@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Dao N-N, Kim J, Park M, Cho S (2016)
Adaptive Suspicious Prevention for Defending DoS
Attacks in SDN-Based Convergent Networks. PLoS
ONE 11(8): €0160375. doi:10.1371/journal.
pone.0160375

Editor: Kim-Kwang Raymond Choo, University of
Texas at San Antonio, UNITED STATES

Received: June 2, 2016
Accepted: July 18, 2016
Published: August 5, 2016

Copyright: © 2016 Dao et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This research was supported by the
Chung-Ang University Young Scientist Scholarship
(CAYSS) Program, Korea Electric Power Corporation
through Korea Electrical Engineering & Science
Research Institute (grant number: R15XA03-69), and
the MSIP (Ministry of Science, ICT and Future
Planning), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-
2016-H8501-16-1007, IITP-2016-H8501-16-1008)
supervised by the IITP (Institute for Information &
communications Technology Promotion).

Adaptive Suspicious Prevention for Defending
DoS Attacks in SDN-Based Convergent
Networks

Nhu-Ngoc Dao', Joongheon Kim', Minho Park?*, Sungrae Cho'*

1 School of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea, 2 Department of
Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul,
South Korea

* mhp @ssu.ac.kr (MP); srcho@cau.ac.kr (SC)

Abstract

The convergent communication network will play an important role as a single platform to
unify heterogeneous networks and integrate emerging technologies and existing legacy
networks. Although there have been proposed many feasible solutions, they could not
become convergent frameworks since they mainly focused on converting functions
between various protocols and interfaces in edge networks, and handling functions for mul-
tiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS) technique.
Software-defined networking (SDN), on the other hand, is expected to be the ideal future for
the convergent network since it can provide a controllable, dynamic, and cost-effective net-
work. However, SDN has an original structural vulnerability behind a lot of advantages,
which is the centralized control plane. As the brains of the network, a controller manages
the whole network, which is attractive to attackers. In this context, we proposes a novel solu-
tion called adaptive suspicious prevention (ASP) mechanism to protect the controller from
the Denial of Service (DoS) attacks that could incapacitate an SDN. The ASP is integrated
with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive
experimental results show that the ASP enhances the resilience of an SDN network against
DoS attacks by up to 38%.

1 Introduction

Convergent communication network composes of multiple network architectures and technol-
ogies that supports interconnection feature over a heterogeneous network to reduce the depen-
dence on underlying infrastructure of communication services. In recent years, the convergent
communication network has been getting burdened with high requirements from users and
network administrators. For instance, the users who have multimedia traffic and personal data
want to transfer through higher bandwidth and more secure connections; and the network
administrators require more controlling and monitoring abilities to manage the convergent
networks. To satisfy all of the requirements, a next generation networking technology has

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016

1/24

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0160375&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

Competing Interests: The authors have declared
that no competing interests exist.

emerged, known as software defined networking (SDN). One of the main advantage is that
SDN is able to merge the existing network infrastructures into a new unified framework
smoothly under only one requirement that all of the devices have to support an open control
protocol like Openflow [1].

An SDN-based convergent network is a new approach to provide more controllable and
flexible network management for better handling huge volume of data by decoupling the con-
trol functions from the forwarding hardware components [2, 3]. In an SDN-based convergent
network, network control is centralized into a unified entity called the controller which is
directly programmable. All underlying hardware elements, referred to as switches, take the
forwarding and routing functions based on rules received from the controller. The controller
acts as a framework on top of which third-party applications are deployed for a human-net-
work interface that allows network administrators to manage the network effectively. The con-
trollers and switches interface among them via a standard protocol. One of the most popular
and widely used protocols is OpenFlow [4]. With the OpenFlow, network administrators can
directly access and manipulate the forwarding functions of the underlying physical or virtual
devices [1]. For convergent communications, an SDN deals with data packets using the infor-
mation up to layer 4 in the header fields. Moreover, through the dynamic integration of third-
party applications in network operation systems, the SDN can handle traffic flows by program-
mable processes to satisfy various Quality of Service (QoS) levels.

However, according to the natural feature of the centralized controller, i.e., the heart of the
network in a single point, it is the Achilles heel of the SDN architecture and a potential target
of flooding attacks. Therefore, three types of exploitation can be used to attack a network: the
controller’s resource consumption, the controller-switch channel’s bandwidth occupation, and
the switches’ flow table overload.

In a controller’s resource consumption attack, an adversary floods a huge volume of packets
via switches to the controller for exceeding the capacity of the controller. This pushes the con-
troller into an out-of-performance state. Therefore, the controller cannot create new flow entries
for normal users in time, and this eventually makes data flows to be unstable in real-time.

The control channels between the controller and the switches can be the targets of attackers.
The confidentiality and integrity of the control channel is protected by security protocols, e.g.,
a Secure Socket Layer, against well-known attacks such as eavesdropping or man-in-the-mid-
dle attack. However, the security protocols cannot secure the availability of the control channel
against bandwidth occupation. That problem can occur when the switches are used to forward
many packets to the controller in a short time period. This will eventually lead to a situation
that the packets coming from normal users will be dropped at the controller’s input buffer.

Another potential security problem which makes a network malfunction is a switch flow
table overload. As results of the previously described two types of attacks, i.e., consuming the
controller’s resources and occupying the control channel, many flow entries continuously dis-
patched from the controller stack up on the switches. In some cases, the flow tables in the
switches can be under overflow, even at short time. Depending on the policy, the switch should
ignore the new flow entries or remove the last one in the tables. In any cases, the switches lose
the warranties of services for normal users, which leads to more transmission delays. In sum-
mary, the effects of Denial of Service (DoS) attacks are serious enough to have consequences
for the control channel, controller operation, and the switches’ flow table at the same time,
which can negatively affect on the QoS of data services.

In order to protect SDN-based convergent networks from such attacks, we propose a novel
mechanism called adaptive suspicious prevention (ASP), to protect the controller against DoS
attacks. The fundamental idea is to operate the controller of an SDN-based network using spe-
cific policies to handle incoming packets differently for each user type. The specific policies are

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 2/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

designed to decrease the influence of attacks by changing the corresponding timeouts and action
parameters. To implement the idea, we have developed a mechanism based on the OpenFlow
protocol. In normal times, a database of trustworthy users is built using traffic analysis. During
DoS attack, all incoming unknown users are first treated as suspicious users, and their flow
entries are set to very short timeouts. After that, we use a probabilistic source IP filtering tech-
nique to judiciously categorize users into the defined user types. Based on that result, the con-
troller can treat users with exactly defined policies: update its flow entries to normal timeouts if
they are trustworthy, and delete all flow entries and block them if they are malicious.

Therefore, during the attack, the controller can still serve honest users normally as well as
our proposed scheme eliminates a remarkable amount of the attacking effect from malicious
users. The traffic from DoS users who generate a huge volume of connections to various desti-
nations is blocked by block entries. The useless entries of DDoS users who fake source IP
addresses and establish random connections to many destinations are rapidly removed from
the flow tables because they were issued with short timeout values.

Our main contributions in this paper are summarized as follows:

1. We have proposed a new algorithm, Probabilistic History based IP Filtering (PHIF), to ana-
lyze user traffic characteristics. This algorithm classifies users into five types by analyzing
their numbers of connections and their average numbers of data packets per connection. The
PHIF algorithm is adaptive to user traffic in real-time, even if the system is under attack.

2. We have developed a new mechanism called ASP to handle user traffic. For unknown users,
we assume that they are with DDoS attacks, and apply suspicious policies, at first. According
to the PHIF categorization, the controller automatically implements the corresponding poli-
cies for each recognized user type.

3. With the complete mechanism, we protect SDN-based convergent networks against both
DoS and DDoS attacks. DoS attacks are canceled at the edge switches, where they intend to
penetrate to get access to the network. DDoS attacks are limited in a very short timeout, and
after that their flow entries are erased from the flow tables in the switches. The traffic of
trusted users is still handled normally throughout the process.

This paper is organized as follows. Section 2 classifies common DoS defense strategies and
particular DoS solutions on an SDN-based networks. We describe the reactive workflow inside
an SDN network and break down the DoS attack process against an SDN in Section 3. Then,
we propose the PHIF algorithm and ASP mechanism to resolve the problem in Section 4. Sec-
tion 5 analyzes the effectiveness of useless flow entry removal and shows the effects of the pro-
posed mechanism. We describe the performance evaluation in Section 6 to verify the
correctness and effectiveness of our solution. We also discuss the limitations of the proposed
mechanism in this section. Section 7 shows our conclusion about the ASP mechanism for
SDN-based convergent networks and offers suggestions for future work.

