or buy electricity according
to the situation. Therefore, this paper proposes a geometric
unsupervised learning algorithm that excludes all prosumer
characteristics since they are difficult to consider in existing
clustering algorithms. Furthermore, the proposed algorithm is
designed to consider the distribution fairness of distributed
energy generators because each local energy market should
be under stable and seamless energy supplies.

B. Problem Formulation
The proposed network architecture consists of prosumers

and distributed generators. Each prosumer is able to generate
and also consume electricity, e.g., smart homes or residential
buildings with renewable energy resources. On the other
hand, the distributed generators only produce energy via small
generators. If the electric power industry wants to build local
power exchange centers, their geographical locations and the
distribution of the generators are very important in terms of
trading efficiency and sustainability of local energy markets. In
particular, the clustering of generators in local energy markets
is very important due to the increase in power consumption
depending on the distance between the sellers and buyers.
In addition, the local energy market becomes unfair if the
distributed energy generators are concentrated in a specific
local energy market. Therefore, the proposed optimization
problem aims for balance in terms of the geometric distribution
of the local energy markets and ensures the fairness of the
distribution of energy generators.

In order to formulate clustering models, the proposed
scheme defines the notation for the set of prosumers P , i.e.,

P = {p1, p2, · · · , pN}, (1)

where N is the total number of prosumers in the system. This
paper also assumes that each prosumer pn has a geometric
location vector Lp

n. Similar to (1), the set of distributed energy
generators D is defined as

D = {d1, d2, · · · , dM}, (2)

where M is the total number of distributed energy generators,
and dm has geometric location vectors Ld

m.
If the electric power industry decides to construct K local

energy markets, K local power exchange centers are required.

Let X be the set of local power exchange centers, defined as
follows:

X = {x1, x2, · · · , xK}, (3)

and xk has geometric location vectors Lx
k .

Based on the definitions and notations, the relations between
prosumers and local power exchange centers are defined as

rpn,k =

{
1, if prosumer pn belongs to cluster k
0, otherwise. (4)

Since each prosumer should be associated with one local
power exchange center, it is true that:∑K

k=1
rpn,k = 1,∀pn. (5)

Similarly, let rdm,k be the relation between dm and xk, which
is defined as an indicator function, i.e., if dm belongs to cluster
k, rdm,k = 1; otherwise, rdm,k = 0. Since each distributed
energy generator should belong to one local power exchange
center, it is obvious that:∑K

k=1
rdm,k = 1,∀dm. (6)

As discussed, the proposed optimization formulation aims
to balance the geometric distribution of energy generators in
local energy markets. Therefore, the fairness of the distribution
of energy generators can be formulated as follows:∑M

m=1
rdm,k ≤

⌈
M · ω
K

⌉
,∀xk, (7)

where ω is a balance factor for the fairness in clustering,
and 1 ≤ ω ≤ K. As ω becomes smaller, more fairness
can be achieved, i.e., distributed energy generators are evenly
distributed among clusters when ω = 1, whereas all distributed
energy generators belong to one cluster when ω =M .

Based on this optimization design rationale, a distortion
measure function DMF , which is the sum of the geometric
distances between the local energy market entities (prosumers
or distributed energy generators) and local power exchange
centers, ,can be defined as follows:

DMF ,
∑K

k=1

(∑N

n=1
rpn,k||L

p
n − Lx

k||2+∑M

m=1
rdm,k||Ld

m − Lx
k||2
)
. (8)

Therefore, the optimization problem is for the minimization
of DMF under system model constraints:

minimize
rpn,k,r

d
m,k,L

x
k

DMF (9)

subject to
∑K

k=1
rpn,k = 1,∀pn (10)∑K

k=1
rdm,k = 1,∀dm (11)∑M

m=1
rdm,k ≤

⌈
M · ω
K

⌉
,∀xk (12)

1 ≤ ω ≤ K. (13)



C. Expectation and Maximization (EM)-based Clustering

The optimization formulation in previous section, i.e., (9)-
(13), is NP-hard due to the fact (9) is not convex; thus, it
is obviously difficult to solve in polynomial-time. Therefore,
this section presents the EM-based learning algorithm to solve
the given optimization problem. The EM algorithm is an
iterative method to find the maximum likelihood estimates of
parameters [5]. The EM iteration computes the expectation
of log-likelihood evaluated using the current estimate for the
parameters, and the maximization of expected log-likelihood.
In the expectation phase, each prosumer belongs to which
cluster will be expected, i.e., finds rpn,k and rdm,k using the
estimated locations of local power exchange centers. In the
maximization phase, the locations of local power exchange
centers to maximize the utility will be found, i.e., find Lx

k

using the estimated relations between prosumers, distributed
energy generators, and clusters.

