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Abstract—In this work, we study energy-efficient online fed-
erated learning. First, we analyzed the convergence performance
of device selection in dynamic and non-stationary conditions,
deriving the upper bound of the convergence rate. Building
on this, we formulated an optimization problem that minimizes
energy consumption while ensuring convergence and meeting la-
tency constraints. Second, we developed an online allocation and
scheduling-based iterative strategy (OASIS). Here, we designed
a combinatorial upper-confidence-bound-based device scheduling
algorithm with a newly designed reward function. We also de-
rived a Lambert function-based power allocation to the scheduled
devices in closed form. We performed a dynamic regret analysis,
which reveals that the proposed algorithm effectively adapts to
dynamic environments and maintains near-optimal decisions over
time. It also demonstrates that the proposed algorithm achieves
sublinear regret in a slowly changing dynamic environment and
optimal regret in a static environment. Experimental results
show that the proposed OASIS achieves faster convergence and
provides significantly lower energy consumption than existing
conventional baseline strategies. We also confirmed that the
performance gain increases as the target accuracy level becomes
higher. These results validate the energy efficiency and robustness
of the proposed approach in realistic and time-varying federated
learning environments.

Index Terms—Data Distribution, Device Scheduling, Energy
Efficiency, Multi-Armed Bandit, Online Federated Learning,
Regret Analysis.

I. INTRODUCTION

EDERATED learning (FL) has emerged as a promising

paradigm for decentralized machine learning, enabling
edge devices to collaboratively train a global model while
preserving local data privacy [1]. By performing local updates
on devices and only transmitting model parameters, FL. has
gained significant attention as a method for training a global
model across distributed devices without sharing raw data.

However, most traditional FL. frameworks are implemented
in environments where each device’s dataset remains fixed
throughout the process and has a static data distribution. Such
environments cannot capture the dynamic data distribution of
real-world data over time due to device behavior, streaming
input, or environmental changes.

On the other hand, online learning (OL) is a framework in
which learners make decisions sequentially over time, receive
feedback after each decision, and adjust their strategies accord-
ingly. A key performance metric in OL is regret, which mea-
sures how much worse the learner performs compared to an
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ideal benchmark, often the best fixed decision in hindsight. As
real-world conditions shift unpredictably, OL approaches have
proven successful in maintaining low regret in non-stationary
environments [2]. By minimizing regret, OL algorithms ensure
that cumulative performance remains competitive even in non-
stationary or adversarial environments, making this paradigm
well-suited for scenarios in which data and system conditions
change over time.

Such an OL paradigm naturally fits FL in dynamic data
distribution, as decisions (e.g., which devices to participate,
how much power to allocate) must be updated sequentially at
each communication round, without full knowledge of future
data arrivals or distribution changes. Accordingly, the concept
of online FLL (OFL) has recently gained attention [3]—[5]. OFL
integrates the principles of OL into FL, enabling models to be
updated in real time as data is generated on each device.

Although OFL has attracted considerable attention recently,
several new issues arise when transitioning from traditional
FL to OFL, such as determining which device to involve as
participants when the data distribution changes or balancing
FL convergence rate and network efficiency when specific de-
vices have large datasets but poor channel conditions. Even if
selecting devices with more data and poor channel conditions
or limited transmit power improves FL convergence, it may
reduce energy efficiency. Conversely, selecting devices with
less data and good channel conditions may boost network
efficiency, but could hinder learning performance.

Since OFL faces these problems, we propose a novel
OFL framework in this work that jointly optimizes device
scheduling and power allocation under a dynamic data distri-
bution environment. We observe that scheduling which devices
participate in each round, given that their data sizes change
over time, naturally forms an online decision scenario. The
server must explore updated information while exploiting
known high-quality participants (e.g., devices with larger
datasets). The main novelty of this paper is the integration
of device scheduling and power allocation principles into a
single framework, enabling a sublinear-regret solution for FL
under dynamic data conditions.

A. Related Work

1) Resource-Constrained FL: First, early studies primarily
focused on selecting a subset of devices to accommodate
limited communication and computation budgets. Wang et
al. [6] proposed an intelligent device sampling framework that
jointly accounts for heterogeneous resources and overlapping
data. However, they assume fixed local datasets and solve



the scheduling problem using an offline-trained model. Chen
et al. [7] developed a predictive online control scheme for
hierarchical FL, using mixed-integer programming with a deep
reinforcement learning policy to minimize long-term cost. This
approach is adaptive, but it relies on accurate predictions and
does not explicitly model the changing data distributions. Su
et al. [8] proposed an online device scheduling algorithm
under budget constraints using bandit theory. Although regret-
minimizing, it abstracts communication costs and does not
consider physical-layer dynamics such as power allocation.
Moreover, Deressa and Hasan [9] introduced a multi-armed
bandit (MAB)-based device scheduling algorithm that is robust
against poisoning attacks, without requiring the modeling
of communication constraints or power control. This study
confirms the importance of device selection but leaves open
the question of how to respond to both channel variation and
changing data simultaneously.

Second, several works have begun to consider device
scheduling and power allocation jointly. Xu et al. [10] pro-
posed a Lyapunov-based algorithm for online joint scheduling
and power control, considering non-independent and identi-
cally distributed (i.i.d.) and time-varying data. This method
handled dynamic environments but focused on long-term time-
average performance and did not provide regret bounds. Per-
azzone et al. [11] derived convergence bounds for FL under
stochastic scheduling and proposed a scheduling-power alloca-
tion policy to minimize model error and delay. Their approach
improved communication efficiency but lacked explicit online
regret minimization.

Third, a separate line of work focused on dynamic data
distributions. Jin et al. [12] modeled stochastic data arrivals at
the edge device, so each device’s local dataset grew over time.
They developed a budget-aware controller that dynamically
triggered a training round only when growth exceeded a
specified threshold, demonstrating faster convergence than
fixed-period schemes under an energy cap. While many works
focused on growing data, Liu et al. [13] addressed the
opposite form of dynamism: data deletion after training.
Their framework efficiently removed a device’s influence by
replaying cached updates instead of costly full retraining, thus
keeping the global model consistent in a shrinking dataset.
Furthermore, Babendererde er al. [14] studied time-varying
data distributions. They simulated gradual changes in input
data at the device level (i.e., drift), followed by a sudden
change in the relationship between inputs and labels across
all devices (i.e., a concept shift). Their results showed that
when past data is only kept for a short time, models suffer
more from catastrophic forgetting, highlighting the need for
learning methods that can adapt to short-lived and changing
data patterns. In addition, Hu et al. [15] proposed scheduling
based on data importance under dynamic streaming scenarios,
using Lyapunov optimization. However, their model assumed
predefined data variation metrics and did not include power
allocation.

