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Abstract

In smart manufacturing, production machinery and auxiliary devices, referred to as industrial Internet of things (IIoT),
are connected to a unified networking infrastructure for management and command deliveries in a precise production
process. However, providing autonomous, reliable, and real-time offloaded services for such a production is an open
challenge since these IIoT devices are assumed lightweight embedded platforms with limited computing performance.
In this paper, we propose a pattern-identified online task scheduling (PIOTS) mechanism for the networking infrastruc-
ture, where multi-tier edge computing is provided, in order to handle the offloaded tasks in real-time. First, historical
IIoT task patterns in every timeslot are used to train a self-organizing map (SOM), which represents the features of
the task patterns within defined dimensions. Consequently, offline task scheduling among edge computing-enabled
entities is performed on the set of all SOM neurons using the Hungarian method to determine the expected optimal
task assignments. In real-time context, whenever a task arrives at the infrastructure, the expected optimal assign-
ment for the task is scheduled to the appropriate edge computing-enabled entity. Numerical simulation results show
that the proposed PIOTS mechanism overcomes existing solutions in terms of computation performance and service
capability.
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1. Introduction

Recently, smartization in manufacturing has been
considered as one of major trends realizing the fourth
industrial revolution [1]. In the smart factory, produc-
tion machinery and auxiliary devices, which are referred
to as industrial Internet of things (IIoT), maintain per-
manent connections to a unified networking infrastruc-
ture, where Internet service is available. In this environ-
ment, all of the connected IIoT devices acquire mutual
cooperation with each other and they request the work-
ing commands from central management entities in the
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network. For instance, precise production processes re-
quire trigger feedback from control entities to adjust re-
actions of machines and robots if an unexpected issue
occurs. Another example is when smoke is detected
in a warehouse, a real-time shutdown command should
be immediately dispatched to electrical working chains,
and a real-time activation command should force the
fire extinguishing system to be activated [2]. However,
since these IIoT devices are assumed to be lightweight
embedded platforms with limited computing resources,
it is inappropriate to execute real-time services using its
own power of the devices.

Fortunately, thanks to the advances of the emerging
fifth-generation (5G) technologies, the 5G mobile edge
computing (MEC) can provide autonomous, reliable,
and real-time offloaded services for these IIoT devices
and applications. Defined by the European telecommu-
nications standards institute (ETSI), the MEC provides
cloud-computing capabilities and an IT service environ-
ment at the edge of the network [3]. To be more spe-
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cific, multi-tier MEC (mMEC) is a virtualized hierar-
chical MEC framework where edge computing-enabled
entities (ECEs) are layered according to its computing
performance. The operation of mMEC framework is
supervised by a central orchestrator [4]. The orches-
trator schedules the tasks offloaded from IIoT devices
among ECEs in order to maximize computation perfor-
mance and decrease energy consumption while keeping
the IIoT applications’ requirements.

Aiming at this objective, we propose a pattern-
identified online task scheduling (PIOTS) mechanism
for the mMEC framework in smart factory for handling
the offloaded IIoT tasks in real-time. First, historical
IIoT task patterns in every timeslot are used to train a
self-organizing map (SOM), which represents the fea-
tures of the task patterns within defined dimension [5].
As a result, a set of typical SOMs for IIoT task patterns
are identified. At the beginning of each timeslot, offline
task scheduling among ECEs is performed on the neu-
ron set of the typical SOM using the Hungarian method
to determine expected optimal task assignments. There-
after, whenever a task arrives at the mMEC framework,
the task is matched into the current SOM to find the best
matching SOM neuron for it. Based on that, the ex-
pected optimal assignment for this matched SOM neu-
ron is scheduled for the task, assigning to appropriate
ECE in online manner. The main contributions of this
paper are three-fold:

• First, expected optimal assignments are sched-
uled for offloaded IIoT tasks arrived at the mMEC
framework in real-time. In other words, a task as-
signment delay is reduced significantly.

• Second, the duration of task assignment calcula-
tion is decreased because this operation works on
the SOM neuron set within defined dimension. The
neuron set is a representative of the historical in-
coming tasks, which is not greater than the size of
real task patterns in each timeslot. As a result, the
computational complexity and calculation latency
are reduced as well.