Let Rx
k be denoted by the estimated geometric location

vector of local power exchange center k inspired by the fun-
damental concept of EM algorithms. Then, DMF in (8) can
be reformulated as follows by assuming that Lx

k = Rx
k , which

is based to the fundamental procedures of EM algorithms:

DMFexp ,
∑K

k=1

(∑N

n=1
rpn,k||L

p
n −Rx

k||2+∑M

m=1
rdm,k||Ld

m −Rx
k||2
)
, (14)

where Rx
k is a constant, and (14) is defined in a closed form

for rpn,k and rdm,k. In addition, the objective function (9) can
be updated as follows:

minimize
rpn,k,r

d
m,k

DMFexp. (15)

Let µp
n,k be the estimated relation between prosumer n and

cluster k; and µd
m,k stands for the estimated relation between

the distributed energy generator m and cluster k. By assuming
that rpn,k and rdm,k are equal to µp

n,k and µd
m,k, respectively,

(8) can be updated as follows:

DMFmax ,
∑K

k=1

(∑N

n=1
µp
n,k||L

p
n − Lx

k||2+∑M

m=1
µd
m,k||Ld

m − Lx
k||2
)
, (16)

where µp
n,k and µd

m,k are constants. Similarly, the objective
function (9) is updated as follows:

minimize
Lx

k

DMFmax. (17)

Due to the fact that (16) is quadratic and thus convex, it
can be solved using optimization solvers in polynomial time.

The proposed clustering algorithm for solving the opti-
mization framework is formally described in Algorithm 1.
Algorithm 1 consists of two steps, i.e., (i) initialization and
(ii) EM-based geometric clustering. First, the initialization
step initializes the default value for algorithm operation, i.e.,
it sets the vector Rx

k as random, which is used as a seed
vector; and sets DMFprev and DMF as the default values

Algorithm 1: Geometric Clustering Algorithm

1: Step 1: Initialization
2: for k = 1→ K do
3: Set Rx

k as random vector.
4: end for
5: DMFprev ← 0
6: DMF ←∞
7: Step 2: EM-based Geometric Clustering
8: while DMF 6= DMFprev do
9: DMFprev ← DMF

10: Step 2-1: Expectation Phase
11: find rpn,k, r

d
m,k with objective function (15)

12: µp
n,k ← rpn,k

13: µd
m,k ← rdm,k

14: Step 2-2: Maximization Phase
15: find Lx

k with objective function (17)
16: Rx

k ← Lx
k

17: calculate DMF with (8)
18: end while

where DMFprev is used to determine the convergence of the
EM-based geometric clustering algorithm. After completing
the initialization step, the second step, EM-based geometric
clustering, iteratively and successively conducts expectation
and maximization until the result converges. In the expectation
phase, find rpn,k, r

d
m,k with (15), which can be obtained in

polynomial time due to the fact that (14) is defined in a closed
form for rpn,k and rdm,k, i.e., the computational complexity is
O(N). Then, µp

n,k and µd
m,k are updated with the obtained

rpn,k and rdm,k, respectively. The updated variables will be used
in the maximization phase, where Lx

k is calculated with (17).
The optimal value of Lx

k can be obtained in polynomial time
because (16) is convex. Then, Lx

k will be updated to obtained
Rx

k to be used in the next step of the expectation phase.
After completing this maximization, the proposed algorithm
calculates the distortion measure function DMF to determine
convergence. If the current distortion measure function DMF
is equal to the previous result, a local optimal solution is found
by this EM-based algorithm. Based on the calculated rpn,k and
rdm,k, the clustering local energy market entities are defined.
In addition, the location of the local power exchange center is
determined based on the obtained Lx

k .