2) Online Federated Learning: Recently, some works have
focused on OFL. Chen et al. [16] proposed an asynchronous
OFL framework designed for edge devices with streaming
non-i.i.d. data. Unlike traditional FL. methods that assume

each device’s dataset is fixed, their system allowed devices
to continuously receive new samples and asynchronously
upload local models to the server after training. This setting
reflects realistic conditions where data accumulates over time
(e.g., sensor logs) and must accommodate partial or delayed
uploads while still achieving effective convergence in the
server. Thus, they demonstrated that leveraging OL principles
and asynchronous communication protocols can significantly
improve FL performance in truly dynamic data environments.
Damaskinos et al. [5] introduced an OFL framework that
addresses issues of stale and fresh updates from devices in a
dynamic data setting. Since different devices may gather new
data at varying rates and upload it on different schedules, some
model contributions become stale due to varying transmission
times. They employed a staleness-awareness mechanism and
performance prediction to weigh device updates more effec-
tively, ensuring that recent and relevant data receive greater
influence in the aggregated model. In experiments simulat-
ing streaming asynchronous FL deployments, this approach
showed improved adaptation and convergence. Ganguly et
al. [17] investigated a non-stationary data scenario from
an OFL perspective, emphasizing communication efficiency.
They noted that devices may continue to gather new data, caus-
ing local distributions to shift across rounds. To address this,
the proposed method adjusted the selection of participating
devices and the frequency of local updates, thereby minimizing
unnecessary transmissions while maintaining model accuracy.
Their experiments demonstrated that carefully managing de-
vice participation and update intervals mitigates the adverse
effects of data drift and limited bandwidth, underscoring the
necessity for an OFL approach in practical and dynamic
environments.

B. Motivation, Contribution, and Organization

There is active research on OFL. However, research on
energy-efficient OFL under unpredictable data variations is
still in its infancy. The main contributions of this work can
be summarized as follows.

o First, we analyzed the relationship between the conver-
gence rate and device scheduling in dynamic and non-
stationary conditions, and derived the upper bound of the
convergence rate. Based on this analysis, we designed a
new objective function that promotes energy efficiency
while guaranteeing convergence. Then we formulated an
OFL optimization problem that jointly considers both
device scheduling and power allocation simultaneously.

e Second, as a solution, we developed an online allocation
and scheduling-based iterative strategy (OASIS). Here,
we propose a combinatorial upper-confidence-bound-
based device scheduling approach that leverages a newly
designed reward function, which considers transmission
energy, local data size, and the average number of selec-
tions. Then, we also derived a Lambert function-based
power allocation for the scheduled devices in closed form.

o Lastly, we analyzed the dynamic regret and confirmed
that the proposed algorithm provides a sublinear regret
under slowly changing optimal paths. Through extensive
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Fig. 1. System model.

simulations, we confirmed that the proposed control sig-
nificantly outperforms the conventional baseline approach
[18] in terms of energy efficiency. The performance gain
of the proposed control becomes more pronounced as the
target learning level increases.

The remainder of the work is organized as follows. Sec-
tion IT describes the system model, and Section III-A derives
theoretical convergence bounds under dynamic data distri-
bution and partially participating devices, illustrating how
the online device scheduling and power allocation scheme
influences both the rate and stability of model convergence.
Next, Section IV details the proposed scheme, and Section V
presents the theoretical analysis of dynamic regret. Finally, the
performance evaluation is provided in Section VI, followed by
a conclusion in Section VIIL

II. SYSTEM MODEL

In this section, we describe the system model, which is
illustrated in Fig. 1. For the wireless FL, we consider a central
server and a set of devices denoted as Z = {1,2,...,1}.
Both the server and each device ¢ are equipped with a single
antenna.

A. Data Model

In each round ¢ € [T, each device i € Z possesses a
local dataset D}, which may change over time due to the
online nature of data generation and deletion. The overall local
dataset D, is defined as

I
uzum. (1)
=1

The size of device i’s local dataset is denoted as D} = |Di| and
D! > 0. By considering data generation and deletion, which

is the dynamic nature of online environments, the change in
local dataset size is modeled as

D} =Dj_, + pi, )

where p! represents the net change in the number of samples
for device ¢, which is defined as

P = pZi, (3)
where p € Z7 represents changeable size, and Z} is
Z; €{=1,0,1}, P(Zi =2)= (P}, pp,p"), 4

where p’., p, and p’_ are the probabilities of dataset growth,
retention, and reduction, respectively. These probabilities sat-
isfy the normalization condition, which is defined as

Py +po+pl =1 &)
Remark 1. In realistic online FL settings, only three fun-
damental types of dataset evolution can occur on a device
between two consecutive communication rounds: net growth,
stasis, or net reduction. The model in Egs. (4)—(5) provides the
simplest abstraction of these possibilities, while the parameter
pi = pZ! enables changes at the granularity of a mini-batch
of newly arriving or expiring samples.

Our convergence bound (Eq. (24)) and dynamic regret
bound (Eq. (46)) rely on Assumption 4, which requires the
expected relative dataset variation to remain bounded. The
proposed three-valued model naturally satisfies this condition
and supports a clean theoretical analysis without losing the
essential characteristics of online data evolution.

Although we adopt a three-valued random variable for
clarity and analytical tractability, the proposed framework is
not restricted to this model. More complex data dynamics can
be incorporated as long as Assumption 4 is satisfied. The
theoretical developments—including the gradient estimation
error bound, convergence analysis, and dynamic regret—
remain valid under these generalizations, because they depend
only on the aggregate variation condition in Assumption 4
rather than on the specific form of Z;.

B. Learning Model

In round ¢, each device 7 aims to minimize its local loss
function F"(w;) using its local dataset D} defined as

Z f(Wt7 X, y)? (6)

, 1
Fiw) = 5
t (x,y)eD}

where w; € RM is the parameter vector of the global model,
and f(wy;x,y) is the sample-wise loss function with the
feature vector x and the corresponding label y. The global
loss function F'(wy;) is defined by aggregating the local losses
of all devices as

I
1 i i

MM:E;QFM) (7)

where D; = Y.L, Di, and Di/D, denotes the device-wise

aggregation weight. This weight ensures that each device’s
contribution to the global model is proportional to the size



of its local dataset, promoting fairness and efficiency in the
learning process.

The objective of the OFL system is to collaboratively
minimize (7), leveraging the local computational resources of
devices while preserving data privacy. To achieve this, each
device ¢ performs online gradient descent (OGD) to compute
the local gradient g! as

p 1
g=7; >, Viwixy), ®)

t i
(x,y)€D;

where V f(w; x,y) denotes the gradient of f(wy;x,y). Each
device then updates its local model as

Wi, =W —ngl 9)

where 7 is the learning rate. This process enables each device
to refine the global model using its local data.

In this work, the server performs device scheduling for each
round. Here, we assume that the server has full information
on the local dataset size and CSI of all devices. Subsequently,
the server aggregates the updated local models from the sched-
uled devices to update the global model. This aggregation is
performed using a weighted averaging approach similar to the
Federated Averaging algorithm [1] as

I

ki D;
Wip1 = Z = i

where k! indicates whether device i is scheduled as a partici-
pant in round ¢. Specifically, k! = 1 if device i is selected and
in round ¢, k{ = 0, otherwise. We assume that Zle ki >1to
ensure model convergence. Finally, the server broadcasts this
global model to all devices.

Wi (10)

C. Communication and Computation Model

We employ time division multiple access (TDMA), which
divides the available communication time into orthogonal
time slots, for uplink transmission in this federated learning,
offering collision-free communication, latency predictability,
and energy efficiency [19], [20]. It is particularly suitable for
scenarios involving IoT devices, energy-constrained systems,
or latency-sensitive applications such as industrial IoT or
autonomous vehicles [21].