• Third, the expected optimal task assignment cal-
culation is performed independently on the task
scheduling timeline. Therefore, the task assign-
ment can be operated continuously in real-time
without waiting for the task assignment calculation
to be completed.

The remainder of this paper is organized as follows.
Section 2 surveys the state-of-the-art related work. Sec-
tion 3 describes the proposed pattern-identified online

task scheduling mechanism in detail. Section 4 provides
the system setup, evaluation methodology, and evalua-
tion metric definitions. Based on that, the performance
of the PIOTS mechanism in comparison to other tech-
niques is analyzed in Section 5. Finally, the paper is
concluded in Section 6.

2. Related Work

Optimal task assignments in multi-tier edge com-
puting have been classified into three main categories:
latency awareness, energy awareness, and quality-of-
services (QoS) awareness including their variants [6, 7].

The latency-aware approaches focus on minimizing
execution latency of the task offloaded to the edge
servers. The execution latency involves three portions:
transmission duration from the IIoT devices to the edge
servers, queuing and processing duration at the edge
servers, and return duration for successful reception of
the result in the IIoT devices [8, 9]. The mMEC frame-
work can be designed and supported by several emerg-
ing technologies such as network functions virtualiza-
tion (NFV) and software defined networking (SDN).
In [10], Dao et al. proposed an adaptive balancing
scheme (ARB) to distribute tasks among edge servers
in the remote radio heads in order to improve the ser-
viceability of the network, especially in term of task
execution latency. The ARB scheme combines the
Hungarian method and the backpressure algorithm for
this purpose. In [11], Mao et al. aim at reducing
the task execution latency by using a low-complexity
Lyapunov optimization-based dynamic computation of-
floading (LODCO) algorithm. The LODCO algorithm
handles CPU utilization in the edge servers according to
the task arrival. On the other hand, Liu et al. [12] con-
sidered application buffer queuing state, available com-
puting powers, and channel quality to conduct the opti-
mal offloading decision. The tasks will be assigned to
the edge servers if the total execution latency made by
the edge server is shorter than the duration spent to exe-
cute the task locally by the IIoT devices. Otherwise, the
IIoT devices will execute their tasks themselves.

The energy-aware approaches aim at minimizing en-
ergy consumption for task execution in edge comput-
ing. Typically, the energy consumption is considered
on task delivery and task computation. In [13], an en-
ergy reduction method was proposed based on the Bak-
Tang-Wiesenfeld sandpile. When an edge server ex-
ceeds a certain capacity threshold, it collapses and initi-
ates an avalanche of migrating tasks in order to balance
the workload among edge servers. The achievement re-
sults in a significant reduction in task assignment errors
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and redundancy, which dominant the overhead of en-
ergy consumption. On the other hand, You et al. [14]
considered the transmission energy for multiple IIoT
devices offloaded tasks to the edge computing frame-
work. The optimal solution was developed and resolved
so as to minimize the weighted sum mobile energy con-
sumption under the constraint on computation latency.
In [15], the problem of interdependent task scheduling
was addressed within an edge system of deep memory
hierarchies to obtain energy efficiency. The intermedi-
ate data of the tasks are prioritized and assigned at ap-
propriate levels of cache memory to optimize latency
and energy in data access. In order to make the offload-
ing decision, Li et al. formulated the problem in a 0-
1 nonlinear integer programming with a consideration
of channel interference threshold and the time deadline
[16]. Based on that assumption, a reverse auction based
offloading policy has been proposed to obtain energy ef-
ficiency improvement for task execution.

The QoS-aware approaches consider multiple criteria
of IIoT service requirements such as execution latency,
service availability, transmission throughput, and secu-
rity as trade-off problems, which have to be optimized.
In [17], a distributed optimization algorithm that coop-
erated among edge servers, called offload forwarding, is
proposed by using the distributed alternating direction
method of multipliers (ADMM) via variable splitting
to maximize QoS and energy efficiency. For focusing
on maximizing the transmission throughput for task of-
floading, Vu et al. [18] utilize the Hungarian method
to optimize the downlink sum-rate in fog computing-
enabled networks. On the other hand, Zeng et al. [19]
proposed a security-aware and budget-aware workflow
scheduling strategy (SABA), which considers the task
distribution among providers to achieve cost effective
and secure services in the context of convergent net-
work. This strategy is applicable to the edge comput-
ing environment where edge servers act the role of ser-
vice providers for offloaded tasks from the IIoT devices.
Within the same purpose, Xu et al. proposed the green
offloading (GO) scheme [20] that uses the reverse auc-
tion theory to develop the offloading decision while sat-
isfying the user quality of services (QoS) requirements,
bandwidth, and the maximum transmit power.