IV. TRUTHFUL AUCTION FOR LOCAL ENERGY MARKET

This section introduces the auction models for truthful
electricity trading in a local energy market. In addition, the
problems are mathematically formulated and the desirable
properties of the auction mechanism are presented.

A. Motivation
After determination of the local power exchange center

using geometric clustering, the local power exchange center
can start managing prosumers and locally form a market.
This means that the local power exchange center can act as
the aggregator for power trading among prosumers. A center
can exchange information with the prosumers to determine
appropriate market prices. For this purpose, a VCG-based



auction mechanism is proposed for joint matching and price
calculation. In addition, the auction mechanism guarantees
the truthfulness, computational efficiency, and individual ra-
tionality1 [18]. For auction mechanism design, this paper
assumes that a seller is a prosumer with surplus electricity
or a distributed energy generator, a buyer is a prosumer with
power shortage, and an auctioneer is a local power exchange
center. Note that the terms of seller, buyer, and auctioneer are
used instead of prosumer, distributed energy generator, and
local power exchange center, respectively, in the rest of this
paper.

B. Problem Formulation
Prior to the explanation of the proposed truthful energy

auction, a suitable formulation is defined in this section. In
order to formulate the energy auction model, assume that each
local energy market consists of an aggregator, a seller group
S, and a buyer group B, where S consists of I sellers and is
denoted as follows:

S , {s1, s2, · · · , si, · · · , sI}. (18)

B consists of J buyers and is denoted as follows:

B , {b1, b2, · · · , bj , · · · , bJ}. (19)

This paper also assumes that each seller si has surplus elec-
tricity Epro

i with electricity generation cost cpro
i . The electricity

generation cost cpro
i can be expressed by various cost functions

according to energy resource type, such as in [14], [15], and
the proposed auction mechanism is independent of the cost
function. Therefore, the cost function is out of the scope in this
paper, and any cost function can be applied to cpro

i . In addition,
this paper assumes that each buyer bj needs an amount of
power Econ

j .
In the proposed auction mechanism, each seller submits a

set of bids Bi for each buyer, where Bi can be described as
follows:

Bi = {bi,1, bi,2, · · · , bi,J} , (20)

where bi,j is the bid that si submits to bj . Therefore, all bids
submitted to the auctioneer can be denoted as follows:

B =
⋃I

i=1
Bi. (21)

For the proposed truthful auction mechanism, the bid is
calculated by considering the electricity generation cost cpro

i

and the electricity loss li,j . This paper assumes that li,j is
calculated as the Euclidean distance between si and bj .

Further, the amount of received electricity should be greater
than the required electricity. Therefore, si should bid when the
following constraint is satisfied:

Econ
j ≤ Epro

i · (1− li,j). (22)

In order to satisfy the buyer’s desired amount of electricity,
the seller must transmit the electricity while also considering
the loss. The transmitted amount of electricity from si to bj

1The corresponding proof is in Appendix.

can be calculated as Econ
j /(1− li,j). Therefore, the actual cost

of electricity that generated by si and transmitted to bj can be
calculated as follows:

ci,j = cpro
i · E

con
j /(1− li,j). (23)

In addition, the seller will not bid on the auction if its cost of
electricity is more expensive than the commercial cost. Denote
the commercial electricity pricing from power utility is as cpow

and the seller and buyer can recognize the pricing information
on Internet. When bj is supplied the electricity from power
utility, the electricity bill can be calculated as follows:

Pj = cpow · Econ
j . (24)

Therefore, si should bit when the following constraint is
satisfied:

ci,j ≤ Pj . (25)

In the proposed auction, si can bid the items, that satisfy
both (22) and (25). On the other hand, i.e., if si cannot satisfy
(22) or (25), si should not submit a bid to bj , i.e., bi,j =∞.

In this paper, si will bid the actual cost to bj for a truthful
of exchange, and this bidding can be calculated as follows:

bi,j =


∞, if Econ

j ≥ Epro
i · (1− li,j),

∞, else if ci,j ≥ Pj ,
cpro
i · Econ

j /(1− li,j), otherwise.
(26)

Let zi,j be the indicator function that calculates the winning
bid. If the bid bi,j is calculated to be the winning bid, it is set
to 1, otherwise it is set to 0.