The wireless channel between device ¢ and the server experi-
ences Rayleigh fading, characterized by a channel coefficient
hi. We assume that the channel state information (CSI) is
perfectly estimated and known to both device ¢ and the server.
This CSI remains constant during each round ¢ but may vary
between rounds.

In each round ¢, each selected device ¢ transmits its updated
model w! 41 to the server after local training. The required
number of bits for transmission, B, is given by

B=nx M, (11)

where n is the number of bits used for floating-point precision
(e.g., n = 32 for single-precision representation) and M is the
number of model parameters. This represents the total size
of the model update that the device needs to send back to

the server. The latency 7+, defined as the required time for

transmission, is
B

i
TTx,t — R’
t

(12)

where Ri is the transmission rate, defined by the Shannon
capacity formula as

R} = W log, (1+ I;/J\;O ) ,

13)
where W is the bandwidth, P} is the transmit power, |hi|?
denotes the channel gain, and Ny represents the noise power
spectral density. Equation (12) and (13) collectively show
that the transmit power P, directly or indirectly affects the
latency and transmission rate. This highlights the necessity of
determining optimal P} to ensure energy-efficient OFL in a
latency-constrained environment.

D. Energy Consumption Model

Based on the communication latency in (12), the energy
consumption Efm for transmission is defined as
2
Bh (P)) = L2 = Piri.
t
In addition to wireless transmission, local training itself intro-
duces energy consumption. To model these costs, we define
four device-specific parameters: w’ denotes the number of
CPU cycles required to process one data sample, x* represents
the CPU frequency of device i in hertz, o* is an energy-per-
cycle coefficient capturing the device’s hardware efficiency,
and €’ is the number of local epochs executed by device i in
round ¢. Following a dynamic-voltage-and-frequency-scaling
(DVES) framework in [22], the energy consumption Eéomp,t
for computation is defined as

(14)

Elomps = o' w' e Di (x')°. (15)

Then, the total energy consumption by device ¢ in round ¢ is
given by o _ _ _
E{(P) = E¢omp,t + Byt (F7)- (16)
III. CONVERGENCE ANALYSIS AND PROBLEM
FORMULATION

In this section, we analyze the convergence behavior of
the OFL system with device scheduling and formulate our
problem.

A. Convergence Analysis with Device Scheduling

To facilitate the convergence analysis, we make the follow-
ing assumptions regarding the loss function, gradient, and data
variation.

Assumption 1. (L-smoothness): The global loss function
F(w) is L-smooth, ensuring that its gradient does not change
abruptly. Specifically, for all w,w’ € RM,

IVE(w) - VEW) 2 < Llw - W2, (17)



which is essential for controlling the step sizes during the
optimization process. This assumption plays a critical role in
deriving upper bounds for the convergence rate.

Assumption 2. (Sample-wise Gradient Bounded): For any
sample, the sample-wise gradient norm, which is the norm
of the stochastic gradient, is upper bounded by a function of
the ideal global gradient norm. That is, for all samples (x,y)
and for all w € RM |

IV f(wix,y)[3 < ¢+ ¢ VE(wW)|]3,

where ¢ > 0 represents the intrinsic variance of the device-
wise gradients, and ¢y > 1 quantifies the extent to which the
global gradient norm influences the stochastic gradient [23],
[24].

(18)

Assumption 3. (Unbiased Gradient Estimator): The device
scheduling policy ensures that the global gradient g; aggre-
gated through weighted averaging is an unbiased estimator of
the ideal global gradient V F(w;) [25]. Formally,

This assumption guarantees that the expected value of g
aligns with VF(w;). That is, on average, the optimization
trajectory follows the direction of VF(w;) and results in
stable and reliable convergence.

Assumption 4. (Bounded Relative Data Variation): The ex-
pected relative variation in local dataset size is upper bounded
by a constant 6 € (0,1). Formally,

t .
E Z DJ <45, Vit

i=1

(20)

This assumption ensures that the change p! in local dataset size
during round ¢ remains small relative to the dataset size D;.
In addition, this prevents large fluctuations in the local dataset
and thereby contributes to stable convergence analysis.

Given the above assumptions, we derive an explicit expres-
sion of the expected convergence bound of the OFL system.
This explicitly incorporates the device scheduling variable k!
and local dataset size D?.

Lemma 1. An upper bound on the norm of the global gradient
estimation error e; is given by
. 1)

>, D]

Eflec|?] < I (

> j=1 ki Dy
x (0 +YE[[VE(wy)[?]).
Proof: See Appendix A. ]
Lemma 1 characterizes how the device scheduling in each
round ¢ affects the deviation of the estimated global gradient
from the ideal global gradient. If all devices participate,
E[||e¢]|3] = 0, meaning there is no estlmatlon error. In contrast,
if only a subset of devices participates, Z k:7D7 decreases

ey

. I j .
while > j=1 Dy remains unchanged, causing the estimation
error to increase.

Theorem 1. Under Assumptions 1-4 and Lemma 1, the
convergence rate with device scheduling is given by

—ZE |VE(w,)|] <

2(1E[F( )] —
T(2—Ln(1—IyDy))

)
T IénYl_ (1~ K)D]
2T (1-IyDy)

Proof: See Appendix B. [ ]
From Theorem 1, we observe the following. First, the upper
bound in (22) monotonically decreases as the maximum round
T increases, indicating that all terms can converge to zero
when T is sufficiently large. Second, as stated in Lemma 1, the
second term of the upper bound in (22) decreases in proportion
to the cumulative data size of the scheduled devices. This
implies that utilizing a larger amount of local training data
can accelerate the convergence rate, although it may also lead
to higher energy consumption.

F*)

+ - (22)

B. Problem Formulation

In this work, motivated by the convergence bound (22)
in Theorem 1, we construct an objective as a per-round
penalty function that captures both convergence and energy
consumption:

I
(1- )Y KEI(F),
=1 (23)

I
ur(ke, Py) =y (1—kj)Dj +

i=1

which is controlled by device scheduling k; := [k}, ..., k]|
and power allocation P, := [P}, ..., Pf]. That is, we aim to
solve the joint device scheduling and power allocation problem
in OFL, targeting both fast convergence and energy efficiency.
The first term Y., (1 — k{)D! controls the convergence
speed of the proposed algorithm, which belongs to the second
term in the upper bound (22): reducing this quantity in each
round tightens the theoretical bound on the average gradient
norm. The second term S.'_, kiEi(P}) represents the total
energy consumption of the scheduled devices. The weight
factor @ € [0,1] balances the impact of convergence and
energy consumption: a larger o places more emphasis on faster
convergence, whereas a smaller « prioritizes saving energy.

Based on this objective, we define the joint minimization
problem as:

P1: lgllpnt (o (kta Pt) (243)
st. 0<P/<P... Vi (24b)
(24c¢)

Z kirh <.
i=1

The constraint (24b) ensures that the transmit power of each
device i does not exceed its maximum transmit power Pi_
and constraint (24c) ensures that the total uploading latency
by the selected devices remains below a threshold 7 > 0. In
the subsequent section, we find the set of participating devices

and the transmit power that minimizes the objective function.