Although the existing approaches have significantly
contributed to improve the performance of the edge
computing, most of existing approaches face a draw-
back in online task handling, where the tasks that ar-
rive at the edge framework have to be queued before the
scheduling decision made. This givening generates sig-
nificant latency, especially in cases of smart manufac-
turing, where real-time response requirement is a cru-

...

...

...

Internet

mMEC

AP/SW AP/SW AP/SW

Router Router
Local 

servers/storages

IIoT devices

Orchestrator

Figure 1: System model where the IIoT devices are supported by the
mMEC framework in smart manufacturing environment.

cial criterion for precise production processes. In the
next Section, our proposed PIOTS mechanism, which
overcomes these issues, is described in detail.

3. Pattern Identified Online Task Scheduling

3.1. Basic Assumptions

In this paper, we consider a networking infrastruc-
ture for smart manufacturing where mMEC framework
is covered. Machinery and auxiliary devices participate
in a smart production process generate their IIoT tasks
and offload them to the mMEC framework for central-
ized handling. The IIoT tasks are processed and re-
sponded to the IIoT devices on demands. Typically, the
production process operates continuously in a long du-
ration (e.g., weeks, months, and even years). Therefore,
we assume that the IIoT task patterns maintain their per-
manent trends even though instant tasks are generated
randomly by the IIoT devices. In this circumstance,
real-time response is considered as a crucial require-
ment for precise productions. Figure 1 illustrates the
system model where the IIoT devices are supported by
the mMEC framework in smart manufacturing environ-
ment. The IIoT devices are connected to the network
via wireless access points (APs) and switches (SWs).
The mMEC framework consists of APs/SWs, routers,
and local servers/storages, which have various comput-
ing capacities. In a mMEC framework, all these ECEs
are managed and scheduled their computations by a cen-
tral device named orchestrator.
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Figure 2: Self organizing map (SOM).

3.2. Self Organizing Map

Self organizing map is an artificial neural network
(ANN) that utilizes unsupervised learning on the high-
dimensional data to produce a defined low-dimensional
representation called map, see Figure 2. Each SOM is
formed by a defined number of neurons, which reflect
the map dimension. The operation of the SOMs in-
cludes two modes: training and mapping. The training
mode develops a map based on the input set of tasks.
Meanwhile, the mapping mode is used for classifying
new arrived tasks.

The SOM algorithm to train the map is iterated by
two steps after Initialization as follows:

Initialization: Assume that there are n tasks in
the input set X, wherein each task i (1 ≤ i ≤
n) is characterized by l features forming a corre-
sponding vector −→xi =

[
fi1, fi2, . . . , fil

]
. Accord-

ingly, each neuron j in the SOM (1 ≤ j ≤ k)
has a l-dimensional weight vector −→w j, where −→w j =[
w j1,w j2, . . . ,w jl

]
. To start the SOM algorithm in

order to train the map, each neuron initiates its own
weight vector with random values. Afterwards,
two the steps below are contiguously repeated for
each task in the X. In detail, for task i, the SOM
algorithm performs:

• Step 1 (Matching): Euclidean distance between
task i and each neuron in the SOM is calculated
in order to find the best matching unit. The best
matching unit for the task i is the neuron

−→
w∗i , which

has the smallest Euclidean distance to the task i. In

other words,
−→
w∗i is given by

−→
w∗i = arg min

∀ j,1≤ j≤k

√√√ l∑
s=1

( fis − w js)2. (1)

• Step 2 (Neuron update): All neurons in the neigh-
borhood of neuron

−→
w∗i update their weight vectors

to be closer to task i by

−→w j(t + 1) = −→w j(t) + θ(t) · µ(t) · (−→xi −
−→w j(t)), (2)

where −→w j(t) is the weight vector of neuron j at this
iteration t. θ(t) is the neighborhood function, which
is diminished every iteration. θ(t) determines the
distance from neuron

−→
w∗i to define the neighboring

neurons. µ(t) is the learning factor, which calcu-
lates the amount of effect from the input task i to
the neuron j based on distance between them [21].
The mathematical expressions of θ(t) and µ(t) are
described as follows:

θ(t) = exp

− |
−→
w∗i |

2

2σ2(t)

, (3)

µ(t) = µ0 × exp
(
−

t lg(R)
|X|

)
, (4)

where R is the maximum radius from the center of
the map (i.e., 0.5 max{MapWidth,MapHeight})
and σ(t) is the neighborhood radius that is given
by

σ(t) = R × exp
(
−

t2 lg(R)
|X|

)
. (5)

3.3. Pattern Identified Online Task Scheduling

In this section, we describe the PIOTS mechanism in
detail. The rationale behind the PIOTS includes three
steps: (i) identifying the set of typical SOMs for IIoT
task patterns, (ii) calculating expected optimal task as-
signment on the typical SOM prior to each timeslot, and
(iii) online assigning new arrived tasks to appropriate
ECEs. Steps (i) and (ii) are in offline mode and step (iii)
is in online mode.

3.3.1. Offline Mode
Typical SOM identification: In terms of task execu-

tion offloading, a IIoT task i is characterized by a four-
dimensional feature vector as given by

−→xi , [ui, ci, ri, τi] , (6)
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Figure 3: IIoT task arrival and PIOTS operation timeline.

where ui, ci, ri, and τi are relative task size, relative av-
erage processing complexity, relative response size, and
relative execution deadline compared to their mini-
mum and maximum values of all trained tasks, respec-
tively. As aforementioned in Section 3.1, the produc-
tion process operates continuously during a given pe-
riod. Within each timeslot in this period, given that there
are an average number Nx tasks in the set X(t) of IIoT
tasks offloaded to the mMEC framework, the number k
of neurons in the SOM is selected as

k =

⌊
1
λ

Nx

⌉
, λ ≥ 1, (7)

where b·e is the nearest integer function, and λ is a scale
level, which supports reduction of the SOM size. Based
on these settings, the k-neuron two-dimensional SOM is
trained using all offloaded IIoT tasks in the given period.
For each distinctive period, we obtain a typical trained
SOM to represent the offloaded IIoT tasks. A distinctive
period is defined as a cycle of the offloaded IIoT task ar-
rival, after this duration the task arrival is repeated again
in terms of volume and characteristics.

Expected optimal task assignment calculation:
Figure 3 describes the PIOTS operation timeline in a
random IIoT task arrival context. Prior to timeslot t, the
PIOTS mechanism performs the H(t) function at t−∆t in
order to determine the expected optimal task assignment
during timeslot t. The H(t) function uses the Hungarian
method [22] to address the expected optimal task as-
signment problem between the neuron set of the typical
SOM in timeslot t and the current ECE set. The result of
H(t) function will be applied for online task assignment
in the whole duration from timeslot t to timeslot t + 1
even though the H(t+1) function will start at (t+1)−∆t.

The expected optimal task assignment problem is de-
fined as “Given the current performance status (i.e.,
task buffer and CPU frequency) of ECEs and the trans-
mission status (i.e., access data rate between IIoT de-
vices and the mMEC framework and forwarding data
rate among ECEs), minimize the total latency of task

execution when assigning the neuron set of the typical
SOM to the ECEs”.

The expected optimal task assignment problem can
be formulated as follows. Let W and M denote
the set of k neurons in the SOM and the set of m
ECEs in the mMEC framework, respectively. Since
the SOM neurons have trained by using the historical
tasks, the weight vector of the neuron reflects the av-
erage values of the task features, accordingly. That is,
w j1,w j2,w j3, and w j4 in the weight vector −→w j of neuron
j reflect the average values of the relative task size, rel-
ative average processing complexity, relative response
size, and relative execution deadline, respectively. Let
the current buffer size of tasks waiting for processing in
ECE s be bs CPU cycles. Hence, the total latency L js

when neuron j is assigned to ECE s is as follows.