2 Related work
2.1 DoS defense strategies

Many kinds of defense mechanisms can effectively combat DoS flooding attacks. The solution
can come from the deployment locations or taking time approaches.

The deployment location approach separates the path from attacker to victim into three
parts: source network, intermediate network, and destination network. The idea of detecting
and preventing attacks on the source side is called a source-based defense mechanism. Source-
based mechanisms can be deployed at client machines, gateway routers of the source network,

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 3/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

or edge/access routers of any intermediate network. Various source-based defense techniques
have been proposed to date. In [5], IP filtering detects strange addresses generated from an
internal network. Another way is to monitor the different behaviors of outgoing data traffic to
determine and block abnormal connections. Traffic from new users is set with low priority and
limited bandwidth [6-8].

Network-based mechanisms are usually installed in intermediate networks, such as an ISP
or core layer of an enterprise network. Defense techniques are based on routing requests and
router identification. Because a stable set of routers participates in the core layer, a strange
routing request or router can be detected easily. If they can not satisfy the verification, they will
be considered malicious sources and be blocked [9-13]. A taxonomy and a conceptual cloud
DDoS mitigation framework based on change point detection are also presented in [14, 15].

The idea of a destination-based mechanism is same as a source-based mechanism. One
more applicable technique is the traceback, which uses packet marking or link testing to verify
the source [16-18]. The same trusted data traffic model and packet filtering techniques can be
found in [19, 20].

When considering the time domain, there are proactive and reactive mechanisms. Proactive
mechanisms prepare defensive tools before an attack occurs. Security protocols or authentica-
tion procedures in the network layer [5] can be combined with the trusted traffic model or
packet filtering techniques in the application layer [21, 22] to provide more strength against
attacks. After an attack occurs, the traceback technique is also used to create a blacklist for fil-
tering the next time. Reactive mechanisms involve defensive techniques to detect and protect
against DoS during attack time. Two common mechanisms are congestion detection and traffic
monitoring, as proposed in [23-25].

According to the taxonomy, our algorithm is a reactive and source-based type. It analyzes
the source address of request packets arriving at the controller and uses a data statistic method
in real time to divide users into five groups. After identifying user characteristics, we apply cor-
responding policies using flow rule modification.

2.2 DoS solution for SDN networks

Recently, a variety of solutions have been proposed to address security problems related to
SDNs. An SDN can be an effective platform to detect and prevent attacks in IP networks
(including SDN), an interesting approach that provides significant performance. Machine
learning techniques are widely applied to improve detection efficiency, including neural net-
works, support vector machines, genetic algorithms, fuzzy logic, and Bayesian networks [26].
However, within the scope of this paper, we focus on surveying only existing solutions in
which an SDN network is treated as the target of an attack. In other words, for our purposes,
the SDN is a victim, not a supported tool or environment in which a security problem occurs.

Based on the controller architecture development approach, Kreutz et al. proposed a general
design for a secure and dependable SDN control platform that helps all network components
cooperate closely, interactively, and safely. However, it remains an ongoing study [27].
Recently, Shin et al. proposed a work named Rosemary as a network operator within a new
architecture design [28]. Each application executes on a separate micro-NOS. Rosemary man-
ages the application containment, resource monitoring, and application permission allocation
to prevent cross effects between applications.

Several solutions have been proposed to tackle the vulnerability in the interface between
third-party applications and the controller, such as: FortNOX [29], Fresco [30], and FermOF
[31]. FortNOX is a NOX OpenFlow controller extension that provides role-based authorization
and security constraint enforcement that can check for flow rules contradiction in real time,

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 4/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

even when an adversary consciously inserts fraudulent flow rules. FortNOX works on a custom
kernel to handle two types of flows, which are generated and classified by a special application,
one for security requirement data and the other for the remainder. Fresco extends the work of
Porras in FortNOX to introduce a framework so application developers can create and apply
security services rapidly. In another approach, the FermOF system supports a set of 18 permis-
sions between the controller and third party applications to isolate applications and check their
permissions. All of that work focuses only on healing the authentication and authorization vul-
nerabilities among third-party applications and between applications and the controller.

Another strategy is to add new abilities to the data plane. For example, Avant-guard [32]
uses two advance extensions on the data plan, called connection migration, to reduce the
amount of data sent to the control plane during attack time, along with actuating triggers dis-
patched from the control layer that insert conditional flow rules when they detect a trigger con-
dition based on statistics information from the data plane. To resemble Avant-guard by pushing
the burden to the data plane, Kotani et al. proposed a packet-in message filtering mechanism to
record the source addresses of requests at the switch and then forward only the first of each
request to the controller [33]. Those works can reduce the volume of unnecessary data sent to
the controller; however their idea seems to betray the original target of the SDN by making
switches more functional and intelligent. Thus, researchers must be careful to balance between
the pros and cons.

Most of those solutions strengthen the internal interactions among components in the
application-controller-switch architecture to resist external attacks. Generally, they have not
been proposed specially for the DoS problem, in which an SDN is the target of an attack. In our
approach, we use the statistic function of the SDN to feed the PHIF filter to recognize the types
of users and then apply the ASP mechanism that assigns corresponding policies for each user
type to cancel DoS traffic and decrease DDoS traffic based on its characteristics. As shown in
our best experiment, our algorithm can cooperate with the solutions mentioned above without
any conflict because of its different approach.

3 Problem statement
3.1 Reactive work-flow inside an SDN network

An SDN network can operate in two modes: reactive and proactive. When the network oper-
ates in a proactive mode, flow entries are pre-installed in the flow tables of the switches. The
header information that can be under consideration resides from layer 2 to layer 4 in an open
systems interconnection (OSI) model. The proactive mode decreases the controller burden
whereas it decreases flexibility in the network. In a reactive mode, the controller is in charge of
managing, controlling, making decisions about routing policies, and then dispatching entries
down to the switches whenever a new packet arrives [34].

Fig 1 illustrates the OpenFlow SDN model. When a new packet arrives at the switch, the
switch will check whether the packet header matches any entry in its flow table. If it finds a
match, it will process the packet as defined in the corresponding entry. Otherwise, the switch
will forward the packet to the controller. After receiving a new packet, the controller will pro-
cess, calculate, and create a new flow entry for this kind of packet, which it then dispatches to
the switch. The switch receives the controller message, adds the new entry into its flow table,
and handles the packet as defined in the entry. Each entry has a lifetime defined by the
hard timeoutand idle timeout parameters, along with a counter of matched packets
[35]. An entry expires in the number of seconds specified by the hard timeout, or
idle timeout after a packet last hits that entry. The switch will process the next matched
packets based on the corresponding entry in the flow table, as before.

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 5/24

el e
@ ' PLOS ‘ ONE Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

Controller Controller

OpenFlow Switch

[T
' ' | Datapath
OpenFlow || OpenFlow | |
|
Channel Channel ! Group | | Group
|
Control Channel | Table Table
77777777777777777777777 |
Port Port
Flow .| Flow Flow
1 Table | | Table Table
Port I Port
Pipeline

Fig 1. OpenFlow SDN model [36].
doi:10.1371/journal.pone.0160375.g001

3.2 Break-down process of DoS attacks against SDN

An attack on an SDN network includes three steps: fingerprint the target; identify the target’s
characteristics that can improve the attack effect; and do the flooding attack to cause resource
consumption in controller processing, bandwidth consumption in the controller-switch chan-
nel, and the switches’ flow tables to overload. When any one of these capacities is taken over,
the network cannot guarantee its QoS, and malfunctions occur.

In a reactive mode, flow entries are issued by the controller only when new packets arrive at
the switch. Although this mode is more flexible than proactive mode, it requires longer delays
for the first packet arrival than for following ones. Using that feature, attackers can determine
whether the network is an SDN by examining the response times. If the difference in response
times is greater than defined threshold, we can assume that the network spent time processing
for the first packet to issue a flow entry. Hence, it could be an SDN network [35].

In fact, an attacker needs no more information than that to attack an SDN network. How-
ever, because the target is resource consumption, the attack could be made more effective by
knowing the lifetime parameters for the flow entries, and then appropriately controls the veloc-
ity of the flooding to correspond with the capacity of the flow table.