IV. PROPOSED SOLUTION

Since the discrete variables k; and continuous variables
P, are coupled, problem P1 is a mixed-integer programming
problem. Solving this joint optimization problem is non-
convex and intractable. Therefore, we find its solution using
alternate optimization that iterates the process of determining
the participating device set k; and then allocating the transmit
power P;. In the following, ¢ denotes an iteration index for
the alternative optimization framework. For each round ¢, the
proposed algorithm takes ¢,,,,, number of inner loops to find
the solution.

A. Device Scheduling

Under fixed Py, minimizing u;(k;, P;) in (23) over k; is
equivalent to maximizing

I
> ki (aD; - (1
i=1

This expression shows that scheduling devices with higher
D' and lower E!(Pf). This device scheduling problem can
be equivalently formulated as a combinatorial multi-armed
bandit (CMAB) problem, where we introduce a device-wise
score si. To solve it, we adopt the combinatorial upper
confidence bound (CUCB) algorithm, which naturally balances
exploration and exploitation [26], [27].

We first define a scheduled device set Ky (¢) = {i € Z | ki =
1} satisfying the latency constraint (24c¢). In each iteration
¢ € [1,0max] at each round ¢, the problem P2 is formulated
as:

a)E}(P)) . (25)

I
PL o, 2RO (26a)

I
S k@T(-1) <, (26b)

=1

where 7/ (¢ — 1) are calculated as
: B

TT(l—1)= @n

W log, ( A Gl U 1)”“'2) ’
and 7/(0) is initialized using P}(0) := P _.. In the objective
function, si(¢) denotes the CUCB score, which is defined by
augmenting the empirical means with the exploration bonuses
as
) , 3lnt

HOERHY — 28
St( ) Tt( )+K‘ 2”%(6)7 ( )
where x > 0 is a tunable exploration coefficient that controls
the trade-off between exploration and exploitation [28]. A
higher x encourages the selection of less frequently chosen
devices by increasing the exploration bonus, while a lower &
favors devices with higher empirical mean rewards, thereby
promoting exploitation. In addition, n}(¢), which is the total
count that device 7 has been selected up to round ¢, is defined

as
t—1

ni(f) =1+ Z kS + Lickc,(e—1),
j=1

(29)

Algorithm 1 CUCB-Based Device Scheduling

1: Input: 7, &, £, Z, Py (£ — 1), {7} (¢ — 1) }ier.
2: Output: K;(¢).

3. Initialize /C;(¢) < {@}, B < 1, c(¥).

4: while 5 < I and (26b) is satisfied do

s: Append cg to ICi(£).

6: p=p+1

7: end while

8:

Return K (¢).

where the first term of on the RHS aims to prevent n}(¢) = 0
(i.e., avoiding division by zero in the CUCB score) [26], and
Tiexc,(e—1) is an indicator function. Therefore, based on (29),
the empirical mean reward 7:(¢) in (28) is defined as

Sty + sy x ri(0)
nt(ﬂ) ’

where 1~ is the indicator function, and r%(¢) is the device-
wise partial reward defined as

(30)

i(l) =

) —(1—a)E{(P}(£—-1)), i€K(—1),
i = {TA-OBEEE-D), ek,
~Dr otherwise.

The reward is designed with a double disincentive: 1) se-

lected devices are penalized in proportion to their energy
consumption, and 2) unselected devices are penalized by the
inverse of their dataset size. This reward design encourages
devices with large local datasets for unselected devices or
small consumption energy for selected devices to receive
smaller penalties, thereby increasing their chances of being
selected in subsequent rounds.

Using (28), the server (i.e., the scheduler) computes
{s4(¢)}iez, and derived c(£) = [cy, . .., cr] as the permutation
of indices that sorts {si(f)}icr in descending order, i.e.,
sit(l) > s2(0) > ... > s{"(f). The server sequentially
includes the device i with larger s&(¢) from c() into K;(¢) as
long as the latency constraint (26b) is satisfied. Consequently,
k;(¥) is determined through /C;(¢). The proposed solution is
summarized in Algorithm 1.

B. Transmit Power Allocation

For the scheduled devices, we allocate the transmit power
P.(¢). For this, the power allocation problem of P1 corre-
sponds to the follows:

mm
P.(f)

Z KiEN (Pl

i=1

s.t. (24b), (24¢).

(32)

In (32), the energy consumption of device i at /-th iteration
in round t, E}(P}(()), is

EtZ(Ptl(é)) = Eéomp,t + E%‘x,t(é)v
= Eéomp,t + Ptl(g)’rtl(e)

Here, the computation energy Eéomw depends on local-
training hyperparameters e’ and hardware parameters w*, x°,

(33)



and o, but it is independent of the transmit power. Hence, for
a fixed schedule k; and fixed local-training settings, the term
Eéomp,t is constant with respect to P;(¢) and can be dropped
from (33) without affecting the minimization. Therefore, P3

can be equivalently reduced to P3-1:
P3-1: min

min gk HAGIAU

st (24b), (24c).

(34)

Here, the objective function is a convex function, and (24b)
and (24c¢) give convex sets so that the problem P3-1 is a convex
problem; this is formally stated in Property 2 and proved in
Property 3.

To solve this problem, we introduce dual variables A >
0, /\3 > 0, and A3 > 0, and derive Lagrangian function as
follows:

LP (E) A1, A2, Az)

_Zkl WAGIAL
I

= E(OXNPI(0) + A3 (Z ki (€)7f (€) — T> ., (39)

=1

)+ Zkl WN(PE(0) — PLL)

where A\; = [A}, ..., M]and Ay = [AL, ..., A] are associated
with power constraint (24b), and A3 is associated with latency
constraint (24c¢). Then, by solving this dual problem with KKT
conditions [29], we derive Theorem 2.

Theorem 2. The device-wise transmit power that minimizes
(35) is derived as

0, Al =0, >0,
. 1 IM0)) ) )
PiL) = — |:fi — 1] , A=A =0, (36)
* 7 [WTi(0)/e) O
Pl AL >0,) =0,
where i = |hi|2/W Ny, Ti(€) = vixski(¢) — 1, and W(-)
denotes the Lambert-W function.
Proof: See Appendix C. ]

Using Theorem 2, in each iteration ¢ at each round ¢, the
server computes transmit power P} (¢) and latency 7/ (¢) for
all devices, which are utilized in the next (¢ 4 1)-th iteration
at round t.

C. Alternative Optimization

The proposed alternative optimization strategy, termed the
online allocation and scheduling-based iterative strategy (OA-
SIS), runs the above k; and P, optimizations iteratively until
the maximum iteration ¢, is reached or the convergence
threshold ¢ is satisfied. Thus, if the termination condition
is met at specific iteration ¢*, the proposed OASIS sets
k. (¢*), P.(¢*), and {ri(¢*)},ez as ki, Py, and {r}}icz,
respectively. The pseudo-code of the proposed OASIS method,
which solves P1, is summarized in Algorithm 2, where
us(ke(€), P¢(£)) is simply expressed as u:(£). On the other
hand, the number of iterations ¢ on line 9 of Algorithm 2 is
as follows:

Algorithm 2 Proposed OASIS Method

1: Input: n, M, W, &, a, 7, ¢, Z, {D:}iez, {7i}ier
2: Output: ky, Py, {ri};cr.