L js =
w j1 + w j3

ra js︸      ︷︷      ︸
(a)

+
bs

Cs︸︷︷︸
(b)

+
w j1w j2

Cs︸  ︷︷  ︸
(c)

+
w j1 + w j3

rb js︸      ︷︷      ︸
(d)

, (8)

where Cs, ra js, and rb js are the CPU frequency of ECE
s in Hz, the access data rate from the IIoT device that
owned task j to the network in bps, and the internal for-
warding rate to the ECE s in bps, respectively. Equa-
tion (8) consists of (a) uploading latency, (b) queuing
latency, (c) task processing latency, and (d) response la-
tency. The access data rate ra js is given by

ra js = BW js log2(1 + SINR j), (9)

where BW js and SINR j are the bandwidth allocated for
the IIoT device and the channel quality between the IIoT
device and the network, respectively. Based on that, the
expected optimal task assignment problem (F ) can be
described by

(F ) minimize :
k∑

j=1

m∑
s=1

z jsL js (10)

s.t. z js ∈ {0, 1}, (11)
L js ≤ w j4, (12)

k∑
j=1

z js = 1, ∀s = 1, 2, · · · ,m, , (13)

where the indicator z js is given by

z js ,

1 if neuron j is assigned to ECE s
0 otherwise.

(14)

Constraint (13) ensures that a neuron could only be as-
signed to one ECE and the maximum matchings are es-
tablished for all m neurons of the SOM.
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Algorithm 1 Pseudocode of function H(·).
1: Generate a square latency matrix V fromW andM.
2: In each row, subtract all entries by the smallest row entry.
3: In each column, subtract all entries by the smallest column entry.
4: Find the minimum number υ of rows and columns that cover all

zero entries.
5: If υ == |V |, the optimal solution is found.
6: If υ < |V |,

Find the smallest entry γ in the matrix,
Subtract all uncovered rows by γ,
Add all covered columns by γ,
Return to Line (4).

Table 1: Simulation parameters

Parameter Value
Orchestrator configuration CPU: Intel Core

i5-6400 2.7GHz;
RAM: 16GB

Number of ECEs 20
CPU frequency of ECEs {1.5, 2.5, 5.0, 10.0, 25.0}

GHz
Number of IIoT devices 300
Task processing complexity {10, 50, 100, 500, 1000}

cycles/bit
Execution deadline 0.5 – 1.5 s
Timeslot duration 0.1 s
Simulation duration 300 timeslots

It is observed that task assignment problem F re-
gards a bipartite graph of two setsW andM. We apply
the Hungarian method (referred as H(·)) on the graph
to achieve the optimal solution. Function H(·) is per-
formed as follows (see Algorithm 1):

• Augment the latency matrix of all possible task
assignments from neuron set W to ECE set M
into a square matrix (named V) with dimension
max(|W|, |M|) by supplementing additional en-
tries of constant number (e.g., 0).

• In each row of V , subtract the smallest row entry
from all of the row entries. Similarly, in each col-
umn of V , subtract the smallest column entry from
all of the column entries.

• Find the minimum number υ of rows and columns
by which all zero entries are covered.

• If υ is equal to the size of V , the optimal solution is
found. Pick up a set of 0 entries satisfying in which
no more than two 0 entries are in the same row or
column. Otherwise, if υ is less than the size of V ,
determine the smallest entry γ that is uncovered in
the previous step. Afterwards, subtract γ from all

uncovered rows and add γ to all covered columns.
Return to the previous step to find the minimum
number υ again.

For each timeslot, function H(·) is calculated prior ∆t
before the beginning of the timeslot in order to find the
expected optimal task assignment solution.

3.3.2. Online Mode
Online task assignment: In online mode, when an

IIoT task arrives at the mMEC framework, the task is
matched to the SOM so as to seek the best matching
neuron, using Equation 1 with the computational com-
plexity of O(1). According to the optimal assignment
for the found neuron that was determined by function
H(·) in the offline mode, this assignment is performed
on the arrived IIoT task immediately.

4. Evaluation Preparations

4.1. System Settings

In order to evaluate the performance of the PIOTS
scheme, we considered a network model, where the
mMEC framework consists of 20 ECEs equipped with
various CPU frequencies of {1.5, 2.5, 5.0, 10.0, 25.0}
GHz. Total number of IIoT devices associated to the
network is 300. The task processing complexity is de-
termined as {10, 50, 100, 500, 1000} cycles/bit derived
from the practical analysis presented in [23]. Execu-
tion deadline is randomly set within (0.5, 1.5) s. Lastly,
timeslot duration is set to 0.1 s. These simulation pa-
rameters are summarized in Table 1.