Typically, the next packet to arrive after a hard timeout requires the controller to take a little
time to reissue a new flow entry. Therefore, to learn the hard timeout, an attacker can
send echo packets continuously and record the response times. When he detects a packet arri-
ves with a response time equal to that of the first packet’s, the attacker can calculate the dura-
tion between those packets and approximate the hard timeout. To calculate the
idle timeout, the attacker can use the same method but send the echo packets with ever
extending durations. Whenever receiving the same response time as the first packet’s, it indi-
cates that the idle timeout has expired, we obtain the idle timeout value around the last
extending duration.

The final step is to do the flooding attack to the network, which has two feasible approaches:
DosS attack and DDoS attack. In the scope of this paper, we ignore the overload problem in a
switch’s forwarding capacity to focus on an attack that makes the network malfunction. In the

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 6/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

SDN controller SDN controller
and switches S| and switches

Victim

S2
\ S3 D
D sS4 /"
S:n Victim

DoS attack: Attackers send a lot of request ~ DDoS attack: Variety of (spoofed) addresses send

packets to specified destination(s). a lot of request packets to specified destination(s).
A

SDdN cgtrltlzoller Victim SDdN CQttltgoller Victim

and switches and switches
DI Sl A — DI
D2 S2 D2
D3 S3 D3
D4 S4 D4
Dn Sn - :]jn

\Vj

DoS attack: Attackers send a lot of request ~ DDoS attack: Variety of (spoofed) addresses send
packets to different destinations. a lot of request packets to different destinations.

B

Fig 2. SDN as a target vs. SDN as a network environment. A) SDN as a network environment: The target is to
overload specified destination(s). B) SDN as a target: The target is to overload SDN controller and switches.

doi:10.1371/journal.pone.0160375.9002

DosS attack method, attackers use a source IP address to send many connection establishment
request packets to many random destinations to make the switches forward as many packets to
the controller as possible. The controller has to process all of those packets to issue correspond-
ing flow entries, and then the problem worsens as the switches insert all of the new, useless
flow entries into their flow tables. The result is controller performance overload, occupied
bandwidth in the control channel, and flow table overload. In a DDoS attack, the effect is more
serious because the attack has many sources that can each behave like a DoS attacker.

Thus, we highlight different characteristics of our problem (i.e., SDN as a target) and other
security-related problems on an SDN (i.e., SDN as a network environment). Fig 2 shows our
comparison. In considering an SDN as a network environment, attack flows converge because
the attackers intend to overload specified destination(s), not the SDN network itself. The speci-
fied destination wastes its resources to process many request packets and negotiate correspond-
ing meaningless connections (Fig 2A). However, when an SDN is a target, attack flows diverge
because the attacker’s goal is to create a huge volume of requests to overload the capacity of the
SDN controller and switches. The controller and switches consume their resources to process
and store useless flow entries (Fig 2B).

4 Adaptive suspicious prevention (ASP) mechanism
4.1 Mechanism design rationale

As explained in the subsection 3.2, within an SDN network, interesting targets include the con-
troller’s resource consumption, the control channel’s bandwidth occupation, and the switches’

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 7/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

Table 1. User characteristics.

User

IAD valid user

IAD zombie
Normal zombie
Non-identified user
New valid user

doi:10.1371/journal.pone.0160375.t001

flow table overload. To defend against such attacks, we have developed a novel mechanism
based on traffic analysis. The proposed PHIF algorithm creates an IP address database (IAD)
of trusted users and recognizes users’ behavior. Based on user traffic behavior analysis, the ASP
mechanism detects and protects against malicious sources during attack time.

We developed the PHIF algorithm based on the source based approach with specifics for
SDN networks. To easily distinguish between the first packets of each data flow forwarded to
the controller and the data packets sent from users to destinations, we call them request packets
and data packets, respectively. The request packet is the packet that a switch forwards to the
controller to “request” a corresponding flow entry, and the data packet is the packet transferred
between user and destination. The PHIF algorithm is suitable for handling all request and data
packet behaviors and can adapt to various environments. Our new defense mechanism based
on the Openflow protocol (i.e., ASP mechanism) can recognize all kinds of attacks and apply
corresponding policies to control them.

4.2 Basic assumption and environment setup

Based on the location and packet distribution characteristics, we classify users into five groups
(Table 1). The user behaviors are obtained from [21].

o TAD valid user: a normal user who has a source IP address from the IAD database. Within a
constant duration, an IAD valid user sends some request packets to establish connections.
With each connection, the user transfers many data packets through the network.

« IAD zombie: a normal user who has a source IP address from the IAD database but has been
exploited to become an attacker. An IAD zombie sends many request packets to random des-
tination IP addresses continuously. But for each connection, the zombie transfers only a few
data packets.

« Normal zombie: a new user who does not have a source IP address in the IAD database and
behaves like an IAD zombie.

Non-identified user: a new user who does not have a source IP address from the IAD data-

base. Within a constant duration, the non-identified user sends few request packets to estab-
lish connections. We put DDoS attackers here because if we do not consider the “spoofed”
feature, each source IP address from a DDoS attacker sends very few request packets. By this
approach, we also classify new valid users into this group the first time they send request
messages.

o New valid user: a new user who does not have a source IP address from the IAD database but
does the same actions as an IAD valid user.

In order to help recognizing the user type, we build two temporary tables in the controller
to record new request packets. The valid IP table (referred to as V table) stores the source IP

Source IP addresses Request packets Data packets Type
real&IAD some many user
real&lAD many few DosS attacker

real many few DosS attacker
spoofed few few DDoS attacker
real some many user

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 8/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

addresses of request packets from the IAD database and are forwarded from a switch in a T}
time interval. Each unique IP address has a counter vc; of the number of request packets that
arrive from it. It is used to calculate the average number of request packets from valid users in
the T time interval. The new IP table (called N table) stores the source IP addresses of request
packets that are not from the IAD database and are forwarded to the controller from a switch
in a T, time interval. Each IP address has a counter nc; to track the number of packets that
arrive from it.

4.3 Probabilistic History-based IP Filtering

As we explained above, normal user behavior is to send some request packets in a constant
duration. For each connection, the user transfers many data packets. Therefore, in this section
we will explore how many packets are sent by each user type. Let the range of the number of
request packets be [ky, k,] and the minimum number of data packets per connection be n. As
shown in [21], the value of # is not less than 3.

In a normal traffic environment, we can assume that the incoming request packets have a
Poisson distribution with parameter A equal to the average number of request packets arriving.
Fortunately, the valid IP table can represent normal traffic conditions even if an attack occurs
because we know exactly how many normal request packets arrive in a T time interval. Hence,
the average number of request packets is

Zf:l Ve, (1)

fo= =

where k is the number of IPs in the valid IP table.

We define x (percent) as the tolerance for accuracy in determining of request packets.
Because the probability mass function of incoming request packets is symmetrical by parame-
ter A, we can determine k; and k, as

k=2 —i (2)

ky = +i (3)

where i satisfies

A1 e,/i/'{] A—i e,;v;\’]
=
= I =T

% i

1 e /V}h]

S x= m
O

The range of [k;, k,] automatically changes based on the probabilistic model every T} sec-
onds according to the real traffic environment (Algorithm 1).

Algorithm1 Probabilistic History-basedIPFiltering
1: x+ the acceptance percentage;

: Initialize ky;

: Initialize ky;

: loop

A=avg(vec;) s

Jj=0;

while poisscdf(j, A)<xdo
J++;

O J o U bW

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 9/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

9: endwhile

10: k=i-—(+1);
11: k,=21+(+Y);
12: countdown (Ty) ;
13: end loop

To determine the minimum number of data packets per connection, n, the controller sends
statistic request messages to each switch with the matched field equal to all IP addresses in the
V table. Based on the collected packet count parameters from the response messages, we
use the minimum packet count value for each IP address to derive the value of n

n = max (3, {Vrilely(packet_counti)) (5)

where packet_count; is the minimum packet _count value of the i-th IP address.

4.4 Adaptive suspicious prevention mechanism

The ASP mechanism covers two network phases: normal time and attack time.

In normal time, we apply the PHIF algorithm to build the IAD database. The rule is that
whenever an IP address has a number of request packets in the range of [k, k,] in T1 seconds,
it will be added to the IAD database.

In attack time, the consideration has to be more particular. Two main characteristics differ-
entiate between the traffic of a normal user and that of an attacker. One is about request pack-
ets: most normal users establish a number of connections in the range of [k;, k,], but attackers
request fewer than k1 packets (DDoS type) or more than k2 packets (DoS type), see Fig 2b. The
other factor is about data packets: normal users frequently transfer more than n packets per
connection, whereas attackers usually transfer fewer than #n packets. Based on those differences,
our ASP mechanism analyzes incoming traffic to recognize user types and apply corresponding
policies. The mechanism runs as an application in the controller.