3: Initialize: £ < 0, u:(0) < 400, P1(0), {7/(0)}iez.
4: Loop:

5: {0+ 1.

6:  Derive k;(¢) by Algorithm 1.

7. Derive P(¢) and {7} ()};cz by Theorem 2.

8:  Derive u;(£) by k¢(¢) and P ().

9: Until ¢, which satisfies |us(£) — us(£ — 1)] <.

10: ke, Py, {ritiez < kt(g)v P.(0),{r;(0)}iez-

11: Return ky, Py, {ri}icz.

Property 1. (Inner-iteration convergence) Let {:(e) denote
the minimal number of iterations required to satisfy the
ur(f) —u (€ — 1)| < e
There exist constants Cy, Co > 0, such that

1
Et(e) S Cl + CQ 10g(€> s

(37)

where C7 = 2 + Mog 2 and Cy = “0;5‘ in arbitrary
constant = € (0, 1).
Proof: See Appendix D. [ ]

Each iteration of the proposed OASIS algorithm consists of
two main steps: CUCB-based device scheduling and Lambert-
W function-based power allocation. In the worst case, the
server computes the upper-confidence-bound indices for all [
devices, which incurs a time complexity of O(IlogI). The
subsequent power allocation step requires solving a closed-
form expression for each selected device and therefore adds
only an additional O(I) computational cost. Then, by Prop-
erty 1, the per-global-round complexity becomes

O (log(1/e) (IlogI+ 1)),
which simplifies to

O (log(1/e) I'logI) . (38)

Based on these results, the proposed OASIS algorithm is
computationally efficient.

V. DYNAMIC REGRET ANALYSIS
A. Definition of Dynamic Regret

The dynamic regret is defined as the cumulative difference
between the cost incurred by the algorithm and the optimal
cost at each round:

T I
Regr = | > (wlki, P) — (k™ P)] - (39)
t=1 =1
T
=3 [u(ke, Py) — ug (K7, P, (40)
t=1
where ki := [kI"*,... kl"*] and P} := [P"*,..., Pl"] are

the optimal solution of u; at round ¢.



Assumption 5. (Lipschitz-like bounded in wu;): Each cost
function u;(k¢, Pt) is L-Lipschitz-like bounded in every pair
of decision variables. That is, there exists L > 0 such that for

any two feasible decisions (k;, P;) and (k},P}),
Jur (ke, Pr) — ui(ky, Py)| < Ll (ke, Pr) = (K, P2, (41)

This ensures that no single step change in decisions can cause
an arbitrarily large change in the cost function.

Property 2. (Strong Convexity of Energy Function) For each
device i, the energy function E} is u-strongly convex on the

interval P} € [P, . anax] with Pi, > 0. That is,
d’E ;
0, VP, 42
d(P’)Q Z = ' “42)
Proof: See Appendix E. [ |

Property 3. (Mixed-integer Convexity) For each round t,
the dynamic regret in (39) can be classified into four cases

according to each value of k! and k,* as follows:
\ kP* =0 kP* =1
ki=0 0 aDi — (1—a)EX*
ki=1| Q1-a)BE — aDi (1-a)(E —E}™)

For any k; and ki’*, the dynamic regret in (40) is convex with
respect to Py by Property 2. That is, (40) satisfies mixed-
integer convexity [30].

Definition 1. (Path-Length Vi and Regret) We define the
optimal decision sequence as having bounded cumulative
variation. Using an optimal solution (k},P;) for u; at round
t, the path-length V1 over T' rounds is defined as

Vr = ZH ki, P;) —

which sums the stepwise change in the optimal solution from
one round to the next. We assume V7 is finite (and perhaps
grows sub-linearly with 7" in a changing environment). This
quantifies how rapidly the optimal decision drifts over time
(i.e., smaller V means that the environment is more stable).

k: 1’1:);k 1)

(43)

B. Regret Analysis from Decomposition
The total regret Reg, is decomposed into two compo-
nents, tracking term and drift term, by adding and subtracting
us(ky 1, Py ;) inside the summation:
T
Regp = Y [ur(ke, Py) —ue(kj_1, P y)]

t=1

—&-i[utk

(&1, Piy) —
t=1

1) Tracking term

ut(k;:k7 P;fk)] )
2) Drift term

(k%,P%), ensuring that the drift

(44)

where we define (k§, Pj) :=
term is zero at t = 1.

1) Tracking term represents the regret incurred at round ¢
due to not using the previous round’s optimal solution.

2) Drift term accounts for the regret incurred because the
optimal decision itself has changed from ¢ — 1 to ¢.

Lemma 2. Under CUCB, the tracking term in (44) can be
bounded as:

MH

Ut kt7Pt —m(ki‘_l,Pi_l)]

t=1
6
< Z LA P O1/NT)+0O(1),  (45)
o A
where i* = argmax; E[r{] and Al = E[rj"] — E[r].
Proof: See Appendix F. [ ]

Theorem 3. Under Assumptions 5, Property 2, Lemma 2,
and Definition 1, the dynamic regret upon CUCB scheduling
is bounded as:

I
6 2
Regy <> e InT +O(1/VT) + LVr.  (46)
o A
Proof: See Appendix G. u

In Theorem 3, the bound consists of three components: The
6“ InT arises from the CUCB rule, which selects
a sub- opt1mal arm at most O(InT) times in expectation [31],
[32]. The second term O(1/+/T) stems from approximating
the dual multiplier A3 using a finite number of gradient or
bisection steps. The third drift term LV7 depends on the
cumulative change of the per-round optimum.

Remark 2. From Theorem 3, the dynamic regret satisfies
Regy < O(InT) + O(1/V/T) + V. If the path-length Vi
grows slowly enough, i.e., Vi = o(T'), then the average regret
vanishes,

Regp/T — 0as T — oo. 47)

That is, the regret grows sub-linearly in 7', e.g., O(InT).
In contrast, if Vo = ©O(T) due to rapidly changing data
distributions, the term V7 becomes dominant and the dynamic
regret can scale linearly in 7', which is consistent with standard
impossibility results for dynamic regret in fully adversarial
online learning.

Remark 3. When the optimal scheduling and power decisions
are time-invariant, i.e., (kj,P}) is fixed, the optimum path-
length V7 vanishes, yielding Vpr = 0 [33], and the dynamic
regret Reg, reduces to static regret [34]:

Regy < O(InT) + O(1/VT), (48)

which matches the optimal static regret in [35].

VI. EXPERIMENTAL EVALUATION
A. Experimental Setup

In this work, we used CIFAR-10 [36] for evaluation. Each
device i starts with an initial dataset of size D}, where D
is uniformly sampled from the range [10,1010]. Thus, some
devices start with a relatively large local set, while others have
only a handful of samples. At each communication round ¢, the
local dataset size changes according to p¢ in (2), the net change



in the number of data samples. More specifically, each device
draws its net data change pi € {—50, 0, +50}. The proba-
bilities p’_, pf, and p’, are sampled once at initialization and
satisfy (5), where p* and p’, are generated from ¢/[0.15, 0.45].
It reflects device heterogeneity, with different data samples in
each round. We run 7" = 1000 communication rounds. For
local training, we employed a five-layer convolutional neural
network: two convolutional layers (with a kernel size of 5 x 5
and ReLU activations, followed by 2 x 2 max-pooling) and
three fully connected layers, reducing the dimension to 10
output classes. Each selected device runs e = 5 epochs per
round, and we set the local learning rate 1 to 0.001 and the
floating-point precision n to 32-bit.

