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SGCO: Stabilized Green Crosshaul Orchestration
for Dense IoT Offloading Services

Nhu-Ngoc Dao, Duc-Nghia Vu, Woongsoo Na, Joongheon Kim, Sungrae Cho

Abstract—The next generation mobile network anticipates
integrated heterogeneous fronthaul and backhaul technologies
referred to as a unified crosshaul architecture. The crosshaul
enables a flexible and cost-efficient infrastructure for handling
mobile data tsunami from dense Internet of things (IoT). How-
ever, stabilization, energy efficiency, and latency have not been
jointly considered in the optimization of crosshaul performance.
To overcome these issues, we propose an orchestration scheme re-
ferred to as the stabilized green crosshaul orchestration (SGCO).
SGCO utilizes a Lyapunov-theory-based drift-plus-penalty policy
to determine the optimal amount of offloaded data that should
be processed either at the eastbound or westbound computing
platforms to minimize energy consumption. To achieve system
stability, the cache buffer is considered as the main constraint
in developing the optimization process. Moreover, the amount
of offloaded data transmitted via crosshaul links is selected
by adopting the binary min-knapsack problem. Accordingly, a
lightweight heuristic algorithm is proposed. As the cache buffer is
stabilized and the computations are controlled, the SGCO ensures
adjustable computing latency threshold for various IoT services.
The performance analysis shows that the proposed SGCO scheme
exposes effective energy consumption compared to other existing
schemes while maintaining system stability considering latency.

Index Terms—crosshaul computing, energy efficiency, cache
stability, latency awareness, dense IoT.

I. INTRODUCTION

The exponential growth of big data generated from dense
Internet of things (IoT) systems entails a variety of novel
technologies in the fifth generation (5G) networks. Among
these, network softwarization and cloudization are considered
as two prime contributors, which support scalable network
virtualization and computation offloading services for massive
IoT devices, respectively [1]. Based on these advantages,
5G networks have introduced crosshaul as an innovative
architecture design, which aims at a smooth integration of
heterogeneous fronthaul and backhaul technologies and ser-
vices. The crosshaul enables a flexible and software-defined
reconfiguration of all networking elements in a unified hauling
environment [2]. As specified by the 5G-Crosshaul project in
the European Union’s Horizon 2020 Programme [3], crosshaul
interconnects mobile edge nodes (e.g., remote radio heads,
5G points of attachment (5GPoA), and edge servers) in the
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eastbound computations and points-of-presence of the core
networks and services in the westbound computations. As a
result, high-capacity transmission links and boundary compu-
tations are delivered, characterizing the 5G crosshaul.

Despite these supportive features, stabilization, energy effi-
ciency, and latency have not been jointly considered to opti-
mize the crosshaul performance, especially for dealing with the
rapid emergence of dense IoT systems. The stability indicates
an ability of the system in handling internal parameters against
the change of external impacts in order to maintain computa-
tion offloading service available. In particular, either local task
execution in individual IoT devices or external computation
offloading to the eastbound computing is a big challenge
owing to resource constraints. Further, remote computation
offloading to westbound computing platforms results in time
and energy consumption problems, which are not acceptable
for time-sensitive and green IoT applications. For instance,
smart manufacturing systems, in which more than 10,000 IoT
devices are deployed to a dense factory site, are expected
to continuously generate dozens of gigabytes per second of
traffic volume into the network. The huge traffic overloads any
typical edge server in the eastbound platforms. From another
perspective, the traffic consumes extremely large amounts of
transmission resources on the crosshaul links as well as time
and energy resources of the cloud in the westbound platforms
[4]. In the context of such big IoT data paradigm, a flexible
orchestration between eastbound and westbound computations
of the crosshaul is necessary to serve the user applications with
their diverse demands.

A. Literature Review

This literature review focuses on the existing schemes [5]–
[14] that handle the offloaded data from the IoT devices to the
network. These schemes can be classified into three categories:
energy efficiency [5]–[8], quality of services (QoS) [9]–[11],
and offloading latency [12]–[14]

Approaches aiming at energy efficiency [5]–[8] consider the
energy consumption of offloaded data execution as their objec-
tive function. For instance, Mao et al. [5] proposed a dynamic
computation offload assignment policy, which is based on the
task failure metric to minimize the CPU-frequency utilization
of edge servers and transmit power for data offloading in the
eastbound computations. Dinh et al. [6] proposed task allo-
cation and computational CPU frequency-scaling techniques
to minimize the energy consumption for offloading operation
among edge/cloud servers. In addition, several approaches that
resolve the joint optimization problem of energy efficiency
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and computing latency have been proposed by exploiting
specific characteristics of their applying scenarios [7], [8].
Nevertheless, the above-mentioned approaches locally target
on either the eastbound or westbound computations separately.

QoS-based approaches [9]–[11] target at providing a maxi-
mum number of massive IoT devices in obtaining a fair chance
to utilize the crosshaul computing services, i.e., offloading
serviceability. In [9], Dao et al. proposed an adaptive resource
balancing scheme, which utilizes the Hungarian method and
backpressure algorithm to balance and maximize networking
serviceability in the eastbound computations. Quality-aware
traffic offloading approach [10] provides an incentive mech-
anism to motivate edge/cloud servers with better computing
power to support lower-computing-capable servers to obtain
offload balance among the servers as well as to maximize
offload service availability. In [11], cache size in 5GPoA is
considered as the representative of system stability to de-
velop a stochastic decision-making algorithm for distributing
offloaded data in the eastbound computations. Despite their
achievable merits, the aforementioned schemes are incom-
prehensive solutions as they optimize the offloading services
only for IoT device satisfaction. Therefore, resource utilization
inside edge/cloud or crosshaul computations might not be
sufficiently considered and suffers from inefficiency problems.
Particularly, the severity of the problem intensifies for big data
in the dense IoT networks.