Algorithm 2 Adaptive suspicious preventionmechanism
1: D« the IP Address Database IAD;

2: N« thenewIP table set;
3: Ve—thevalid IP table set;
4: loop
5: if source IP € Dthen
6: normal processing;
7 update its vc; inV table;
8: if vc; > k, then
9: request statisticof its flowentries (calleds);
10: if s<nthen{ //IADzombie}
11: block its IP address by settinghard timeout to hseconds;
12: remove all of itsprevious flowentries;
13: remove it from D database;
14: else
15: donothing;
16: endif
17: else
18: donothing;
19: endif
20: else{//non-identifieduser}
21: add a corresponding flowentrywith short idle timeout to dseconds;
22: update its nc; counter inN table;
23: if nc; > k, then
24: request average number of packet count of its flowentries, s;

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 10/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

update itsexisting flowentrieswithnormal idle timeout;

block its IP address by settinghard timeout to hseconds;
remove all of itsprevious flowentries;

25: if s> nthen{//newvaliduser}
26:

27: move it fromN table toV table;
28: add it toDdatabase;

29: else{//normal zombie}

30:

31:

32: endif

33: else

34: donothing;

35 endif

36: endif

37: end loop

Consider a flow diagram in Fig 3. Whenever a new request packet arrives at the controller,
the controller checks whether the source IP address belongs to the IAD database or not. If it

New packet
arrives)

- issue normal entry
- update vg;in V @

- issue short entry
- update nc;in N @

Y

Return to (*)

f

Request statistic
report from switch

A

(D Identify 1AD valid user

©)

©)
@

®

Identify IAD zombie
Identify Non-identified user
Identify Normal zombie

Identify New valid user

Request statistic
report from switch

- delete its entries
Y | | -issue block entry
- delete IPg in D
and V

N @

IAD database

[7)
A
zZ]

- change short entries

to normal entries

- move [P, from N to V
- add /P, into D @

Fig 3. Flow diagram of request packet processing in the controller.

doi:10.1371/journal.pone.0160375.g003

N N table
- delete its entries V| Vtable
- issue block entry Valid range of average number of request
- delete 1Py in N (7) [kikal | backets
N Minimum number of packets are requested
to having a successful connection.
Average number of data packets from a
s L .
source IP address in its flow entries
nc; New IP source counter
vc; | Valid IP source counter

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016

11/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

does, we can determine that the packet comes from a trusted user. The controller processes it
normally and updates the source IP address in the V table, increasing its vc; counter by 1.

However, we also need to check its request packet behavior. If its vc; exceeds k, it might be
an abnormal sign and require a data traffic characteristics analysis. To do that, the controller
issues an OFPMP FLOW statistic request message to the switches for the packet count of
the source IP address. Then, the controller calculates the average packet number s. If s is
smaller than », the source IP address is identified as an IAD zombie. The policy for an IAD
zombie is: (1) the controller issues an OFPT FLOW MOD message with the OFPFC_DELETE
value installed as the command parameter to force the switches to delete all flow entries from
that source IP address. (2) The controller sets a block rule for the source IP address in the
switches’ flow table using an OFPT FLOW MOD message with ahard timeout parameter
of h seconds [7]. (3) The source IP address is deleted from the IAD database. Therefore, all new
traffic from this source IP address will be dropped for the next / seconds. After that, it will be
treated as a new user (see Algorithm 2, line 5-19).

If the source IP address does not belong to the IAD database, we first classify it as a non-iden-
tified user. The policy for a non-identified user is as follows: (1) the controller issues an OFPT
FLOW_MOD message with the idle timeout parameter set to d seconds, which is much
smaller than the normal idle timeout parameter. (2) The source IP address is updated into
the N table for tracking and its nc; counter increases by I (see Algorithm 2, line 20-22).

When nc; reaches k;, we analyze its data traffic characteristics by calculating the average
number of packets s. If s is greater than #, the source address has established and transmitted
real data connections. In other words, it is an honest user and must be trusted. The policy for a
new valid user is: (1) the controller issues an OFPT FLOW_MOD message with the command
parameter OFPFC_MODIFY, and the idle timeout is installed to the normal value, which
affects all its flow entries. (2) The source IP address is moved from the N table to the V table
and is stored in the IAD database as a new valid user (see Algorithm 2, line 23-28).

In contrast, if s is smaller than #, the source address is considered to be a normal zombie.
The policy for a normal zombie is as follows: (1) the controller issues modified messages to
delete all its existing entries in the flow table. (2) The controller generates a block rule for the
source address during h seconds, as in the rule for IAD zombies (see Algorithm 2, line 29-31).
Thus, the ASP detects all user types and uses suitable policies for each one (Fig 4).

5 Effects of the ASP mechanism

We evaluated the effect of the ASP mechanism by analyzing the number of flow entries in the
switches. A DoS attack floods new packets to the SDN network to occupy the control band-
width, consume the controller’s resources, and overload the switches’ flow tables. These are
sequential effects. The number of flow entries in the switches (represented for the flow tables’
overload) is directly proportional to the number of forwarded new packets that arrive at the
controller (represented for the control channel occupation) and the number of entries that the
controller generates (represented for the controller’s resource consumption).

To analyze the number of flow entries in the switches, we used the work flow of normal net-
work operation and network operation within the ASP mechanism given in Subsections 3.1
and 4.4, respectively. Let the speed of new incoming data flows from IAD valid users, new valid
users, and non-identified users be d;, d,, and ds flows per second, respectively. The speed of
new incoming packets from IAD zombies and normal zombies are n,d, and n.d;, respectively,
where 7, is the number of clients and d, is the average number of new incoming flows from
each client. The value of (hard timeout, idle timeout) for normal entry, short
entry, and block entry are given by (4, e,,), (h, e), and (h*, 0), respectively.

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 12/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

New valid user

QRRIRIIRRIIRS
Normal zombie RRRRRIIRIIRKNS
202002 %% e 0% e %0 % e
Non identified ; I

/ N/A
user i

| |
IAD zombie : :
| |
| |
IAD valid user : :
| |
! !
0 1 k, k, #packets
Track period Block period Detected time
N/A ..
Non existing Normal process

Fig 4. The detect time of user types.
doi:10.1371/journal.pone.0160375.g004

According to the description in Subsection 3.1, the controller processes all forwarded pack-
ets arriving from the switches, then issues corresponding flow entries for the switches to insert
into their flow tables. We assume that the normal flows transfer data continuously until the
hard timeout expires and that faked flows transfer very few packets until the idle ti-
meout expires. Therefore, the mean of the number of flow entries is

F,~dh+d,h+de, +nde, +nde, (6)

Following the description of the ASP mechanism given above, the system applies a separate
policy to each type of user. IAD valid users and new valid users have normal flows that transfer
data until the hard timeout for normal entry expires. Each non-identified user transfers
very few packets, and its corresponding flow entries expire after the short entry idle time-
out. New incoming flows from each IAD zombie or normal zombie are dropped immediately
by the block entry after the network detects its behavior. Because the analysis is performed
within a large volume of data, the effect of each IAD zombie and normal zombie before it is
detected is very small, which we denote by the function J,(n,d,, n,d;). The mean of the num-
ber of flow entries within the ASP mechanism is given by

F,>~dh+d,h+de +n, +n, +95,(nd,, nd,) (7)

As shown by a comparison between Eqs (6) and (7), the portion related to IAD valid users
and new valid users is the same. The ASP mechanism has a special effect in DoS attacks in
terms of the reduction of the number of entries by
n,(d,e, — 1) +n,(de, — 1) — 6,(n,d,, n.d,). In a DDoS$ attack, the number of entries

[]

decreases by a volume of ds(e, — e;). Because the n; and cii are objective, for improving the

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 13/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

performance of the solution, (i) the short entry idle timeout, e, should be small as much
as possible; and (ii) the normal idle timeout, e,, should be large as much as possible while
maintaining some transmission constraints (e.g., the e, must greater than the propagation
delay, a large e, will cause the flow table in the switches to be overloaded). Therefore we have a
plan to optimize these parameters to achieve an effective performance in our future research
direction.