At each round t, each device’s channel coefficient hi is
drawn from i.i.d. CN(0,1). Each device ¢ has a maximum
transmit power P!, which is uniformly chosen from the
range [0.05,0.2]. This reflects device heterogeneity, where
some devices can afford higher power (potentially reducing
uplink time while others are power-limited). The latency
constraint 7 is set to 8.0, meaning the proposed algorithm
guarantees a maximum latency of 7 regardless of the num-
ber of devices scheduled. The system bandwidth is set to
W = 1 MHz, and the noise power spectral density Ny is
3.98 x 102! W/Hz, corresponding to the thermal noise floor
of -174 dBm/Hz (-114 dBm over 1 MHz), [37], [38]. The key
simulation parameters are summarized in Table L.

TABLE I
KEY EXPERIMENTAL PARAMETERS

Value

5, 25, 50, 100

Uniform in {10,...,1010}
pi € {—50,0,+50};

Pl € [0.15,0.45];

Pt € [0.15,0.45]

Uniform in [0.05, 0.20] [W]

Parameter

Number of DevicesAI
Initial Data Size Dy

Data Variation py

; i
Max Transmit Power P},

Latency Budget 7 8.0 secs
Maximum Round T 1000

Local Learning Model el =5,1m=0.001
Bandwidth W 106 [Hz]

Noise Spectral Density No 3.98 x 10~21 [W/Hz] ~ —114[dBm/Hz]

In this work, we compare the proposed algorithm with the

following baseline schemes:

e FedOGD and Random Selection (FGRS): This baseline
utilizes a federated online gradient descent (FedOGD)
algorithm to update local models. Also, it employs
random selection (RS) for device scheduling, where a
subset of devices is randomly selected. This approach
offers minimal overhead, but it does not account for
heterogeneous device conditions or data distributions.

e FedOGD and CS-UCB-Q (FGCUQ): This baseline ap-
plies the FedOGD for local model update. It also employs
the UCB policy and virtual queue technique (CS-UCB-Q)
[18] based device scheduling mechanism.

e ELASTIC: This baseline implements the existing elastic
scheme [39], which jointly considers device scheduling
and power control under a per-round latency constraint. It
represents a state-of-the-art approach that adaptively ad-

justs the transmit power and the number of participating
devices.

e Only Device Scheduling (OnlyDS): This baseline uses
only the device scheduling (DS) component of the pro-
posed alternating optimization framework. In particular,
it adopts the same CUCB-based scheduler as OASIS to
select devices but employs a fixed (or heuristic) transmit
power control policy without the Lambert-W based op-
timization. This isolates the benefit of intelligent device
scheduling.

e Only Power Allocation (OnlyPA): This baseline uses only
the power allocation (PA) component of the proposed
framework. It applies the Lambert-W based power control
given a baseline scheduling strategy (e.g., that of Elastic
or random selection), but it does not use the CUCB-
based scheduler. This isolates the benefit of optimizing
the transmit power while keeping the scheduling policy
unchanged.

B. Evaluation of the Proposed Algorithm

Fig. 2a and Fig. 2b compare the total cumulative energy
consumption required to reach a target test accuracy of 65%
for different values of the weight factor o and  in the
objective function. The minimum is observed at a = 0.2 and
Kk = 3.5; thus, this is adopted as the default hyperparameter
in all subsequent experiments.
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Fig. 2. Total energy to target accuracy over different factors, / = 25

Fig. 3a and Fig. 3b compare the energy—convergence trade-
off and the convergence behavior with respect to the local



learning rate 1) and the number of local epochs ¢?. From Fig. 3a
and Fig. 3b, we observe that a larger €’ yields higher accuracy
as well as faster and more stable convergence. However, as
7 increases, the convergence becomes slower, and the total
energy consumption increases significantly to reach the target
accuracy. That is, the parameters = 0.001, e’ = 5 provide
the best trade-off and convergence, i.e., achieving the target
accuracy with fast and stable convergence and the lowest total
energy consumption. Therefore, we selected the parameters
n = 0.001, e’ = 5 as the default configuration of our proposed
model.
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Fig. 4 demonstrates that the proposed OASIS algorithm
maintains strong energy efficiency even as the number of
devices in the network increases. Although the total cumu-
lative energy consumption naturally rises with larger device
populations, OASIS exhibits an almost linear growth pattern
for the number of devices, indicating that the per-device
energy cost remains nearly constant. This efficiency stems
from OASIS’s ability to judiciously schedule devices and
allocate transmit power such that only the most informative
yet energy-efficient devices are activated under the latency
constraint. As a result, OASIS effectively prevents excessive
energy usage despite having a larger selection pool. The results
in Fig. 4 confirm that OASIS achieves excellent scalability,

TABLE 11
REQUIRED 1" FOR DIFFERENT [

Number of devices Rounds to reach 70% accuracy

25 343 £ 85
50 168 £+ 25
100 151+£7

ensuring energy-efficient operation even in dense federated
learning environments.

Table II shows that OASIS achieves the target accuracy
with fewer global communication rounds as the number of
devices increases. Specifically, OASIS requires approximately
343, 168, and 151 rounds for networks with 25, 50, and 100
devices, respectively, demonstrating clear improvements in
convergence speed as device count grows. This behavior stems
from OASIS’s ability to efficiently select the most informative
devices and allocate power in a way that maximizes the
learning contribution of each round. With a larger device
pool, OASIS can exploit greater data diversity and richer
local datasets while still satisfying the latency constraint,
thereby accelerating convergence. Overall, it confirms that
OASIS scales gracefully with the network size and consistently
delivers faster convergence.
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Fig. 4. Scalability: cumulative energy consumption to target accuracy

Fig. 5 illustrates that the proposed OASIS algorithm
achieves rapidly decreasing average dynamic regret, demon-
strating its strong adaptability to changing environments. From
the earliest rounds, the regret Reg, /T drops sharply, indicat-
ing that OASIS is able to closely track the optimal scheduling
and power allocation decisions even under changing environ-
ments. As training progresses, the average regret continues
to reduce and approaches zero when the path-length Vp
grows sufficiently slowly, empirically validating the sublinear
regret bound proven in the theoretical analysis. This behavior
confirms that OASIS effectively balances exploration and ex-
ploitation, enabling it to make near-optimal decisions despite
the dynamic nature of online federated learning. Overall, Fig. 5
verifies that OASIS maintains robust learning performance
over time and adapts efficiently to evolving data distributions
and device conditions.
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Fig. 5. Dynamic regret of the proposed approach, I =5

C. Comparison with Benchmark Schemes

Fig. 6 clearly demonstrates that the proposed OASIS frame-
work consistently exploits a substantially larger amount of
data compared to all baseline methods. This performance gain
stems from OASIS’s CUCB-based device scheduling, which
explicitly favors devices with larger and more informative
local datasets while still respecting the latency constraint. As
a result, OASIS systematically incorporates more fresh and
diverse data into each training round, accelerating convergence
and improving model quality. Next to the proposed OASIS,
OnlyDS and OnlyPA show efficient data usage. However,
OnlyPA lacks the principled selection mechanism that OA-
SIS employs, and OnlyDS overlooks data-rich but slower
devices, resulting in somewhat lower total data utilization.
Other baselines, such as FGCUQ and ELASTIC, incorporate
partial heuristics but fail to jointly optimize scheduling and
power, leading to moderate performance. Random selection
(FGRS) shows no meaningful improvement due to its inability
to prioritize valuable devices. Overall, the results in Fig. 6
confirm that OASIS’s joint optimization approach enables
efficient data exploitation, which is a key factor behind its
superior convergence speed and learning performance.