In latency-oriented approaches [12]–[14], offloaded data-
assignment optimization among edge/cloud servers is one of
the most important targets. For instance, the index-based task
assignment policy [12] minimizes the waiting and execution
times of workloads by modeling an edge/cloud server by using
the discrete-time Markov decision process. The approach is
transformed into index policies for optimal task assignment
and power-delay tradeoff. In [13], various IoT applications of
offloaded data were considered to select appropriate cloudlet
services for reducing the application execution latency and
computation costs. In addition, machine learning can be
utilized to identify the offloading patterns [14]. Based on
the patterns, an optimal task assignment is precalculated to
provide approximate optimal online task scheduling in an
eastbound computing platform. However, the shortcoming of
these schemes is that for achieving minimal latency, the
networks possibly undergo energy consumption overheads.
Furthermore, the cloud suffers from inefficient utilization due
to high latency. This leads to imbalance in the crosshaul
computing framework.

Although the literature comprises many studies regarding
upstream-data offloading optimization, most previous tech-
niques have focused on separate computing domains, i.e.,
mobile edge computing in the eastbound platforms or re-
mote cloud computing in the westbound platforms. One-
side computing optimizations are inappropriate against the
recent emergence of the big data paradigm in dense IoT
networks, in which the heterogeneity and massiveness of IoT
applications still remain an open challenge. By exploiting the
merits of crosshaul infrastructure, we propose a stabilized
green crosshaul orchestration (SGCO), which harmonizes the
computation capabilities of mobile edges and cloud to provide

a green computational framework in both the eastbound and
westbound platforms by strictly considering system stability
and characteristics of IoT services (such as workload com-
plexity, size, and latency threshold).

B. Main Contributions

The main contributions of this paper are summarized as
follows.
• SGCO is proposed as a novel crosshaul computing

orchestration; it aims at time-average minimization of
energy consumption in upstream data offloading over the
crosshaul network. As the cache buffer is stabilized and
the computation powers are controlled, the SGCO pro-
vides adjustable computing latency threshold for various
IoT services.

• From a systematic perspective, the crosshaul computing
orchestration is considered as a two-tier queuing system
representing the computation capabilities of both east-
bound and westbound computations, respectively. During
each time unit, the data bifurcation to the eastbound and
westbound is decided based on a balancing consideration
of system stability, energy consumption, and workload
execution complexity.

• From a technological perspective, the adaptive compu-
tation optimization of SGCO is developed using the
Lyapunov theory. Depending on the current cache buffer
size and offloaded data rate, the optimal amount of pro-
cessing data as well as CPU frequencies at the eastbound
and westbound are calculated following the drift-plus-
penalty (DPP) expression policy. Furthermore, for the
amount of workload transmitted over the crosshaul links,
a data reduction technique is applied by considering the
workload execution complexity through a binary min-
knapsack problem (minKP).

• From an analytical perspective, we analyzed the verifica-
tion of the SGCO scheme, which possesses a low com-
plexity in both the time and space domains. Moreover, the
simulation results show that the SGCO scheme achieves
significant performance improvements in terms of energy
consumption as well as cache buffer stability.

II. CROSSHAUL COMPUTING FRAMEWORK

In this section, we investigate the SGCO crosshaul comput-
ing model adopting the 5G-Crosshaul architecture [2], which
harmonizes both the eastbound and westbound computations
for the upstream data offloading process. The eastbound com-
putation includes cache buffers and edge servers located at
the 5GPoA in proximity to user devices, while the westbound
computation includes the cloud located at the Internet/cloud
service providers. Crosshaul links interface between the east-
bound and westbound computations, as depicted in Fig. 1. The
bottom portion of Fig. 1 shows the network model of layered
connections among participants (i.e., IoT devices, edges, and
cloud) in the entire network, while the top portion shows
an abstraction of data processing and transfer harmonized
by the SGCO crosshaul computing framework. Referred to
the 5G-Crosshaul architecture, the SGCO schemes should
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Fig. 1. SGCO computing framework for upstream IoT data offloading.

be implemented in the virtual infrastructure manager (VIM)
entities to handle computing resources of the crosshaul.

A. Computational Model

In terms of computation offloading, a workload can be
characterized by a tuple of three parameters: its own upstream
data size in bits, computational complexity in cycles/bit, and
response data size in bits obtained as a result of the workload
computation; these are respectively denoted as 〈ui, ci, ri〉 for
the i-th workload. Among these parameters, the upstream data
size ui of a workload is considered to be equal to the total
workload size if the transmission used is file-transfer type;
otherwise, it is considered to be equal to the data block size if
the transmission used is stream-transfer type. The workload
computation complexity ci , which varies depending on the
application, can be predetermined based on several discrete
levels through practical evaluation and classification in offline
analysis [15].

In this paper, the energy in Joules consumed by a dele-
gated computing server (i.e., edge server or the cloud) during
one computing cycle adopts the widely accepted model of
κ f 2[t] [16], where κ is the energy coefficient factor specified
for each particular CPU reference architecture and f [t] is
the CPU frequency at unit time t. Accordingly, the energy
consumption during unit time t for workload execution at the
edge server and cloud are given by

Ee[t] = κe f 2
e [t]µe[t], 0 ≤ µe[t] ≤ fe[t] ≤ Fe and (1)

Ec[t] = κc f 2
c [t]µc[t], 0 ≤ µc[t] ≤ fc[t] < ∞, respectively,

(2)

where Fe is the maximum CPU frequency supported by
the edge server. µe[t] and µc[t] are the virtual offloaded
data rates in the computing cycle unit assigned to the edge
server and cloud during unit time t, respectively. The virtual
offloaded data rate is the summation of multiplications be-
tween the upstream data rate and computational complexity
of each workload. We assume that the cloud, which provides
adjustable CPU frequency, adapts to the amount of virtual
offloaded data rate by using the dynamic voltage and frequency
scaling (DVFS) technique [17]. Moreover, the CPU frequency

adjustability, if possible, is considered as an advanced feature
in the edge sever [5].