6 Performance evaluation
6.1 Network topology

To verify the performance of the algorithm, we built a network topology consisting of a POX
controller, an OpenvSwitch, and five PC clients (representing the five user types). The network
topology was emulated by Mininet 2.1.0 on the Virtualbox 4.3.20 framework (Fig 5). By default,
Mininet cannot support this emulation scenario and topology. To implement the emulation
network, we extended the default functions of Mininet to meet our requirements. We deployed
the controller as a RemoteController to be ready to listen to the modified POX controller.

c0 = net.addController(’c0’, controller = RemoteController)

Mininet VM reserves one network adapter for the Host-only Adapter configuration for
administration purposes. The remainder are integrated into OpenvSwitch as its ports.

6.1.1 Normal routing controller. Basically, layer 3 devices route packets based on the
source and destination IP addresses. The default example of an 13 learning controller
considers not only the layer 3 addresses but also all the information in the header of the incom-
ing packet. Therefore, we rebuilt a new layer 3 routing controller, which runs as a standard
router to issue clearer flow entries for OpenvSwitch. ARP and echo packets are forwarded with-
out any policy. The TCP/IP packets are tracked to create reasonable entries in the flow tables
(Fig 6).

6.1.2 Internet access. Internet access connection is supported under the NAT network
function configuration of Virtualbox. The configured adapter integrates into OpenvSwitch
directly; it acts as a gateway for the SDN network to contact the outside. The NAT network
adapter could provide some helpful applications such as DHCP, NAT services, and the IPv6

ASP mechanism

POX -

~
controller e

ey -
y N

OvSwitch [Fltemef)

8 858 &5 5

4 4 4 4 4

/

IAD valid IAD New valid Normal Non-identified
user zombie user zombie user

Fig 5. Emulation topology.
doi:10.1371/journal.pone.0160375.g005

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 14/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

actions = []

actions.append(of.ofp action output (port = prt))

msg = of.ofp flow mod(command=of.OFPFC_ADD,
idle timeout=FLOW IDLE_ TIMEOUT,
hard_timeout:FLOW_HARD_TIMEOUT,
buffer id=event.ofp.buffer id,
actions=actions,)

msg.match.dl type = 0x800

msg.match.nw_src = srcaddr

msg.match.nw_dst = dstaddr

event.connection.send (msg)

Fig 6. Normal routing controller actions.

doi:10.1371/journal.pone.0160375.g006

protocol. All network clients should belong to the same subnet of the adapter; the IP addresses
are auto-configured by the DHCP service or can be configured manually. We chose the
10.0.0.0/24 private IP address class for PC clients.

6.1.3 Independent OS clients. The client VMs connect to OpenvSwitch through internal
network adapters. The adapters integrate into the switch as its ports. Each client VM requires
separate configuration of its corresponding adapter using the following commands:

$vboxmanage modifyvm Mininet -nicl intnet
$vboxmanage modifyvm Mininet -intnet] “intnet01”
$vboxmanage modifyvm Mininet —nicpromiscl allow-all

Based on those connections, the switch can interface with real independent OS client VMs
and access the Internet.

_intf = Intf(Cethl’, node = s1)

Because the clients do not depend on SDN topology installation, they could operate on any
kind of full featured OS, such as Windows, Linux, and even Mac or Android. Based on the
extension, we installed Windows 10 and Ubuntu 14.10 in the PC clients as requirements.

6.1.4 Automatic flow logging. Mininet provides some commands to manually check the
status of the switches and controller. It might be helpful for learning but is inadequate for
research activities because we would like to receive information systematically and exactly. In
the emulation network, we developed a flow logging function that helps to periodically export
the main status of flow entries in the switches and flow requests arriving at the controller. The
statistic request messages are sent to the switches at defined intervals.

body = of ofp_aggregate_stats_request()
body = of.ofp_flow_stats_request()

The handle functions are programmed to catch statistic report messages. Collected data are
processed to export useful information into logging files.

def _handle_AggregateFlowStatsReceived (self, event)
def _handle_FlowStatsReceived (self, event)

6.2 An example analysis
We defined three types of flow entry:

« Short entry: has hard timeout equal to 60 seconds and idle timeout equalto5
seconds.

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 15/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

Table 2. PC clients configurations.

PC client oS

IAD valid user Windows 10
pro

IAD zombie Windows 10
pro

Normal zombie | Windows 10
pro

Non-identified Ubuntu 14.10
user

New valid user | Windows 10
pro

doi:10.1371/journal.pone.0160375.t002

IP address | Actions

10.0.0.1/32

10.0.0.2/32

10.0.0.3/32

10.0.0.11/

24
10.0.0.5/32

Continuously sends IP packets to valid destinations on the Internet.

Sends IP packets to various non-valid destinations. For each destination, the IAD zombie sends only 1
packet. Waiting time between messages is 200ms.

Sends IP packets to various non-valid destinations. For each destination, the normal zombie sends only 1
packet. Waiting time between messages is 200ms.

Using the DDOSIM tool [37], continuously sends IP packets to webserver 10.0.0.101. The source IP
address was spoofed randomly in the range of 10.0.0.11/24. Waiting time between requests is 200ms.

Continuously sends IP packets to valid destinations on the Internet.

« Normal entry: has hard timeout equal to 60 seconds and idle timeout equalto 10
seconds.

o Block entry: has hard timeout equal to 3600 seconds.

To verify the work flow of the algorithm when processing each type of incoming packet at
the controller, we implemented a scenario that includes five clients, one for each user type. The
configurations for the five PC clients are given in Table 2. We pre-installed IP addresses
10.0.0.1, 10.0.0.2 into the IAD database as IAD valid users who were found and stored in the
normal traffic environment. The role of each PC client is described as follow:

o TIAD valid user (10.0.0.1/32) acts as a valid user all time.
« TAD zombie (10.0.0.2/32) changes from a valid user to a DoS attacker.
» Normal zombie (10.0.0.3/32) acts as a DoS attacker all time.

» Non-identified user (10.0.0.11/24) acts as a DDoS attacker who generates random IP sources
to flood faked packets into the network.

» New valid user (10.0.0.5/32) acts as a valid user who uses the network for the first time.

All PC clients are run at the same time. After that, we record the flow table status in two sce-
narios: using a normal POX controller and using an ASP-enabled controller.

The log file recorded in the ASP-enabled controller indicate that the IP addresses 10.0.0.3,
10.0.0.2 were detected as a normal zombie and an IAD zombie after 5 and 10 seconds, respec-
tively. The IP address 10.0.0.5 was recognized as a new valid user after 50 seconds.

Fig 7A represents the flow table in the switch under the control of the ASP-enabled control-
ler. The first two entries are block entries for the IAD zombie (10.0.0.2) and normal zombie
(10.0.0.3). The action parameter was set to “drop”, and the hard_timeouts are 3,600 sec-
onds. By duration 570s, more than 1,000 packets (i.e., equivalent to 1,000 meaningless data
flows) were dropped from each zombie. The fourth entry shows that the source IP address
10.0.0.5hashard timeout 60sand idle timeout I0s, which means that the address
was treated as a valid user (new valid user). Other IP addresses have hard timeout 10sand
idle timeout 5sas non-identified users (e.g., 10.0.0.162 in 10.0.0.11/24 class that is gener-
ated by non-identified user).

In contrast, Fig 7B describes the switches’ flow table under the control of the normal con-
troller. All flow entries have the same value of hard timeout 60sand idle timeout
10s, even for the zombies 10.0.0.2 and 10.0.0.3.

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 16/24

el e
@ ' PLOS ‘ ONE Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

The ASP-enabled controller blocks malicious traffic from the DoS attackers (IAD zombie
and normal zombie); the network no longer has to process their request and data packets.
Therefore, the ASP decreases the controller-switch bandwidth occupation and the number of
useless flow entries. Besides that, traffic from the DDoS attackers received short timeout
entries, so it will be removed very soon. However, the existing (IAD valid user) and new valid
users (new valid user) were still served as normal. In the mechanism, we manually configured
the timeout parameters of short entry, normal entry, and block entry. According to particular
environments and networking requirements, we can tune the timeouts for better performance.