Fig. 7 shows that the proposed OASIS algorithm con-
sistently achieves the highest test accuracy and reaches the
target accuracy in the fewest communication rounds among all
compared methods. While all schemes initially exhibit rapid
accuracy improvement, OASIS maintains a clear advantage
by continuously selecting informative devices and optimizing
transmit power to ensure efficient model aggregation. As a
result, OASIS not only converges faster but also attains a
higher final accuracy with minimal fluctuation. In contrast,
OnlyDS, OnlyPA, and ELASTIC demonstrate intermediate
performance, as their partial or heuristic optimization limits
their ability to balance data quality and energy efficiency
effectively. FGRS performs the worst due to random device
scheduling, which prevents it from consistently utilizing data-
rich or reliable devices, leading to slow and noisy accuracy
progression. Overall, Fig. 7 confirms that OASIS delivers
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Fig. 6. Amount of data used, o = 0.2, I = 25

superior learning performance in both convergence speed and
final model accuracy, highlighting the benefit of its joint
scheduling—power allocation design.
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Fig. 7. Test accuracy, « = 0.2, I =25

Fig. 8 demonstrates that the proposed OASIS method
achieves the lowest cumulative energy consumption across all
target accuracy levels, clearly outperforming existing baseline
schemes. This improvement results from the joint optimization
of device scheduling and power allocation, which enables
OASIS to effectively minimize unnecessary transmission en-
ergy while still leveraging high-quality data from selected
devices. Notably, the energy gap between OASIS and the
competing methods widens as the target accuracy increases,
indicating that OASIS becomes even more advantageous in
high-accuracy regimes. Compared with Elastic, for example,
OASIS reduces the required energy by approximately 69.1%
at a target accuracy of 0.675. Although OnlyPA shows better
efficiency than ELASTIC, FGCUQ, and OnlyDS due to its op-
timized power control, it still lacks the coordinated scheduling
mechanism that OASIS employs. Meanwhile, FGRS wastes
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energy by randomly selecting devices, and OnlyDS fails to re-
duce transmission energy because it does not optimize power.
Overall, Fig. 8 confirms that the integrated scheduling—power
control strategy of OASIS is essential for minimizing the
total energy cost of federated learning under wireless latency
constraints.

VII. CONCLUSION

In this work, we investigated an energy-efficient OFL
approach. To achieve this, we formulated an OFL problem
that jointly optimizes device scheduling and energy alloca-
tion under a per-round latency constraint. We developed a
device scheduling and power allocation algorithm, referred
to as OASIS. The proposed device scheduling is based on a
CUCB-based bandit strategy. First, we designed a new reward
function that considered transmission energy, local data size,
and the average number of selections. We then derived a
Lambert-W function-based power allocation for the scheduled
devices in closed form. A dynamic-regret analysis demon-
strates that the proposed approach adapts effectively to non-
stationary environments and achieves sublinear dynamic regret
in slowly changing optimal path environments. Experiments
confirmed that the proposed algorithm achieves lower energy
consumption and faster convergence compared to conventional
baseline schemes. The performance gain increases as the target
accuracy of the OFL becomes higher. In future work, we will
investigate device- and time-adaptive strategies for selecting
the learning rate and the number of local epochs based on
local data characteristics and channel conditions. We also plan
to extend the proposed framework to asynchronous or hierar-
chical OFL environments to further enhance its applicability.

APPENDIX
A. Proof of Lemma 1

Starting from the definition of the error term,

€ =gt — VF(wt)a (49)

where g; is defined by equation (8):

g = Z kigi.
Z kg 1=1

Thus, the error term becomes

I .
kt 1
f=y ¥ w<wt;x,y>< kW )
& ST )
(51)

We take the squared L, norm and expectation on e;. Then,
according to Jensen’s inequality, it becomes

1
“{Ix (e )
| X Viwaxy) ﬂ

(x,y)€D}

! ki 1 ?
<E|ID, P )
l 2 (zj-_l TS

x Y ||Vf(wt;x,y)|2].

(x,y)€D}

(50)

Eflet]?]

(52)

From Assumption 2, we have

! ki 1 ’
E[||et||2]§IE[IDtZ< e )
o \Xj= kD] X DY

x Dj (¢ + w||VF<wt>||2)]

SE[ IDt
Z] 1

x (¢ + ¢ VF(we)|) ] :

I
Zl—k” )D!

(53)

Here, we can take out the constant terms outside E(-) and
rearrange it. Then, we obtain

I
Eflle’] < I Z(l — kD] | (¢ +YE[|VF(we)|?])
" (54)

B. Proof of Theorem 1

Under Assumption 1, the function F(w¢q) is twice con-
tinuously differentiable. Then, the change in the function value
from point w; to w;;; can be expressed using the second-
order Taylor expansion as follows:

F(Wi1) = F(w) + VF(wi) (Wi —wy)
1
+ §(Wt+l - Wt)Tsz(gt)(wt—o—l —wy), (55)

where &; is an arbitrary point on the line segment between w,
and wy;1. According to the definition of L-smoothness, the
Hessian matrix V2F (&) satisfies:

IV2F (&) < L Vw e RM. (56)



This implies that all eigenvalues of VZF (&) are bounded
above by L. Therefore, we obtain the following inequality:

F(wig1) < F(we) + VE(wW,) T (Wep1 — W)
+ 5w — will 57)
Substituting the update rule w;.1 = Wy — ngy,
F(wesn) < F(we) - n9F () g+ 2 g 68)
Taking the expectation on both sides:
E[F(wy1)] < E[F(wy)] —nE [VF(Wt)Tgt}
+ LE [llgel”] - (59)

Under the Assumption 3 that the gradient estimator g; is
unbiased, it follows that:

E[VF(wy) &) =E[|VF(w:)|]. (60)
Additionally, we can expand E [||g;||?] as

E [llg:I] (61)

=E[|VF(w)||’] + 2E[(VE(we), )] +E [[le[*] .

Due to the unbiasedness of g;, the term E [(VF(wy),e;)]
vanishes, i.e., E[(VF(w;),e:)] = 0. Thus, the expression
simplifies to:

E [lgl’] =E [[IVE(wo)lI?] +E [[lec]|]

Substituting this back into the inequality, we obtain:

B (wie)] < BIF(w)] (1= 1) EIIVF(w)]

(62)

L 2
+ ZFEllle:|) (63)

Using Lemma 1 to bound E[||e;||3],

2
I
ILn? L
5> 0-K)D;
j=1

x <¢+¢E[|VF<wt>||2]>.