B. Cache Buffer

To ensure generality, we independently consider upstream
traffic as a stochastic process. The access uplink from IoT
devices to the 5GPoA has a permanent bandwidth of ω for
achieving an upstream data rate of γ[t] during unit time t. By
using the Shannon–Hartley formula, we derive the maximum
upstream data rate Γ that might arrive at the 5GPoA during
each unit time as ω log(1 + SINRmax), where SINRmax is the
maximum signal-to-interference-plus-noise ratio of the IoT
devices associated with the 5GPoA. Although γ[t] is an unpre-
dictable parameter, Γ is a constant upper-bounded threshold.
The maximum value SINRmax is obtained when an ideal
environment condition occurs. In other words, SINRmax =

gp
N0

,
where g, p, and N0 are the channel gain, maximum transmit
power of the IoT devices, and background noise, respectively.
Therefore, a necessary condition for system stability is that the
obtained cache buffer should be deployed to satisfy at least a
Γ bit-size during each unit time.

There are N[t] workloads in workload set N[t], which
reached the cache buffer during unit time t. Thus, γ[t] can also
be derived from the summation of all upstream data sizes of
the workload

∑N [t]
i=0 ui obtained during unit time t. Therefore,

the virtual upstream data rate λ[t] in the computing cycle unit
during unit time t is given by

λ[t] =
N [t]∑
i=0

ui × ci . (3)

Accordingly, the current virtual cache buffer size b[t] in the
computing cycle for the 5GPoA at unit time t is obtained as

b[t] = b[t−1]+λ[t−1]−(µe[t−1]+µc[t−1]), t = 1, 2, 3, . . . (4)

and b[0] = 0 at the initial time point. It is true that the virtual
offloaded data rates to the edge server and cloud cannot exceed
the total amount of virtual upstream data rate and cached data
at the buffer from the previous time unit. Therefore, µe[t] +
µc[t] ≤ b[t − 1] + λ[t], ∀t, and thus b[t] ≥ 0, ∀t.

C. Crosshaul Transmission

The crosshaul links interconnect the eastbound and west-
bound computations. We denote the available crosshaul band-
width at timeslot t by BW[t]. In addition, we assume that the
offloaded data to the cloud can be immediately transmitted
over the crosshaul links without any scheduling latency [2],
[3], [18]–[20].

III. PROBLEM FORMULATION

A. Workload Execution in SGCO

Considering the SGCO softwarization at unit time t, the
cumulative energy consumption during [0, t] is given by∑t
τ=0(Ee[τ] + Ec[τ]). It is true that minimizing the energy
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consumption during [0, t] is equivalent to minimizing the time-
average energy consumption during that time. In other words,
we have

min :
t∑
τ=0
(Ee[τ] + Ec[τ]) ≡ min :

1
t

t∑
τ=0
(Ee[τ] + Ec[τ]). (5)

With respect to the time and space cache buffer stability, the
energy-efficient SGCO problem in the infinite timing scale can
be generalized as

(F1) min
fe [t], fc [t],µe [t],µc [t]

: lim
t→∞

1
t

t∑
τ=0
(Ee[τ] + Ec[τ]) (6)

s.t. (1), (2),

lim
t→∞

b[t]
t

< ∞. (7)

Constraint (7) ensures that the cache buffer is stabilized in
both the time and space domains.

B. Crosshaul Transmission

Given that µ∗c[t] is the optimal solution of the virtual
offloaded data rate assigned to the cloud at unit time t, which
is derived from minimizing function F1, µ∗c[t] should be
transferred to the cloud over the crosshaul links for execution.
However, µ∗c[t] is measured in terms of computing cycle units,
which is inappropriate for measuring transmission cost. In
addition, the transmission costs of energy and latency increase
proportionally with the bit-sized amount of data transmitted.
The set and number of workloads that should to be transferred
to the cloud in unit time t are denoted by Nc[t] and Nc[t],
respectively. Considering the properties of both the upstream
and response data, the transmission cost minimization problem
can be expressed as

(F2) min
Nc [t]

:
Nc [t]∑
i=0
(ui + ri) (8)

s.t. Nc[t] ∈ N[t], (9)
Nc [t]∑
i=0
(ui × ci) = µ∗c[t] + ε[t], ε ∈ Z, (10)

|ε[t]| < max{ui × ci |∀i = 1, 2, . . . , N[t]}. (11)

Constraints (10) and (11) ensure that the total computing cycle
required for the selected workloads is close to the optimal
virtual offloaded traffic.

IV. CROSSHAUL COMPUTATION OPTIMIZATION

A. Joint Optimization Transformation

Consider the SGCO softwarization depicted in Fig. 1; the
cache buffer in the 5GPoA operates as a queuing system,
which is characterized by an arrival rate of approximately λ[t]
and a departure rate of approximately (µe[t]+µc[t]) at timeslot
t. Recall that λ[t], µe[t], and µc[t] are measured in computing
cycle units. Let B[t] be a state vector of the cache buffer at
timeslot t, which is defined by

B[t] , {b[τ]|τ = 1, 2, 3, . . . , t}. (12)

Following the Lyapunov theory [21], the quadratic Lya-
punov function L[t], which represents a scalar measure of the
cache buffer size during [0, t], is given by

L[t] , 1
2
B>[t]B[t] = 1

2

t∑
τ=1

b2[τ], (13)

where B>[t] is the transpose vector of B[t]. The change of
L[t] from timeslot t to t + 1 is defined by

∆L[t] , E(L[t + 1]|B[t]) − L[t], (14)

which is known to be the Lyapunov drift at timeslot t, where
E(·) is a conditional expectation. The conditional expected
Lyapunov drift E(∆L[t]|B[t]) has been proven to be bounded
above as follows [22]:

E(∆L[t]|B[t]) ≤ C + b[t](λ[t] − (µe[t] + µc[t])), (15)

where C is a determinable finite constant value. Therefore, we
achieve cache buffer stabilization when minimizing b[t](λ[t]−
(µe[t] + µc[t])).