6.3 Performance evaluation

To evaluate the algorithm’s performance, we pushed a huge volume of input data into the net-
work. Based on the experienced topology, we changed the emulation characteristics in the PC
clients. In the IAD valid user and new valid user’s PCs, we used half of the 100,000 captured
packets in the CAIDA Anonymized Internet Traces Dataset [38] for each (Table 3), see

S1 Dataset. First, to build the IAD table, we operated the IAD valid user’s PC to inject packets
into the network. Based on the algorithm, the controller recorded a list of source IP addresses
into the IAD table as IAD valid users. To emulate the IAD zombie data, we extracted 100 source
IP addresses from the IAD table and changed their behavior. Each IAD zombie address sent one
IP packet to all 100 random destinations. For normal zombies, we also chose 100 new source IP
addresses and assigned the same behaviors as for the IAD zombies. We sped the non-identified
users’ data by reducing the wait time between requests to 10ms and generating 10,000 packets to
the network (Table 2). The values of (hard timeout, idle timeout) for normal entry,
short entry, and block entry are given as (60, 5), (60, 1), and (3600, 0), respectively. We compare
the numerical results among the proposed ASP mechanism, proactive source based filtering
(SBF), reactive data flow analysis (DFA), and a normal POX controller.

cookie=0x0, duration=569.687s, table=0, n packets=1137, n bytes=84138, hard timeout=3600,

idle age=0, ip,nw _src=10.0.0.2 actions=drop

cookie=0x0, duration=575.012s, table=0, n packets=1150, n bytes=85442, hard timeout=3600,

idle age=0, ip,nw_src=10.0.0.3 actions=drop

cookie=0x0, duration=2.48s, table=0, n packets=1, n bytes=60, idle timeout=5, hard timeout=10,
idle age=2, ip,nw_src=10.0.0.162,nw dst=10.0.0.101 actions=output:1l

cookie=0x0, duration=28.053s, table=0, n packets=21, n bytes=1554, idle timeout=10,

hard timeout=60, idle age=2, ip,nw src=10.0.0.5,nw dst=165.194.1.2 actions=output:2

A

cookie=0x0, duration=0.282s, table=0, n packets=1l, n bytes=74, idle timeout=10,

hard timeout=60, idle age=0, ip,nw src=10.0.0.2,nw dst=10.0.3.228 actions=output:2
cookie=0x0, duration=7.033s, table=0, n packets=1l, n bytes=60, idle timeout=10,

hard timeout=60, idle age=7, ip,nw_src=10.0.0.124,nw dst=10.0.0.101 actions=output:1l
cookie=0x0, duration=52.098s, table=0, n packets=40, n bytes=2960, idle timeout=10,
hard timeout=60, idle age=1, ip,nw_src=10.0.0.5,nw _dst=204.154.94.73 actions=output:2
cookie=0x0, duration=53.256s, table=0, n packets=41, n bytes=3034, idle timeout=10,
hard timeout=60, idle age=1l, ip,nw_src=204.154.94.73,nw dst=10.0.0.5 actions=output:7
cookie=0x0, duration=0.624s, table=0, n packets=1l, n bytes=74, idle timeout=10,

hard timeout=60, idle age=0, ip,nw_src=I0.0.0.3,nw_dgt=10.0.3.225 agtions=output:2

B

Fig 7. Flow tables in the experimental OpenvSwitch. A) Under the control of the ASP-enabled controller. B) Under the control of the normal POX
controller.

doi:10.1371/journal.pone.0160375.9007

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 17/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

Table 3. A part of CAIDA Anonymized Internet Traces Dataset.

Total number of IP packets 100,000
Total number of IP addresses 11,011
Number of flows 5,957
Average number of packets/flow 14.58
Number of flows of the IP addresses with fewer than 3 flows or 3 packets/flow 5,233
Number of flows of the IP addresses with more than 3 flows and 3 packets/flow 724
Number of IP addresses with more than 3 packets/flow 5,037
Number of IP addresses with more than 3 flows and more than 3 packets/flow 118
Number of IP addresses with more than 3 flows and fewer than 6 flows with more than 3 packets/ 97
flow

doi:10.1371/journal.pone.0160375.t003

In proactive SBF, the filter sets a threshold for request packets arriving at the controller.
When the volume of request packets is below the threshold, the controller processes all request
packets without any changes. If the volume of request packets grows over the threshold, the
controller prioritizes request packets from IAD users first and drops other request packets that
exceed the threshold (referred to [6-8]).

Within the reactive DFA, in the first seconds, the controller does not have any knowledge
about the forwarded data; and thus it handles all request packets as normal and starts to learn
about user data behavior. Using its data traffic analysis over time (e.g., analyzing the number of
data packets in each flow of the users), the controller builds its own blacklist of sources that
generate abnormal traffic. Based on this blacklist, the controller is able to block most of DoS
attack flows (referred to [21]).

Fig 8 compares the number of flow entries in the OpenvSwitch among the 4 experimental
mechanisms. In the first second, the number of flow entries in the 4 controllers are almost the
same. Because the idle timeout of the short entry is set to 1s in the ASP mechanism, from
second 2, its number of flow entries in the switch increases more slowly than that in the other
mechanisms because of the volume of flow entries for non-identified users and DDoS attackers
being erased from the flow tables. Also, some source IP addresses from IAD zombies and nor-
mal zombies are detected and then blocked by the corresponding block entries. With the normal
POX controller, the number of flow entries in the switch increases very quickly from seconds 1
to 5. After second 5, the growth increases more slowly because the idle timeout for normal
entry starts to take effect. Some flow entries expire and are erased from the flow table. From sec-
ond 60 (equal to the hard timeout value), the number of flow entries in the switch has
become stable. The number of erased flow entries and newly issued flow entries are approximate
values. The gap between the number of flow entries in the switch within the ASP-enabled con-
troller and the normal POX controller comes from the erased short entries for non-identified
users and DDoS attackers and the block entries from IAD zombies and normal zombies.

In proactive SBF, the filter sets a threshold for request packets arriving at the controller.
When the volume of request packets is below the threshold, the controller processes all request
packets as normal. After second 50, the volume of request packets reaches the threshold; there-
fore, the controller prioritizes request packets from IAD users first and drops other request
packets that exceed the threshold. Within the reactive DFA, in the first seconds, the controller
does not have any knowledge about the forwarded data; it thus handles all request packets as
normal and starts to learn about user data behavior. Over time, using its data traffic analysis,
the controller builds its own blacklist of sources that generate abnormal traffic. Based on this
blacklist, the controller can block almost DoS attack flows. However, the controller cannot
adapt to issue appropriate flow entries for DDoS attacks.

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 18/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

4000 T T T T T T T T T

3500 /
[0}
[0}
S D
(% 30001 ,
[0}
£
£ 2500
[0}
.0
S 2000}
2
Ke)
‘s 15001
3
g 1000k —+—— The proposed ASP
g —©— The proactive SBF
= 500 —<— The reactive DFA

—H— Normal POX controller
1 1 | 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

Fig 8. Number of flow entries in the switch.

doi:10.1371/journal.pone.0160375.g008

Fig 9 shows the number of packets that a switch forwards to the controller. In the first sec-
ond, most new packets coming to the switch are forwarded to the controller; there is no signifi-
cant difference among the experimental mechanisms. During some early seconds, the number
of packets arriving at the ASP-enabled controller is even greater than at the other controllers
because the ASP-enabled controller assigns short entries for the first 3 flows of new valid users,
but they expire very soon, and the switch has to re-forward request packets to the ASP-enabled
controller. However in the next seconds, when the ASP-enabled controller detects IAD zom-
bies and normal zombies, it generates corresponding block entries for them. After that, all of
their incoming packets are dropped at the switch, and no more of their request packets are for-
warded to the ASP-enabled controller. The result is that the number of packets arriving at the
controller decreases since all the IAD zombies and normal zombies are blocked. The proactive
SBF does not reduce the number of request packets arriving at the controller, and it thus has
the same level as the normal POX controller. On the other hand, the reactive DFA obtains bet-
ter results than the proactive SBF. However, the DFA reacts only after making a data analysis,
whereas the ASP also uses the IAD trusted database, request packet behavior analysis, and the
ASP workflow to reduce its reaction time and improve its quality of detection. Therefore the
reactive DFA cannot achieve performance as high as that of ASP.

Table 4 presents a numerical result of the bandwidth occupation in the switches-controller
channels. The time records include initial period in 10 seconds (i.e., the ASP starts with an
assumption that all arriving unknown users are DDoS zombies), middle period in 50 seconds
(i.e., the ASP is collecting and analysing report data from the switches to issues corresponding
policies for each user type), and stable period (i.e., the ASP operation obtains stable state when
the number of arriving users and the number of processing users are equivalent). When the

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 19/24

el e
@ ' PLOS ‘ ONE Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

350 T T T T T T T T T
o
o
S 300y
Q
[&]
()
=
‘s 250
()
=
©
o 200
©
X
[$]
8
= 150
()
>
o
o
« 100F .
© —*— The proposed ASP
3 —©— The proactive SBF
§ 50} —v— The reactive DFA 4
o —&— Normal POX controller
-

0 1 1 1 | 1 | 1 | 1

0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

Fig 9. Number of request packets arriving at the controller.

doi:10.1371/journal.pone.0160375.g009

system achieves stable state, the proposed ASP decreases the occupied bandwidth down to
46.55%, 25.21%, and 46.55% compared to the proactive SBF, reactive DFA, and POX control-
ler, respectively.