In terms of task and response size settings, we derived
these parameters from a part of the CAIDA anonymized
Internet traces data set [24]. The CAIDA dataset con-
tains anonymized passive traffic traces from the equinix-
chicago Internet data collection monitor located at an
Equinix datacenter in Chicago, IL, on high-speed Inter-
net backbone links. Table 2 shows statistical indexes
of the task samples used for SOM training and system
evaluation. The tasks are selected for three types of traf-
fic as follows:

• Environmental sensor data: The information of en-
vironmental conditions is reported to central appli-
cations in the mMEC framework during each fixed
period. The task size is configured within constant
and small dimension, and these tasks do not require
response from the applications.
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Table 2: Statistical indexes of task samples for SOM training and sys-
tem evaluation.

Index Value
Number of tasks 120000
Min, max, and average values of
task sizes

{129, 512, 316.45} Kb

Min, max, and average values of
response sizes

{0, 32, 15.47} Kb

• Video surveillance data: Live streaming data from
monitoring cameras is delivered to surveillance ap-
plications in the mMEC framework for video anal-
ysis and storage. These tasks are packetized in
fixed and large size. The response data might be
issued from the applications if there are any alarms
that should be announced.

• Production control data: These data are generated
by the machinery during precise production pro-
cesses. The tasks are regularly offloaded to the
mMEC framework within a determined size. Tasks
require responses from the applications to exactly
handle production work.

4.2. Evaluation Methodology

Within the aforementioned system settings, our pro-
posed PIOTS scheme has been compared to the offline
Hungarian task assignment (OHTA) algorithm and the
online greedy task assignment (OGTA) algorithm. Ini-
tially 30,000 samples of the selected tasks derived from
the CAIDA data set are used to train the SOM in the
PIOTS scheme. Then, 90,000 other samples are used
for evaluation; see Table 2. The operations of these
schemes are described as follows:

• The PIOTS scheme is performed as shown in Sec-
tion 3.3.

• The OHTA algorithm gathers all arrived tasks at
the input buffer of the mMEC framework during
one timeslot. At the end of each timeslot, Hungar-
ian method is utilized to decide the optimal task
assignment for all tasks in this timeslot [22].

• The OGTA algorithm determines an ECE, which
provides the lowest latency for task execution fol-
lowing equation 8, for the arrived task [25].

The simulation results are logged in terms of task ex-
ecution latency and execution error rate. The execution
error rate evaluates ratio of the over-deadline task exe-
cutions and the total offloaded tasks.
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Figure 4: PIOTS scheme vs. Optimal solution for objective function
F .

5. Numerical Result Analysis

First, the proposed PIOTS scheme is compared to the
optimal solution of the objective function F . The op-
timal solution for the integer programming problem F
used in this paper is a combination of Hungarian method
and backpressure algorithm [10]. Figure 4 illustrates
outcomes of F depending on various IIoT task arrivals
through 300 timeslots. Numerical results reveal that the
PIOTS scheme provides an approximate performance
compared to the optimal solution. The differential in
average task processing latency is 0.159 ms. It is worth
noting that the PIOTS scheme performs the expected
task assignment based on the typical task set derived
from SOM map; then, it does real task assignment on-
line. Moreover, the SOM map is trained by using the
collected IIoT tasks arrived at the network in the past.
Therefore, within a sufficient number of neurons in the
SOM map that well represents for the typical charac-
teristics of the incoming IIoT tasks, the mMEC frame-
work can classify the incoming tasks immediately and
then it handles the tasks by approximately optimal as-
signment. That is, each incoming task is immediately
assigned to appropriate ECE right after the task arrives
at the network. Meanwhile, the optimal solution is cal-
culated based on the set of gathered IIoT tasks in each
timeslot.

Table 3 shows statistical indexes of time consump-
tion in ms for task assignment decision of the orches-
trator when applying the PIOTS, OHTA, and OGTA
schemes, respectively. The average decision making du-
ration that the PIOTS scheme consumes is 0.038 ms,
which is smaller than the OHTA scheme’s 100.1027 ms
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Table 3: Time consumption in ms for task assignment decision of the
orchestrator.