By definition, the objective of the auction is minimization
of the electricity bill. Therefore, the auctioneer will calculate
the winning bids that satisfy the minimum total bill; thus, the
following objective function can be derived:

minimize
zi,j

zi,j · bi,j (27)

subject to
∑I

i=1
zi,j ≤ 1,∀bj ∈ B (28)∑J

j=1
zi,j ≤ 1,∀si ∈ S, (29)

where (28) and (29) are the constraints for assuring that each
seller is matched to only one buyer.

In a VCG auction, payment is calculated by the auctioneer
and is different from a bid. Let pi,j be the calculated payment
for si to bj ; thus, the utility of si is formulated as the difference
between payment and cost as follows:

ui =
∑J

j=1
(pi,j − zi,jci,j) ,∀si ∈ S. (30)

C. Truthful Auction Mechanism for a Local Energy Market
The proposed auction mechanism for truthful trading con-

sists of three steps as follows:
1) Auction initiation: In this initial step, the auctioneer

informs the local energy market when the auction will
start. Then, sellers and buyers prepare to join the auction
trading. Refer to Section IV-C1.



Algorithm 2: Auction Process for Truthful Trading

1: Step 1: Local Energy Market Auction Initiation
2: bj requests the electricity demand and provides its geometric

information
3: local power exchange center broadcasts ED
4: for i = 1→ I do
5: for j = 1→ J do
6: si computes bi,j by (26)
7: end for
8: si submits the set of bids Bi

9: end for
10: Step 2: Winning Bid Calculation
11: local power exchange center calculates the winning bids of B by

the Hungarian method
12: if bi,j is selected then
13: zi,j ← 1
14: end if
15: Step 3: Payment Calculation
16: for i = 1→ I do
17: for j = 1→ J do
18: if zi,j = 1 then
19: B \ {bi,j} ← B− {bi,j}
20: local power exchange center calculates the winning bids

of B \ {bi,j} by the Hungarian method
21: if bi′,j′ is selected then
22: zi′,j′ ← 1
23: end if
24: Calculate the total cost CB\{bi,j} with zi′,j′ ;
25: Calculate pi,j with (33);
26: end if
27: end for
28: end for
29: for i = 1→ I do
30: for j = 1→ J do
31: if zi,j = 0 then
32: pi,j ← 0
33: end if
34: end for
35: end for

2) Winning bid calculation: In this step, the auctioneer cal-
culates the winning bids according to the VCG auction
policy for the submitted bids. Refer to Section IV-C2.

3) Payment calculation: In this last step, the auctioneer
determines the payments for winning bids according to
the VCG auction policy. Refer to Section IV-C3.

The above steps are explicitly separated by time and ex-
ecuted independent of each other. (i.e., the calculations of
winning bid and payment are executed after the bid submis-
sions are complete). This framework of the proposed auction
satisfies the “weak truthful” properties of a VCG auction
[19]. Moreover, each auction result is delivered individually,

resulting in an incomplete information game which provides
“strong truthfulness” in a VCG auction [19].

The details of each step are as follows. In addition, note
that the proposed entire auction process for truthful trading in
the local energy market is described in Algorithm 2.

1) Auction initiation: When each auctioneer (i.e., local
power exchange center) wishes to initiate the auction, the auc-
tioneer first informs the buyers and sellers, i.e., all prosumers
and distributed energy generators, in the local energy market.

If a prosumer wants to purchase a certain amount of electricity,
it sends the relevant information (i.e., geometric location and
amount of required electricity) to the auctioneer. Let EDj be
the request information from bj and be represented as follows:

EDj , [Econ
j ,Lp

j ]. (31)

The auctioneer collects the request information of buyers
as a set and informs both prosumers and distributed energy
generators. Let ED be denoted by the set of EDj as follows:

ED = {ED1, ED2, · · · , EDJ}. (32)

The seller, which can be a prosumer with surplus electricity
or a distributed energy generator, calculates the bid by (26) and
submits a set of bids to the auctioneer.