Further, the goal of optimization problem F1 is to accommo-
date IoT devices with a minimal computation energy consump-
tion in online situations while maintaining the cache buffer
stabilized. Fortunately, an (approximately) optimal solution
can be achieved by greedily minimizing the bound on the
corresponding DPP policy P1 at each timeslot t [21], which
is defined by

P1 , V(Ee[t] + Ec[t]) + b[t](λ[t] − (µe[t] + µc[t])), (16)

where V is the positive control factor. In policy P1, (Ee[t] +
Ec[t]) is the objective function (referred to as the penalty) and
b[t](λ[t]−(µe[t]+µc[t])) represents the key constraint of cache
buffer stabilization (named as the drift). Finally, optimization
problem F1 can be transformed into a joint optimization
problem F3 as follows:

(F3) min : P1 (17)
s.t. (1), (2), (7).

Moreover, we show that the optimal value of the controllable
CPU frequency and virtual offloaded data rate are approximate
in each timeslot by using the following theorem.

Theorem 1: Given the virtual offloaded data rate µ[t]
in computing cycles at timeslot t, the optimal value of the
controllable CPU frequency f ∗[t] required for a computing
agent to achieve the minimum energy consumption E∗[t] for
an execution of µ[t] is equal to µ[t].

Proof: From (1) and (2), E∗[t] = κ( f ∗[t])2µ[t]. Following
the constraint f [t] ≥ µ[t], a necessary and efficient condition
for the achievable minimum value E∗[t] of the energy con-
sumption is that the controllable CPU frequency is calibrated
down to its minimum value, i.e., f ∗[t] = µ[t]. As a result,
E∗[t] = κ( f ∗)3[t]. �

B. Case 1: Uncontrollable-CPU-Frequency Edge Server
Condition expression (C1): As the cloud can adapt the CPU

frequency according to the amount of offloaded traffic, the
condition uncontrollable-CPU-frequency edge server leads to

(C1)
{

fe[t] = Fe,

fc[t] = µc[t],
∀t. (18)
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Within condition C1, optimization problem F3 is updated as

(F3−1) min
µe [t], fc [t]

: V(κeF2
e µe[t] + κc f 3

c [t])

+ b[t](λ[t] − (µe[t] + fc[t])) (19)
s.t. µe[t] + fc[t] ≤ b[t] + λ[t], (20)

b[0] = 0, (21)
0 ≤ µe[t] ≤ Fe, (22)
0 ≤ fc[t] ≤ BW[t], (23)
µe[t], fc[t] ∈ N. (24)

In F3−1, the objective function is used to minimize the sum-
mation of a linear polynomial function of µe[t] and a cubic
polynomial function of fc[t], while the constraints adopt the
Karush–Kuhn–Tucker (KKT) conditions. The detailed solving
process for this problem is described in [23], and has thus been
omitted from the scope of this paper. The optimal amount of
traffic offloaded to the edge server is denoted by µ∗e[t]. The
conditionally optimal solutions are provided as follows:

f ∗c [t] = min

√

b[t]
3Vκc

, b[t] + λ[t],BW[t]
 , (25)

µ∗e[t] = arg min
ϕ1,ϕ2

{F3−1}, (26)

where

ϕ1 ,


µ∗e[t] =

√
b[t]

3Vκc , if VκeF2
e ≥ b[t] & Fe ≥

√
b[t]

3Vκc

µ∗e[t] = Fe , if VκeF2
e < b[t] & Fe ≥

√
b[t]

3Vκc
(27)

ϕ2 ,


µ∗e[t] = 0 , if VκeF2

e ≥ b[t]

µ∗e[t] = min
{
Fe,

√
b[t]

3Vκc

}
, otherwise.

(28)

C. Case 2: Controllable-CPU-Frequency Edge Server

Condition expression (C2): Both the edge server and cloud
can adapt the CPU frequency according to the amount of
offloaded traffic, and therefore the condition controllable-
CPU-frequency edge server is represented by

(C2)
{

fe[t] = µe[t],
fc[t] = µc[t],

∀t . (29)

Condition C2 for optimization problem F3 leads to the
closed form expression given as

(F3−2) min
fe [t], fc [t]

: V(κe f 3
e [t] + κc f 3

c [t])

+ b[t](λ[t] − ( fe[t] + fc[t])) (30)
s.t. (21), (23), (24),

fe[t] + fc[t] ≤ b[t] + λ[t], (31)
0 ≤ fe[t] ≤ Fe . (32)

The objective function F3−2 is used to minimize the summation
of the two cubic polynomial functions of fe[t] and fc[t].
Within the same constraint characteristics as that of F3−1,

Algorithm 1 Crosshaul Computation Optimization.
• Input:

b[0] = 0;
Observe λ[t];
• Output:

f ∗e [t], µ∗e[t], f ∗c [t], µ∗c[t];
1: Repeat each timeslot t

Case 1: f∗e [t] = Fe and f∗c [t] = µ∗c[t]

2: Calculate

√
b[t]

3Vκc
, b[t] + λ[t], and

√
VκeF2

e

3κc
;