Scheme Mean Std. deviation Std. error mean
PIOTS 0.0380 0.00242 0.00011
OHTA 100.1407 0.00265 0.00012
OGTA 0.0025 0.00111 0.00005

(approximate 2635 times of reduction) and greater than
the OGTA scheme’s 0.0355 ms (approximate 15 times
of increase). The reason is because the PIOTS scheme
calculates Equation 1 for all neurons in the SOM map,
while the OHTA scheme must wait until the end of each
timeslot to calculate the optimal solutions. The OGTA
scheme achieves the smallest duration since it performs
Equation 8 for only 20 ECEs and selects the smallest
latency value. Although there is a differentiate between
the PIOTS and OGTA schemes, the average values are
considered to insignificantly affect the task processing
latency. The standard deviation and standard error mean
show that all schemes are performed in stable condition.

Figure 5 demonstrates a comparison of the average
task processing latency when applying three competi-
tors (PIOTS, OHTA, and OGTA). The PIOTS scheme
achieves an effective performance since the typical task
set is used to pre-determine expected task assignment
for incoming tasks. Meanwhile, the OHTA scheme per-
forms task assignment based on the gathered incoming
tasks during each timeslot. Although the OHTA scheme
provides better adaptation to varying task arrivals, it
must wait until the end of each timeslot to collect the
tasks and then determine optimal assignment. On the
other hand, the OGTA scheme greedily assigns tasks
to the ECEs of lowest latency. In statistic perspective,
for average take processing latency, the PIOTS scheme
overcomes the OHTA scheme and the OGTA scheme by
41.47% and 4.47%, respectively.

In order to evaluate the service capability of the net-
work, we utilize the execution error rate, which is de-
fined by the percentage of deadline-violated IIoT de-
vices in the total associated devices in the network. Fig-
ure 6 shows simulation results corresponding to three
thresholds of execution deadline including 0.5 s, 1.0 s,
and 1.5 s as aforementioned in the system settings; see
Table 1. During 300 simulated timeslots, the execu-
tion error rates for 0.5-second deadline are approximate
among PIOTS, OHTA, and OGTA schemes (0.970%,
0.976%, and 0.977%, respectively). Meanwhile, in term
of 1.5-second deadline, the PIOTS scheme decreases
the execution error rate to 0.826% (approximate 5.7%
and 1.2% decreases compared to the OGTA and OHTA
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Figure 5: Average latency of task processing.
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Figure 6: Percentage of deadline-violated IIoT devices.

schemes, respectively). This analysis demonstrates that
the PIOTS scheme provides better balanced task distri-
bution among ECEs in order to satisfy task execution
deadlines.

Figure 7 plots average buffering latency for IIoT tasks
arrived at the ECEs during 100, 200, and 300 times-
lots. Since the arrived task volume has been config-
ured to over-capacitate the ECE performances leading
to a saturated condition in the network, buffering la-
tency increases by timeslot. It is observed that the
OGTA scheme makes significant buffering latency in
every timeslots. On the other hand, the PIOTS scheme
achieves the lowest buffering latency by 44.33% and
4.32% in timeslot 300, compared to the OGTA scheme
and OHTA scheme, respectively. Figure 8 depicts the
reason for that. The y-axis represents the assigned task
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Figure 7: Average buffering latency for IIoT tasks arrived at the ECEs.

Figure 8: Task distribution among ECEs.

volume in Gigacycles (a.k.a. computational CPU cy-
cles) among ECEs, which is given by a production func-
tion of task size and task processing complexity for all
assigned tasks in each ECE. In the OGTA scheme, the
arrived tasks are assigned more equally among ECEs
(represented by the width of the box plotted) in com-
parison with other schemes. Since the PIOTS scheme
and OHTA scheme are able to adapt task distribution
according to the diversity of ECE computation perfor-
mances, they provide better task assignments resulting
in lower buffering latency.

6. Concluding Remarks

In this paper, a pattern-identified online task schedul-
ing mechanism has been proposed to deliberate on real-

time task assignment in the smart manufacturing sys-
tem. The proposed PIOTS scheme utilizes SOM tech-
nology for task identification and then assigns the task
to appropriate ECE by using the Hungarian method.
Simulation results demonstrate that the PIOTS scheme
overcomes the existing algorithms in terms of task pro-
cessing latency and service capability for satisfying IIoT
applications. In future research, individual requirements
of IIoT applications will be considered and verified via
several popular datasets within the purpose of achieving
the optimal performance for task handling in the entire
network. Moreover, a consideration of applying game-
theoretic approach should be studied to develop a dis-
tributed computational mMEC framework.
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