2) Winning bid calculation: Using the collected set of bids
B, the auctioneer determines both the winning bid and the
payment. For VCG auction matching, the seller who submitted
the lowest bidding is selected and wins the auction. Note that
the lowest bid is the winning bid. In addition, the payment for
the winning bidder is calculated based on the next lowest bid,
and it is referred to as payment calculation. For winning bid
calculation, the sellers and buyers are matched to minimize
the total cost by solving the optimization problem (27)-(29),
which is NP-hard. Therefore, this paper utilizes the winning
bid calculation with the Hungarian method. Based on this
Hungarian method, the proposed auction for truthful trading
finds zi,j in polynomial time. The Hungarian method is one
of the most widely known polynomial time methods for one-
to-one weighted matching that guarantees the minimal total
cost.

The Hungarian method is conducted in the following steps:
Step a: The minimum value is subtracted from each row

and column of the square bid matrix with size S. That is, each
row and column should have at least one value of 0.

Step b: Erase rows and columns that contain 0 as the
minimum number of lines. If all 0s are deleted with S lines,
go to Step d.

Step c: Find the minimum value in the elements that are not
erased by the lines. This minimum value is subtracted from
undeleted elements and added at the overlap of the lines. Go
to Step b.

Step d: Look for independent 0s, which has one 0 in each
row and column.

Since the Hungarian method uses a square matrix, the
following steps are required when i and j are different.

i) The auctioneer creates a bid matrix of size I x J
with B

ii) If I > J , add the columns from J + 1 to I to make
an I x I matrix.

iii) Set any positive integer Z greater than any bids for
an element of (1: I , J+1: I).

iv) After generating a matrix of size I x I , find the min-
imum total cost and matching through the Hungarian
method.

v) Subtract Z ∗ (I − (J + 1)) from the total cost and
exclude the elements matched with the J + 1 to Ith
columns.



As an example, the following bid matrix M represent the
bids.

M =


6 4 1
10 6 3
7 6 4
9 10 3

 ,
where sellers and buyers are indexed by rows and columns,
respectively.

Before the Hungarian method, M is set to M′ as follows:

M′ =


6 4 1 10000
10 6 3 10000
7 6 4 10000
9 10 3 10000

 .
Then, winning bid calculation is conducted with the Hungarian
method: 

6 4 1 10000
10 6 3 10000
7 6 4 10000
9 10 3 10000

 (Step a)→


2 1 0 3
4 1 0 1
0 0 0 0
3 5 6 1

 (Step b)→


2 1 0 3

4 1 0 1

0 0 0 0

3 5 6 1

 (Step c)→


1 0 0 2

3 0 0 0

0 0 1 1

2 4 5 0

 (Step d)→


1 0 0 2
3 0 0 0
0 0 1 1
2 4 5 0


Independent 0s are elements of the optimal matching. As

a result, the winning bids are b1,2, b2,3, and b3,1 except b4,4,
with bids of 4, 3, and 7, respectively.

3) Payment calculation: The payment for the winning bid
is calculated using the concept of opportunity cost for the
theory of the VCG auction [18]. The opportunity cost in this
scheme can be calculated by CB and CB\{bi,j}, where CB is the
sum of the winning bids as calculated by the auctioneer and
CB\{bi,j} is the minimum total cost as obtained by the winning
bids excluding the bid bi,j . That is, it is true that CB\{bi,j} > CB
when bi,j is a winning bid. On the other hand, CB\{bi,j} =
CB when bi,j is not a winning bid. Let CB − xi,jbi,j denote
the total cost (as determined by the winning bid calculation),
excluding its own bid. The opportunity cost (e.g., payment)
pi,j can be defined as the difference between CB\{bi,j} and
CB − xi,jbi,j [18]. Therefore, it can be finally expressed as
follows:

pi,j = CB\{bi,j} − (CB − zi,jbi,j). (33)

As an example, in the above situation with bid matrix M,
s1’s payment p1,2 can be calculated. CB is 4 + 3 + 7 = 14.

B \ {b1,2} is represented with the matrix as follows:
6 10000 1
10 6 3
7 6 4
9 10 3

 .
CB\{b1,2} can be calculated by the Hungarian method as

above and is 6+6+3 = 15. Thus, payment p1,2 is 15− (14−
4) = 5.

Fig. 2: Visualized results of the proposed clustering algorithm
(N = 800,M = 10,K = 5).
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Fig. 3: Number of prosumers vs. execution time.