The effectiveness of the ASP mechanism is shown in Table 5. The average number of flow
entries in the switch within the ASP-enabled controller is reduced up to 38.23% compared with
the normal POX controller. The average number of request packets arriving at the ASP-
enabled controller per second is reduced up to 36.17%.

Table 4. Bandwidth occupation in the switches-controller channels.

Time Proposed ASP (Kbps) Proactive SBF (Kbps) Reactive DFA (Kbps) POX controller (Kbps)
Initial period 1,263 1,234 1,234 1,234
Middle period 786 1,140 963 1,140
Stable period 605 1,132 809 1,132

doi:10.1371/journal.pone.0160375.t004

Table 5. Comparison between the experimental controllers.

Statistics Proposed ASP Proactive SBF Reactive DFA POX controller
Average number of flow entries 1,899 2,853 (| 33.40%) 2,626 (| 27.64%) 3,076 (| 38.23%)
Average number of request packets per second 176 275 (| 36.17%) 217 (1 19.15%) 275 (| 36.17%)

doi:10.1371/journal.pone.0160375.t005

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 20/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

6.4 Limitation and discussion

Through our experiment and analysis, we have realized that our proposed ASP mechanism still
has some limitations. Because the controller has to maintain the tables of source IP addresses
and seek an equivalent entry whenever a new forwarded packet arrives, it needs more time for
packet processing. Theoretically, this problem leads to greater delay time for the network to
handle its traffic. However, in SDN network, the controller can be deployed on high perfor-
mance server, the additional delay time is not significant. Moreover, we can reduce the effects
of the delay time by using an advanced search algorithm to improve the search time in the
table.

Second, the ASP mechanism generates overhead when the controller requests trigger reports
(to verify the data traffic behavior of a specific user) and periodic reports (to calculate the mini-
mum number of packets per successful connection—parameter n) from the switches. Hence,
we must to balance between report period and overhead to get the optimal benefit.

The third is about the assumption of user behaviors. In this paper, we start by using the
result in [21] as our initial assumption of user behaviors. However, the dependence to this
work is not considerable because we have compensated for this shortcoming to reduce the case
of false negative detection by using the proposed PHIF mechanism that adapts with the vari-
ance of different network environments and the novel ASP workflow that defines the non-
identified user type to first assign a short entry. After that, we checked their continuous flow
requests and data traffic behavior to determine the exact type of user.

The last limitation is that our mechanism has special effectiveness against DoS attacks, but
for DDoS attacks, the mechanism reduces only part of the effect by using the short timeout.
Thus, the ASP is not a complete solution for DDoS attacks. Fortunately, through our experi-
ments, our mechanism can integrate with other technologies without any conflict to provide a
total multi-tier solution.

As mentioned in the section 5, because the #; and d, are objective, for improving the perfor-
mance of the solution, (i) the short entry idle timeout, e, should be small as much as pos-
sible; and (ii) the normal idle timeout, e,, should be large as much as possible while
maintaining some transmission constraints. Therefore optimizing these parameters to achieve
an effective performance is one of our future research direction.

Moreover, recently, there are a lot of research results proposed in order to address the scal-
ability issues in SDN. Due to the fact that SDN controller is centralized for the SDN, we need
various algorithms in order to achieve high performance and scalability in large-scale networks
(e.g., convergent networks or data center networks) including clustering algorithms, distrib-
uted controlling techniques, NFV integrations. In this paper, we intend to propose an effective
approach which can protect the SDN network against DoS attacks where the SDN network has
already applied above solutions to ensure scalability feature. However, in order to extend the
contributions of our proposed solution, the scalability can also be introduced as main future
research topics.

7 Conclusion

The proposed ASP mechanism in this paper efficiently protects SDN-based convergent net-
works against DoS attacks. The mechanism uses a Probabilistic History-based IP Filtering tech-
nique for detecting user types and then applies the ASP mechanism along with suitable policies
for preventing the effects of DoS attacks. The proposed ASP mechanism is well suited against
DoS attacks and thus reduces a significant volume of DDoS§ attacks. In order to verify the per-
formance of our proposed ASP mechanism, intensive performance evaluation has been con-
ducted and the results show that the average number of flow entries in the switch and the

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 21/24

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

average number of request packets arriving at the ASP-enabled controller are reduced up to
38.23% and 36.17%, respectively. In future research, we will mitigate the aforementioned limi-
tations in Subsection 6.4 and expand the proposed solution to apply in other areas such as
application servers and data center.

Supporting Information

S1 Dataset. A part of CAIDA Anonymized Internet Traces Dataset.
(XLSX)

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers for their constructive
and invaluable comments.

Author Contributions
Conceptualization: NND.

Formal analysis: JK.

Investigation: NND SC.
Methodology: NND MP.
Supervision: MP SC.

Validation: MP SC.

Writing - original draft: NND.
Writing - review & editing: NND JK.

References

1. Opennetworking.org [Internet]. California: Open networking foundation [cited 2016 May 15]. Available:
https://www.opennetworking.org/sdn-resources/openflow.

2. YangM,LiY,JinD, Sul,Mas§, Zeng L. OpenRAN: a software-defined ran architecture via virtualiza-
tion. INACM SIGCOMM computer communication review 2013 Aug 12 (Vol. 43, No. 4, pp. 549-550).
ACM. doi: 10.1145/2486001.2491732

3. Gamperli A, Kotronis V, Dimitropoulos X. Evaluating the effect of centralization on routing convergence
on a hybrid bgp-sdn emulation framework. INnACM SIGCOMM Computer Communication Review 2014
Aug 17 (Vol. 44, No. 4, pp. 369-370). ACM. doi: 10.1145/2740070.2631458

4. SezerS, Scott-Hayward S, Chouhan PK, Fraser B, Lake D, Finnegan J, et al. Are we ready for SDN?
Implementation challenges for software-defined networks. Communications Magazine, IEEE. 2013 Jul;
51(7):36—43. doi: 10.1109/MCOM.2013.6553676

Kent S, Atkinson, R. IETF RFC 2402: IP authentication header. 1998 Nov.

6. Abdelsayed S, Glimsholt D, Leckie C, Ryan S, Shami S. An efficient filter for denial-of-service band-
width attacks. InGlobal Telecommunications Conference, 2003. GLOBECOM'03. IEEE 2003 Dec 1 (
Vol. 3, pp. 1353-1357). IEEE. doi: 10.1109/GLOCOM.2003.1258459

7. Gil TM, Poletto M. MULTOPS: a data-structure for bandwidth attack detection. INUSENIX Security
Symposium 2001 Aug 13 (pp. 23-38).

8. Mirkovi¢ J, Prier G, Reiher P. Source-end DDoS defense. InNetwork Computing and Applications,
2003. NCA 2003. Second IEEE International Symposium on 2003 Apr 16 (pp. 171-178). IEEE. doi: 10.
1109/NCA.2003.1201153

9. Abliz M. Internet denial of service attacks and defense mechanisms. University of Pittsburgh, Depart-
ment of Computer Science, Technical Report. 2011 Mar.

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 22/24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160375.s001
https://www.opennetworking.org/sdn-resources/openflow
http://dx.doi.org/10.1145/2486001.2491732
http://dx.doi.org/10.1145/2740070.2631458
http://dx.doi.org/10.1109/MCOM.2013.6553676
http://dx.doi.org/10.1109/GLOCOM.2003.1258459
http://dx.doi.org/10.1109/NCA.2003.1201153
http://dx.doi.org/10.1109/NCA.2003.1201153

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

Al-Duwairi B, Govindarasu M. Novel hybrid schemes employing packet marking and logging for IP tra-
ceback. Parallel and Distributed Systems, IEEE Transactions on. 2006 May; 17(5):403-18. doi: 10.
1109/TPDS.2006.63

Jalili R, Imani-Mehr F, Amini M, Shahriari HR. Detection of distributed denial of service attacks using
statistical pre-processor and unsupervised neural networks. Ininformation Security Practice and Expe-
rience 2005 Apr 11 (pp. 192-203). Springer Berlin Heidelberg. doi: 10.1007/978-3-540-31979-5_17

John A, Sivakumar T. Ddos: Survey of traceback methods. International Journal of Recent Trends in
Engineering. 2009 May; 1(2):241-5.