3: µ∗e[t] and f ∗c [t] are given by Eq. 25;
4: b[t] = b[t] + λ[t] − (µ∗e[t] + µ∗c[t]);

Case 2: f∗e [t] = µ∗e[t] and f∗c [t] = µ∗c[t]

5: Calculate

√
b[t]

3Vκc
,

√
b[t]

3Vκe
, b[t] + λ[t], and ψ;

6: f ∗e [t] and f ∗c [t] are given by Eq. 33;
7: b[t] = b[t − 1] + λ[t] − (µ∗e[t] + µ∗c[t]);

End

problem F3−2 can be resolved by the conditionally optimal
solutions as follows:

{ f ∗e [t], f ∗c [t]} = arg min
ω1,ω2,ω3

{F3−2}, (33)

where

ω1 ,

{
f ∗e [t] = 0,
f ∗c [t] = 0,

(34)

ω2 ,


f ∗c [t] = min

{
b[t] + λ[t] −

√
b[t]

3Vκe ,
√

b[t]
3Vκc ,BW[t]

}
,

f ∗e [t] = min
{√

b[t]
3Vκe , Fe

}
,

b[t] + λ[t] ≥
√

b[t]
3Vκc ,

(35)

ω3 ,




f ∗e [t] = min{Fe, b[t] + λ[t] − f ∗c [t]},
f ∗c [t] = min{b[t] + λ[t], ψ,BW[t]},
ψ = max

{
9V 2κeκc (b[t]+λ[t])2−3Vκe (b[t]+λ[t])

3V (κc−κe ) , 0
}
,

κe ≤ κc,
f ∗e [t] = min{Fe, b[t] + λ[t] − f ∗c [t]},

f ∗c [t] = min

{
arg min

0,b[t]+λ[t]
F3−2,BW[t]

}
,

κe > κc .

(36)

The corresponding pseudo-code for the crosshaul com-
putation optimization is presented in Algorithm 1. Optimal
frequencies f ∗e [t] and f ∗c [t] for CPU adjustments are deter-
mined in the edge server and cloud, respectively. Moreover,
the amounts of offloaded traffic in the computing cycle unit
assigned for the edge server and cloud are µ∗e[t] and µ∗c[t],
respectively.
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V. CROSSHAUL TRANSMISSION OPTIMIZATION

As analyzed in Section III-B, the goal of optimization
function F2 is to minimize the amount of offloaded traffic in
the bit-size unit from the cache buffer at the 5GPoA via the
crosshaul links to the cloud. It is assumed that the cloud has
an input memory for buffering the incoming traffic, wherein
the possible overhead of the incoming traffic can be scheduled
when ε[t] ≥ 0. Therefore, constraints (10) and (11) in F2 can
be relaxed by a lower bound of the total computing cycle µ∗c[t]
at timeslot t. Consequently, the minimization problem can be
transformed into the following function:

(F4) min :
N [t]∑
i=0

xi(ui + ri) (37)

s.t. xi ∈ {0, 1}, (38)
N [t]∑
i=0

xi(ui × ci) ≥ µ∗c[t]

− ©­«
N [t−1]∑
j=0

xj(u j × cj) − (µ∗c[t − 1] − δ[t − 1])ª®¬︸                                                   ︷︷                                                   ︸
δ[t]

,

(39)

where N[0] = 0, µ∗c[0] = 0, and δ[0] = 0. In constraint (39),
δ[t] represents the remaining traffic scheduled in the previous
timeslot t − 1.

Theorem 2: The possible overhead of the incoming traffic
is less than the maximum computing cycles required by a
workload in the incoming workload set.

Proof: The reductio ad absurdum method is used to prove
Theorem 2. Nc[t] is the optimal set of workloads satisfying
minimization function F4. If the overhead of the incoming
traffic is greater than or equal to the maximum computing
cycles required by a workload in N[t], we have

Nc [t]∑
i=0

xi(ui×ci)−(µ∗c[t]−δ[t]) ≥ max{ui×ci |∀i ∈ N[t]}. (40)

However, when we drop an arbitrary workload, e.g., the k-th
workload from Nc[t],

Nc [t]\{k }∑
i=0

xi(ui × ci) − (µ∗c[t] − δ[t]) ≥

≥ max{ui × ci |∀i ∈ N[t]} − (uk × ck)︸                                         ︷︷                                         ︸
≥0,∀k

. (41)

Therefore, the set of workload Nc[t] \ {k} still satisfies
constraint (39). This implies that Nc[t] is not the optimal set
of workloads for minimization function F4. In other words,
the overhead of the incoming traffic cannot be greater than
or equal to the maximum computing cycles required by a
workload in the incoming workload set. �

From another perspective, it is recognized that function
F4 is a minKP problem [24], in which the workloads are
selected to achieve minimal bit-sized traffic while maintaining
a computing cycle unit of at least µ∗c[t] − δ[t]. In relevant

Algorithm 2 Crosshaul Transmission Optimization.
• Input: N[t]
• Output: Nc[t]

1: Function DESCENDING(N[t]) by {ui × ci} indexing;
2: for (i = 0, i < |N[t]|, i + +) do
3: Nc[t] ← {i |i ∈ N[t]};
4: if Constraint (39) is true then
5: Break;

End

literature, a variety of solutions have been proposed to solve
such a minimization problem, including both exact and ap-
proximate solutions [25]. However, as minKP is considered as
an NP-hard problem, the computational complexity of existing
approaches still remains an open challenge, which may not be
appropriate for application in resource-constrained equipment
such as 5GPoA. Moreover, (uk ×ck) �

∑Nc [t]
i=0 xi(ui×ci), ∀k ∈

Nc[t] in massive IoT environments. Hence, the minimization
problem F4 can be resolved through an approximate solution
by using a greedy heuristic algorithm, in which the incom-
ing workloads are sorted in the descending order to select
the maximum-required-computing-cycle workloads, assuming
constraint (39) and Theorem 2 are satisfied. The corresponding
scheme is presented in Algorithm 2.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

As expressed in Section IV, the minimization problem
F3−1 is a combination of cubic function fc[t] and linear
function µe[t], whereas the minimization problem F3−2 is in
the form of two cubic functions fe[t] and fc[t]. As depicted in
Algorithm 1, the conditionally optimal solutions for these two
problems are calculated based on the given parameters (i.e., V ,
κe, κc , and Fe) and observed parameters (i.e., b[t] and λ[t])
by using normal operations. Therefore, the time complexity
of the solutions can be identified as O(1). Moreover, since
Algorithm 1 iterates its operations in each timeslot, the inter-
mediate values are overwritten in its occupied memories for
each iteration. Hence, the space complexity is O(1).

Additionally, although the crosshaul transmission optimiza-
tion F4 is considered to be a min-KP problem, as stated in
Section V, an approximate solution can be achieved using
a simple sorting algorithm in the descending order (see Al-
gorithm 2). Based on the method in [26], the array-sorting
algorithm might introduce time and space complexities of
O(n log(n)) and O(1), respectively, where n is the number
of workloads in the cache buffer during one timeslot. In
summary, the proposed SGCO scheme supports time and space
complexities of O(n log(n)) and O(1), respectively.

VII. PERFORMANCE EVALUATION

A. Simulation Settings

Simulation model and initial parameters: For the simu-
lations, we used a network model, as depicted in Fig. 1. The
offloaded data parameters generated from the IoT devices are
deployed as follows. During each timeslot unit, there is an
arbitrary number of IoT devices in the range of [500, 1000]
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that require computation offloading services, and each IoT
device transmits a workload within a size of 50–100 KB
to the network for processing, representing various services
such as environmental sensor reading, auto machinery, and
navigation systems. In this context, given a computational
complexity set of {10, 20, 50, 100} cycle/bit, which we can
obtain through practical experiences and classifications, as in
[27], each workload is mapped to a computational complexity
in this set. After execution, the SGCO returns the response
data of each workload to the corresponding IoT device. The
maximum CPU frequency of the edge server is setup equal to
(100 + 10)% of the average virtual upstream data rate µe[t]
that is handled by the edge with 10% redundancy. On the
contrary, the CPU at the cloud is flexibly adjusted to be equal
to the current data rate µc[t] that is offloaded to the cloud
owing to the virtualization ability. Without loss of generality,
the energy coefficient factors κe and κc are assumed to be
5 × 10−25 and 4 × 10−25 (owing to the virtualization ability)
[27], respectively.

Competitor definition: For performance comparison, we
additionally considered five benchmark schemes including
energy-efficient edge server optimization (EE), arrival-aware
offloading scheme (AA), complexity-aware offloading scheme
(CA), maximum edge computing exploitation (ME), and re-
mote cloud offloading scheme (RC) [5], [28], [29]. Detailed
descriptions of these schemes are as follows:

• Energy-efficient edge server optimization (EE) scheme:
The EE scheme minimizes the energy consumption uti-
lized for workload computing by scheduling the CPU core
operations at the edge server. The number of activated
CPU cores depends on the workload arrival rate.

• Arrival-aware offloading (AA) scheme: The AA scheme
adapts the CPU frequency according to the average arrival
rate of the offloaded data at the network.

• Complexity-aware offloading (CA) scheme: The arrived
workloads are sorted in the ascending order depending
on their computational complexities. To minimize the
execution latency, the CA scheme prioritizes the lowest-
computational-complexity workload to be executed as
much as the maximum capacity of the edge server. The
remaining workloads are forwarded to the cloud for
remote processing.

• Maximum edge computing exploitation (ME) scheme: To
reduce the execution waiting latency, the arrived work-
loads are greedily computed at the edge server online,
and the remaining workloads are continuously forwarded
to the cloud for remote processing.

• Remote cloud offloading (RC) scheme: This is the con-
ventional cloud computing strategy, i.e., the total arrived
workloads are delivered to the cloud. It is worth noting
that the edge server plays no role in this model.

Simulation methodology: The simulation process consists
of the following three steps.

• Input-data pattern preparation: Based on the simulation
model and initial parameter setups, 300 Monte Carlo
experiments of input data from 1000 IoT devices were
randomly generated for use in 300 simulation timeslots.
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Fig. 2. Effect of factor V on average energy consumption and cache size.

• System operation: During each timeslot, an input-data
sample was transferred into the system for processing.
This step comprised 300 contiguous timeslots. Depending
on the evaluation metric, some system parameters were
modified accordingly.

B. Effect of the Control Factor V

Fig. 2 shows the effect of V on system stability and energy
efficiency. As observed, an increase in V results in a better
achievable energy efficiency; however, the system requires a
higher cache buffer size. Moreover, the system might face an
unstable condition (see the error-bar illustration in Fig. 2).
In contrast, a decrease in V prioritizes the system stability;
however, the system consumes more energy for workload
execution. In particular, the bars show bad results when the
control factor V is greater than 100 × 1018 (for the cache size
in Fig. 2) and 101 × 1018 (for the buffering latency in Fig. 3).
These bad results indicate unstability of the system due to bad
V selections even though the energy consumption is reduced.
Derived from Fig. 2, it is observed that a good selection of V
is around 100 × 1018, which can provide not only low energy
consumption but also stability for the system (illustrated by
short bars).