E[F(wys1)] < E[F(wy)] — 7 (1 - L) E{IVF(w,)|]

(64)

Simplifying the terms involving E[|V F(w)||3], and summing
overt=1to T,

E[F(w1)] — E[F(wr41)]
> nZT: 1- %

I
1—I¢Z(1—k£>D{

I L¢77

E[|VE(we)[*] - Z

t=1

Z 1—k)DI. (65)

Assuming that F'(wp41) > F*, we have
E[F(w,)] — F*

T
=
t=1

Ln
-5 1—I¢Z 1—k)D!

j=1
T
IL¢n? ;
E[IVE(wo )~ Y S 0 - k)DL (66)
t=1 j=1
Let us define A; as follows:
Ln ! o
Ar=n == 1_11/}21(1_]{72)1)? (67)
=
Since k] € {0,1},Vj € Z, we know that:
L L
n(l—;(l—Ith)> < 4, 97(1—2’7). (68)
As a result, we have
2(E[F(w1)] — F7)
— E[|VF(w
Z IVEOI < e 2y — oD
T I J DJ
+ ¢77 Z_] 1( t) (69)
2T (1L-1uD,)

C. Proof of Theorem 2
For (35), the Karush—Kuhn-Tucker (KKT) condition is

7 =" a0

Ak (O(P{ () = Prax) =0, (71)

Nyki Py (£) = 0, (72)

Ag(i KO0 ~7) =0, (73)
=1

(24b), (24c) (74)

NS Az > 0. (75)

These conditions imply (i) P{(¢) = 0 or (ii) Pi(¢) = Pl
or (iii) A{ = Ay = 0. For cases (i) and (ii), power is fixed at
the boundary For the case (iii), the following can be obtained

from mm( y = 0:
Wi P + Aski(0)
m2 1+ Pil)
where R:(¢) denotes the transmission rate R} in each iteration
(. Let vi :== 1+~ P}. Then, we obtain

v [Invf — 1] = T}(0), (77)
where 7} = |hi|?/W Ny and T'}(¢) = yi\3ki(¢) — 1. This can
be solved via the Lambert-W function as

i

W(T(£)/e)

Ri(0) = (76)

i __
Uy =

(78)



This completes the derivation as,

0, A= 0,0 >0,
4 1] Tige) ] o
Pi)={ = |t 1| A =x=0, (79
0=1 % e e
Pl > 0,0 = 0.

The multiplier A3 is iteratively determmed with P (¢) by a
bisection search on the ¢(A3) := ZZ kL0 T (0) — 7. When
Az = 0 yields ¢(A3) > 0, we iteratively increase A3 via
bisection until a positive value satisfying ¢(A3) = 0 is found.

D. Proof of Property 1

Let u} denote the minimum value of u,(-) in round ¢. Under
Assumption 5 and Property 2, OASIS is updated by exact
minimization. Standard results on alternating minimization for
strongly convex and smooth objectives then guarantee a linear
convergence rate: there exists a constant = € (0, 1), such that

u(0) —uy < E(u(0—1) —uy), Ve > 1. (80)
By recursion,
u () —up < E(u(0) —wp), V£>0. (8

Since u:(¢) is nonincreasing, we have

lug(€) —u (0 —1)] < ug(0—1)—u; < Ee’l(ut(()) —u}).
(82)

From (82), a sufficient condition for the stopping criterion

|us(€) —ue(€ — 1) < € is

2w (0) —uf) < e (83)
Since 0 < E < 1 and u;(0) > u}, (83) is equivalent to
—t—1 €
E L 84
S w0 = (84)
Taking the natural logarithm on both sides yields
(0 —1)logE < loge —log(u(0) — u}). (85)

Because log = < 0, dividing by log = reverses the inequality
and gives

1 0) —uj 1 1
0> og (ue( ) uf) _ 10g<). (86)
| log =| |log =| €
Define
1 0) —u; 1 1
Li(e) =1+ og(u(0) —ui) 1 1og(>. (87)
|log E] |log E| €

Then any integer £ > L;(€) satisfies (83), and hence |u(¢) —
us(£ —1)] < e. Let

li(e) :=min{l € N : |u(0) —u (0 — 1)| < €}

denote the number of iterations required to reach this accuracy.
By definition of ¢;(e) and the fact that [x] < x4 1, we obtain

li(e) < (Lt(e)] < Li(e) +1

_ log (u¢(0) — u}) 1 1
=(2+ =) + MogZ| log(€>. (88)
——

|log =]

=:Cy =:C2
Thus, ¢;(e) < C1+C5log(1/€) for some constants Cp,Co > 0
that depend only on = and the initial gap u;(0) — u}, but are
independent of e. This completes the proof.

E. Proof of Property 2

We compute the second derivative of Ef(Pf) with respect
to P}, as follows:
d’Ei (P} B 1 :
t(i 2t) _ . OgQ(ei) T ‘H(Ptl),
d(Py}) W (logy(1 + 7 F%))
where H(P}) = vilog,vi — viP}. Since H(P}) > 0 for
P > 0, we conclude that

(89)

d*E}
— > (. 90
AP = e
F. Proof of Lemma 2
Let ¢ = - ;:tlnlikp, by Hoeffding’s inequality for

bounded rewards, we have:

P(|#i_, — E[rf]| > ¢f) < 2e72 X1kt 1)

If a suboptimal device ¢ # ¢* is chosen in round ¢ while all
estimates lie within their confidence intervals, then

3lnt 3int

Elr]+ k) [g5etr Z Bl |4k [r5ite. (92)
Rearranging the previous inequality gives, for all t < T,
T
; 62
ki < —InT (93)
M=
Then we obtain:
T I
> [ur(ke, Py) = wg(k;_1, P;_y)] < Z Zkl +0(1
t=1 i=1
' 612
< InT+ O(1
LahTron
94

The power allocation relies on Property 2 and Assumption
5. Consequently, the optimization error satisfies:

(kt7Pt) — Ut(kt,P*) L2 L (95)
2u T
Therefore,
T
Z Ut kt7Pt —m(ki‘_nPI_l)]
t=1
<y % T +O(1/VT)+0O(1).  (96)

i€l

G. Proof of Theorem 3
The subgradient satisfies the first-order optimality condition:

(Vu k5, P (ke,Py) — (K, PF) >0, Va. (97
Taking (k;, P;) = (kj_;,P;_;), we obtain:
up(ki_q, Py_q) — ur(ki, Py)
< Vu(k;,Py) " ((kj_y, Py_y) — (k;,P})).  (98)



Applying Cauchy—Schwarz and using the Assumption 5, we
can bound the drift term:

ur (ki1 Pioy) —u(ki, Py) < Ll|(k; -y, Pry) — (kg PP

99)
Summing over t gives in Definition 1:
T
[ue(ki_ 1, Py_y) — ue (ki Py)]
t=2
T
<LY |k, Pi_y) = (k. PY)| = LV, (100)
=2

Thus, the drift term is bounded by LVp, where Vp is the
total variation in the optimal decision sequence. Then, Reg is
derived as follows by using the bound on the drift term above
and the bound on the tracking term provided in Lemma 2,

2
Reg, < Z%lnT+LVT+O(1/\/T). (101)

i€l
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