V. PERFORMANCE EVALUATION

The fine-grained evaluations of the proposed geometric clus-
tering and truthful VCG auction algorithms were conducted,
and the results are presented in this section.

A. Performance of Geometric Clustering
To evaluate the performance of the proposed EM-based

clustering algorithm, C++ based customized simulator with the
MOSEK optimization software tool [20] has been developed.
Fig. 2 shows the visualized results of the proposed clustering
algorithm when the number of clusters (denoted by K) is
5, the number of prosumers (denoted by N ) is 800, and the
number of distributed energy generators (denoted by M ) is 10.
As shown in the figure, the proposed algorithm geometrically
classifies prosumers and distributed energy generators based
on their geometric information/distribution and determines the
appropriate locations of local power exchange centers.

To verify the computational efficiency of the proposed
clustering algorithm, the execution time is measured according
to the number of prosumers, as plotted in Fig. 3. For detailed
simulation results, this paper simulates the proposed clustering
algorithm 30 times and plots the average execution time. As
shown in the figure, the execution time increases linearly when



the number of prosumers increases. Therefore, the complexity
of the proposed clustering algorithm is linear depending on
the number of prosumers.

The execution time for K = 5,M = 10, where K is
the number of local power exchange centers (or the number
of clusters), and M is the number of distributed energy
generators is similar to the time when M becomes double,
i.e., K = 5,M = 20. Therefore, the number of distributed
energy generators M cannot significantly affect the execution
time of the proposed algorithm. On the other hand, the number
of local power exchange centers K significantly affects the
execution time, as shown in the results with K = 10,M = 10
in Fig. 3. This is due to the increase in the number of control
variables as K increases.

B. Performance of a Truthful VCG Auction

The performance of the proposed auction scheme was
verified by showing that our proposed algorithm satisfies
the following two criteria: (i) computational efficiency via
measurement of execution time and (ii) truthfulness.

The proposed auction scheme utilizes the Hungarian method
to obtain the sum of minimum costs, as it is a well-known
matching method and guarantees polynomial time operation.
To demonstrate the time efficiency of the scheme with the
Hungarian method, the execution time of this scheme is
compared with the execution time of an auction scheme that
uses a brute force method instead of the Hungarian method.
The execution time comparison results are summarized in
Table I. When the auction scheme uses a brute force method,
the number of possible combinations exponentially increases
as the number of buyers or sellers increases. This leads to sharp
increases in execution time and makes it difficult to implement
for real-time applications. When conducting computational
simulations with brute force method for 20 sellers and 10
buyers, the execution time becomes too long to measure even
in high-performance computing platforms. In addition, the
execution time is about 2 seconds when the auction scheme
utilizes the Hungarian method even if the number of sellers
is 100 and the number of buyers is 80. Therefore, the auction
scheme with the Hungarian method is efficient enough to be
applied to real-world micro grid systems. Lastly, as shown in
Table I, the auction with the Hungarian method is 769 times
faster than the auction with the brute force method when the
numbers of sellers and buyers are 15 and 5, respectively.

As mentioned earlier, when a seller submits bids where
bi,j = ci,j , the seller can be considered as a truthful seller.
In the auction, the winning bids are calculated along with
the minimum total cost. This can result in the situation that
dishonest participants submit bids lower than the true cost; this
can be represented using the untrue ratio introduced in [18].
For example, a case in which a seller with an untrue ratio
less than 1 (e.g., bi,j

ci,j
< 1) means that the submitted bids

are smaller than the true cost. This seller can be treated as
a dishonest participant and can reduce system stability and
trust. However, this dishonest participant cannot guarantee its
maximum utility. On the other hand, we can consider a case
in which a seller can submit a bid with an untrue ratio greater
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Fig. 4: Truthfulness evaluation with difference between utili-
ties.

than 1 (e.g., bi,j
ci,j

> 1). This indicates that the seller submits a
bid greater than the true cost. There are two situations in this
case: one in which the untrue bid is selected as the winning
bid, and another where it is not. Even if the untrue bid is
selected as the winning bid, the seller’s utility is the same as
when it submits a true bid. In addition, the VCG-based auction
calculates the winning bid with the minimum total cost; thus,
a bigger bid is disadvantageous. The ineffectiveness of an
untrue bid in a VCG-based auction is mathematically proven
in [18]. It is assumed that all participants want to maximize
their utility. The truthfulness can be guaranteed by showing
that the utilities are maximized when they are honest.