In terms of the latency effect, total latency of workload
execution by using the SGCO was observed to mostly depend
on the buffering latency at the cache in the fronthaul; see Figs.
3 and 4. In Fig. 3, the buffering latency exponentially increases
when higher V is used. As the buffering latency has a close
relation to the cache size, Figs. 2 and 3 reveal the same effect
for both the metrics against the adjustment of V . On the other
hand, Fig. 4 shows the effect of V on computing latency. It
is observed that the computing latency is not monotone as a
function of V because the computing latency is determined by
the amount of data processed at the edge µe[t] and the data
delivered to and processed at the cloud µc[t]. According to
Equations (25), (26), and (33), these data is not monotone as
a function of V . For each system statement, there is a good
range of V factor, by which the joint optimization function
(17) obtains balance solution. Especially in this case, V is
found to be around 100×1018 resulting in a stable and energy-
efficient condition of the system. This value of V is consistent
as shown in all Figs. 3, 4, and 4. Note that the crosshaul link
between the edge and cloud is set to 10 Gbps to calculate
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the crosshaul transmission latency accordingly [18]. With the
selected V value of 100 × 1018, the total latency is averaged
to 2.79 ms in the range of [3.80, 2.18] ms (Case #1) and to
2.30 ms in the range of [3.02, 1.72] ms (Case #2).

C. Effect of the Virtual Upstream Data Rate λ

As expressed in Section IV, the optimal CPU frequencies
in the edge server and cloud are calculated based on λ[t]
observations. Fig. 5 illustrates the orchestration of the edge
server and cloud adapting to the adjustment of λ. In Case #1,
as the CPU frequency in the edge server is uncontrollable, it
operates at 22 GHz throughout. In addition, the cloud flexibly
assigns the CPU frequency according to the offloaded arrival
rate at the cloud. In Case #2, the edge and cloud harmonization
generates adaptable CPU frequencies in both the edge server
and cloud following objective function F3−2 and Algorithm
1. As observed, even though the average CPU frequencies in
the edge server and cloud are increased proportionally to the
amount of upstream data, these increases are nonlinear.

Similarly, a higher λ rate leads to higher amounts of data
buffered at the cache and transmitted over crosshaul links to
the cloud; see Fig. 6. Even though in Case #1, the CPU of the
edge server is fixed at 22 GHz, the amount of data buffered
at the cache is dynamically managed by using Algorithm 1;
and the amount of data transmitted on the crosshaul links
is controlled further by using Algorithm 2. For a consistent
evaluation, V is maintained at 1 × 1018. The graph in Fig. 6
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reveals that the proposed algorithm exposes its effectiveness
when the λ rate reaches below the cache buffer threshold (i.e.,
200-KB cache size). When the λ rate exceeds the cache buffer
threshold, the speed increases exponentially.

D. Approximation Verification

Table I summarizes the statistic indexes of the paired
differences between Algorithm 2 and the minKP method. The
comparison was performed using IBM SPSS Statistics 20 tool
in terms of the mean, standard deviation, and standard error
mean of the differences over 600 samples for each pair. The
measurement units for the cache size and energy consumption
per timeslot are in KB and J/ms scales, respectively. The
results show that the mean of the difference in cache size
between the two algorithms in Cases #1 and #2 are 5.03 and
36.89 bytes, respectively. Moreover, the mean of the difference
in energy consumption per timeslot in both the cases is under
0.02 J/ms. Regarding the difference in fluctuation, the small
values of standard deviation and standard error mean also
prove the approximation between the two algorithms.

The detailed paired-samples statistics of the cache size are
summarized in Table II. The means of the cache sizes in
Algorithm 2 and the minKP method are approximately 63
and 54 KB in Cases #1 and #2, respectively. The standard
deviation demonstrates that the system is more stable in Case
#2 than in Case #1. Fig. 7 visualizes the approximation in
cumulative energy consumption during 300 timeslots. The
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TABLE I
PERFORMANCE COMPARISON BETWEEN ALGORITHM 2 AND THE TYPICAL MINKP METHOD.

Paired differences
#Sample Mean Std. deviation Std. error mean

Pair 1: Alg. 2 vs. minKP in cache size (Case #1) 600 -0.00503 0.03607 0.00208
Pair 2: Alg. 2 vs. minKP in cache size (Case #2) 600 0.03689 0.03931 0.00227
Pair 3: Alg. 2 vs. minKP in energy consumption (Case #1) 600 0.00068 0.04436 0.00256
Pair 4: Alg. 2 vs. minKP in energy consumption (Case #2) 600 -0.01446 0.08410 0.00486
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Fig. 7. Performance approximation of cumulative energy consumption be-
tween the proposed greedy heuristic algorithm and the typical minKP method.

gaps of cumulative energy consumption between the two
verified algorithms are 0.79% and 0.19% in Cases #1 and #2,
respectively.

E. Performance Comparison

Cumulative energy consumption evaluation: Figs. 8(a)–
(c) represent the cumulative energy consumption at the edge
server, cloud, and entire system, respectively. Depending on
the algorithm utilized in the system, the energy consumption
is distributed between the edge server and cloud based on
different strategies. In Fig. 8(a), as the CA and ME schemes
utilize the maximum CPU power at the edge server to process
the offloaded data, they reveal the highest energy consump-
tion. The SGCO1 scheme, in which the CPU is uncontrol-
lable, shows much smaller energy consumption (approximately
34.35% reduction) owing to its computation harmonization
with the cloud. For the schemes in which the CPU adjustment
is utilized at the edge server, the SGCO2 and EE schemes
demonstrate an approximate performance, which is lower by
24.31% compared to the result of the AA scheme. In contrast,
the RC scheme does not spend energy in the edge server.