Wu YC, Tseng HR, Yang W, Jan RH. DDoS detection and traceback with decision tree and grey rela-
tional analysis. International Journal of Ad Hoc and Ubiquitous Computing. 2011 Jan 1; 7(2):121-36.
doi: 10.1504/IJAHUC.2011.038998

Osanaiye O, Choo KK, Dlodlo M. Distributed denial of service (DDoS) resilience in cloud: review and
conceptual cloud DDoS mitigation framework. Journal of Network and Computer Applications. 2016
May 31; 67:147-65. doi: 10.1016/}.jnca.2016.01.001

Osanaiye O, Cai H, Choo KK, Dehghantanha A, Xu Z, Dlodlo M. Ensemble-based multi-filter feature
selection method for DDoS detection in cloud computing. EURASIP Journal on Wireless Communica-
tions and Networking. 2016 May 10; 2016(1):1. doi: 10.1186/s13638-016-0623-3

Gonzalez JM, Anwar M, Joshi JB. A trust-based approach against IP-spoofing attacks. InPrivacy,
Security and Trust (PST), 2011 Ninth Annual International Conference on 2011 Jul 19 (pp. 63—-70).
IEEE. doi: 10.1109/PST.2011.5971965

Mizrak AT, Savage S, Marzullo K. Detecting compromised routers via packet forwarding behavior. Net-
work, IEEE. 2008 Mar; 22(2):34-9. doi: 10.1109/MNET.2008.4476069

Park K, Lee H. On the effectiveness of route-based packet filtering for distributed DoS attack prevention
in power-law internets. INACM SIGCOMM computer communication review 2001 Aug 27 (Vol. 31, No.
4, pp. 15-26). ACM. doi: 10.1145/383059.38306

Zargar ST, Joshi JB. A collaborative approach to facilitate intrusion detection and response against
DDoS attacks. InCollaborative Computing: Networking, Applications and Worksharing (Collaborate-
Com), 2010 6th International Conference on 2010 Oct 9 (pp. 1-8). IEEE. doi: 10.4108/icst.
collaboratecom.2010.46

Zhou P, Luo X, Chen A, Chang RK. STor: Social Network based Anonymous Communication in Tor.
arXiv preprint arXiv:1110.5794. 2011 Oct 26.

Peng T, Leckie C, Ramamohanarao K. Protection from distributed denial of service attacks using his-
tory-based IP filtering. INnCommunications, 2003. ICC’03. IEEE International Conference on 2003 May
11 (Vol. 1, pp. 482-486). |EEE. doi: 10.1109/ICC.2003.1204223

Wang H, Jin C, Shin KG. Defense against spoofed IP traffic using hop-count filtering. IEEE/ACM Trans-
actions on Networking (ToN). 2007 Feb 1; 15(1):40-53. doi: 10.1109/TNET.2006.890133

Kim'Y, Lau WC, Chuah MC, Chao HJ. PacketScore: a statistics-based packet filtering scheme against
distributed denial-of-service attacks. IEEE transactions on dependable and secure computing. 2006
Apr 1; 3(2):141. doi: 10.1109/TDSC.2006.25

Liu HI, Chang KC. Defending systems against tilt DDoS attacks. InTelecommunication Systems, Ser-
vices, and Applications (TSSA), 2011 6th International Conference on 2011 Oct 20 (pp. 22-27). IEEE.
doi: 10.1109/TSSA.2011.6095400

Ranjan S, Swaminathan R, Uysal M, Nucci A, Knightly E. DDoS-shield: DDoS-resilient scheduling to
counter application layer attacks. IEEE/ACM Transactions on Networking (TON). 2009 Feb 1; 17
(1):26-39. doi: 10.1109/TNET.2008.926503

Ashraf J, Latif S. Handling intrusion and DDoS attacks in Software Defined Networks using machine
learning techniques. InSoftware Engineering Conference (NSEC), 2014 National 2014 Nov 11 (pp. 55—
60). IEEE. doi: 10.1109/NSEC.2014.6998241

Kreutz D, Ramos F, Verissimo P. Towards secure and dependable software-defined networks. InPro-
ceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking 2013
Aug 16 (pp. 55-60). ACM. doi: 10.1145/2491185.2491199

Shin S, Song Y, Lee T, Lee S, Chung J, Porras P, et al. Rosemary: A robust, secure, and high-perfor-
mance network operating system. InProceedings of the 2014 ACM SIGSAC conference on computer
and communications security 2014 Nov 3 (pp. 78-89). ACM. doi: 10.1145/2660267.2660353

Porras P, Shin S, Yegneswaran V, Fong M, Tyson M, Gu G. A security enforcement kernel for Open-
Flow networks. InProceedings of the first workshop on Hot topics in software defined networks 2012
Aug 13 (pp. 121-126). ACM. doi: 10.1145/2342441.2342466

Shin S, Porras PA, Yegneswaran V, Fong MW, Gu G, Tyson M. FRESCO: Modular Composable Secu-
rity Services for Software-Defined Networks. INNDSS 2013 Feb.

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 23/24

http://dx.doi.org/10.1109/TPDS.2006.63
http://dx.doi.org/10.1109/TPDS.2006.63
http://dx.doi.org/10.1007/978-3-540-31979-5_17
http://dx.doi.org/10.1504/IJAHUC.2011.038998
http://dx.doi.org/10.1016/j.jnca.2016.01.001
http://dx.doi.org/10.1186/s13638-016-0623-3
http://dx.doi.org/10.1109/PST.2011.5971965
http://dx.doi.org/10.1109/MNET.2008.4476069
http://dx.doi.org/10.1145/383059.38306
http://dx.doi.org/10.4108/icst.collaboratecom.2010.46
http://dx.doi.org/10.4108/icst.collaboratecom.2010.46
http://dx.doi.org/10.1109/ICC.2003.1204223
http://dx.doi.org/10.1109/TNET.2006.890133
http://dx.doi.org/10.1109/TDSC.2006.25
http://dx.doi.org/10.1109/TSSA.2011.6095400
http://dx.doi.org/10.1109/TNET.2008.926503
http://dx.doi.org/10.1109/NSEC.2014.6998241
http://dx.doi.org/10.1145/2491185.2491199
http://dx.doi.org/10.1145/2660267.2660353
http://dx.doi.org/10.1145/2342441.2342466

@’PLOS ‘ ONE

Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks

31.

32.

33.

34.

35.

36.

37.
38.

Wen X, Chen Y, Hu C, Shi C, Wang Y. Towards a secure controller platform for openflow applications.
InProceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking
2013 Aug 16 (pp. 171-172). ACM. doi: 10.1145/2491185.2491212

Shin S, Yegneswaran V, Porras P, Gu G. Avant-guard: Scalable and vigilant switch flow management
in software-defined networks. InProceedings of the 2013 ACM SIGSAC conference on Computer &
communications security 2013 Nov 4 (pp. 413-424). ACM. doi: 10.1145/2508859.2516684

Kotani D, Okabe Y. A packet-in message filtering mechanism for protection of control plane in openflow
networks. InProceedings of the tenth ACM/IEEE symposium on Architectures for networking and com-
munications systems 2014 Oct 20 (pp. 29—40). ACM. doi: 10.1145/2658260.2658276

Open Networking Foundation. Software-defined networking: The new norm for networks. ONF White
Paper. 2012 Apr 13.

Shin S, Gu G. Attacking software-defined networks: A first feasibility study. InProceedings of the sec-
ond ACM SIGCOMM workshop on Hot topics in software defined networking 2013 Aug 16 (pp. 165—
166). ACM. doi: 10.1145/2491185.2491220

Open Networking Foundation. Specification OS Version 1.5.1. 2015 Mar.
DDOSIM tool. [cited 2015 Nov 23]. Available: http://sourceforge.net/projects/ddosim/

Walsworth C, Aben E, Claffy K, Andersen D. The CAIDA UCSD anonymized Internet traces 2015 [cited
2015 Nov 23]. Available: http://www.caida.org/data/passive/passive_2015_dataset.xml

PLOS ONE | DOI:10.1371/journal.pone.0160375 August 5, 2016 24 /24

http://dx.doi.org/10.1145/2491185.2491212
http://dx.doi.org/10.1145/2508859.2516684
http://dx.doi.org/10.1145/2658260.2658276
http://dx.doi.org/10.1145/2491185.2491220
http://sourceforge.net/projects/ddosim/
http://www.caida.org/data/passive/passive_2015_dataset.xml