The simulation was performed as follows. There are 100
sellers and 80 buyers that want to participate in the auction.
Each buyer’s power demand is randomly set between 10
and 100, each seller’s power generation cost is randomly set
between 500 and 1000, and the power loss between the buyer
and seller is set between 0 and 1. A certain seller is set to be
unfaithful, and it submits a bid with an untrue ratio between
0.1 and 2.0. As shown in Fig. 4, as the untrue ratio decreases
(e.g., 0.9-0.1), the utility difference increases. If the seller
bids with an untrue ratio larger than 1 (e.g., 1.1-2.0), this is
unreasonable, and it will not be considered. In addition, the
probability of being selected as the winning bid is lowered
by increasing the bid. Therefore, the seller’s utility will be
maximized only when it bids truthfully.

In auction mechanisms, all sellers are fair when they are
honest. In order to formulate the fairness, Jain s fairness index
is used and is formulated as follows [21]:

J (u1, u2, · · · , uI) =

(∑I
i=1 ui

)2
I
∑I

i=1 u
2
i

where I denotes the number of sellers and ui denotes the
number of times the ith seller is matched. The index ranges
from 0 to 1 and is maximized when all sellers are matched
the same number of times. When 15 sellers bid and match to
10 buyers, only unfaithful seller s5 submits bids with untrue
ratios; the auction is conducted 100 times at each untrue ratio.
In Fig. 5, the highest result close to 1 when the untrue ratio is



TABLE I: Auction Execution Times with the Brute Force Method and the Hungarian Method

Brute Force Method Hungarian Method

# sellers # buyers Execution time (sec) # sellers # buyers Execution time (sec)

10 5 0.1728 10 8 0.0096
15 5 10.2340 15 5 0.0133
10 8 12.5485 100 80 2.0135

Fig. 5: Jain’s fairness index.

1, which means that all sellers bid honestly. This indicates that
all sellers are awarded a similar number of times. If a seller
who wants to monopolize the power selling with lower bids,
it can be monopolized. However, it is clear that this unfaithful
behavior can be prevented because it will result in lowering
the utility of cheating seller.

VI. CONCLUDING REMARKS

In this paper, optimization formulation and corresponding
polynomial time algorithms were proposed for geometric
clustering and truthful auction in local energy markets. For
clustering in a local energy market, the optimization problem
considers the fairness of the distributed energy generator and
distribution. To solve the clustering optimization problem, this
paper proposes an EM-based geometric unsupervised learning
algorithm. Through intensive simulations of clustering using
the MOSEK optimization software tool, this paper shows that
the proposed algorithm can sufficiently cluster a local energy
market. In addition, this paper proposes a truthful mechanism
based on the VCG auction to calculate the price that effectively
guarantees the lowest cost in the local energy market. The
additional data-intensive performance evaluation of the auction
mechanism shows that the proposed algorithm is optimal in
terms of network stability when all deployed elements are
truthful.

In our future research, it is important to design and optimize
the local energy trading systems under the consideration of the
electricity generation cost. In addition, the proposed auction

can be expanded to double auction and item can be modeled
as set of electricity.

APPENDIX

Theorem 1: The proposed auction is individual rational for
each seller.

Proof 1: The auction is individual rational when all agents
have positive utilities for the bid [18], [22]. In the proposed
auction, the utility of the seller can be determined separately
in two cases: i.e., 1) a bid is selected or 2) all bids are not
selected. Suppose that the seller i bids the winning bid to
buyer j. In this case, pi,j ≥ bi,j according to (34). Therefore,
the utility is positive (ui ≥ 0) according to (30). On the
other hand, let us suppose that all bids of the seller i are
not selected. Since all bids are not selected,

∑J
j=1 pi′,j = 0

and
∑J

j=1 zi′,j = 0. Therefore, the utility can be calculated
as follows:

ui′ =
∑J

j=1
(pi′,j − zi′,jci′,j)

=
∑J

j=1
(0− 0 · ci′,j) = 0.

Consequently, ui ≥ 0,∀si ∈ S is satisfied in all cases.
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