Fig. 8(b) depicts the energy consumption in the cloud.
Compared with the illustration in Fig. 8(a), the RC scheme
shown in Fig. 8(b) reveals the highest energy consumption as
it executes all the workloads in the cloud only. In contrast,
the CA and ME schemes utilize a small energy at the cloud
(approximately 13.00 J during 300 ms) while the SGCO1
scheme consumes 2930.32 J in this duration. The SGCO2
scheme has an energy consumption of 987.52 J compared
to 1682.64 J and 56.59 J for the EE and AA schemes,
respectively.

Average CPU utilization comparison: Fig. 9 demonstrates
the flexible orchestration between the edge server and the

cloud for handling the incoming offloaded traffic. The CA,
ME, and RC schemes were realized to show poor harmoniza-
tion. That is, either edge server or cloud server is mainly used
for the offloading activities. On the other hand, although the
maximum CPU frequency is utilized by the SGCO1 scheme,
the CPU frequency assigned by the cloud is adapted to the data
arrival rate. Among the remaining schemes, the SGCO2 and
EE schemes present a balance between the edge server and
cloud; it shows the best harmonization to achieve an optimal
crosshaul computing. On the contrary, the AA scheme adjusts
only the CPU frequency at the edge server according to the
arrival rate.

VIII. CONCLUDING REMARKS

The proposed SGCO provides an adaptable offloading com-
putation to distribute the data achieved between the edge server
and cloud in the eastbound and westbound computations of the
crosshaul, respectively. The amounts of data assigned for the
edge server and cloud are dynamically determined according
to the recent upstream data rate from IoT devices. The simula-
tion analysis showed that the SGCO provides energy-efficient
workload execution in the system while maintaining a stable
cache buffer. Moreover, the SGCO reveals a time and space
complexities of O(n log(n)) and O(1), respectively. That is, the
SGCO is suitable to be implemented in individual 5GPoA to
provide self-calibration capability for energy-efficient compu-
tation offloading in dense IoT networking environments.
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[25] L. Parada, C. Herrera, M. Sepúlveda, and V. Parada, “Evolution of
new algorithms for the binary knapsack problem,” Natural Computing,
vol. 15, no. 1, pp. 181–193, 2016.

[26] F. T. Leighton, Introduction to parallel algorithms and architectures:
Arrays· trees· hypercubes. Elsevier, 2014.

[27] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[28] X. Sun and N. Ansari, “Latency aware workload offloading in the
cloudlet network,” IEEE Communications Letters, vol. 21, no. 7, pp.
1481–1484, 2017.

[29] J. Kim, J.-J. Lee, J.-K. Kim, and W. Lee, “Energy-efficient stabilized
automatic control for multicore baseband in millimeter-wave systems,”
IEEE Access, vol. 5, pp. 16 584–16 591, 2017.



11

Nhu-Ngoc Dao received the B.S. degree in elec-
tronics and telecommunications from the Posts and
Telecommunications Institute of Technology, Viet
Nam, in 2009, and the M.S. degree in computer
science from Chung-Ang University, South Korea,
in 2016, where he is currently pursuing the Ph.D.
degree in computer science. His research interests
include network security, network softwarization,
fog/edge computing, and Internet of Things.

Duc-Nghia Vu received his B.S. degree in Electron-
ics and telecommunications from Hanoi University
of Science and Technology, Viet Nam, in 2015. He
also received the M.S. degree in computer science
from Chung-Ang University, South Korea, in 2018.
His research interests include wireless network and
fog computing.

Woongsoo Na received the B.S., M.S., and Ph.D.
degrees in computer science and engineering from
Chung-Ang University, Seoul, Korea, in 2010, 2012,
and 2017, respectively. He is currently a adjunct
professor in the School of information Technology
at Sungshin University, Seoul, Korea. His research
interests include mobile chargers, directional MAC,
wireless mobile networks, and LTE.

Joongheon Kim received the B.S. and M.S. degrees
in computer science and engineering from Korea
University, Seoul, Korea, in 2004 and 2006, and the
PhD degree in computer science from the University
of Southern California (USC), Los Angeles, CA, in
2014, with two additional MS degrees in electrical
engineering and computer science. He has been
an assistant professor with Chung-Ang University,
Seoul, Korea, since 2016. In industry, he was with
LG Electronics (Seoul, Korea, 2006–2009), Inter-
Digital (San Diego, CA, 2012), and Intel Corpora-

tion (Santa Clara, CA, 2013–2016). He is a senior member of the IEEE; and a
member of the ACM and IEEE Communications Society. He was awarded the
Annenberg graduate fellowship with his PhD admission from USC (2009).

Sungrae Cho is a professor with the school of soft-
ware, Chung-Ang University (CAU), Seoul. Prior to
joining CAU, he was an assistant professor with the
department of computer sciences, Georgia Southern
University, Statesboro, GA, USA, from 2003 to
2006, and a senior member of technical staff with the
Samsung Advanced Institute of Technology (SAIT),
Kiheung, South Korea, in 2003. From 1994 to 1996,
he was a research staff member with electronics
and telecommunications research institute (ETRI),
Daejeon, South Korea. From 2012 to 2013, he held a

visiting professorship with the national institute of standards and technology
(NIST), Gaithersburg, MD, USA. He received the B.S. and M.S. degrees
in electronics engineering from Korea University, Seoul, South Korea, in
1992 and 1994, respectively, and the Ph.D. degree in electrical and computer
engineering from the Georgia Institute of Technology, Atlanta, GA, USA, in
2002.

His current research interests include wireless networking, ubiquitous com-
puting, and ICT convergence. He has been a subject editor of IET Electronics
Letter since 2018, and an editor of Ad Hoc Networks Journal (Elsevier)
from 2012 to 2017. He has served numerous international conferences as an
organizing committee chair, such as IEEE SECON, ICOIN, ICTC, ICUFN,
TridentCom, and the IEEE MASS, and as a program committee member, such
as IEEE ICC, MobiApps, SENSORNETS, and WINSYS.


