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Abstract—Owing to the heterogeneity and massiveness of data
generated by connected vehicles, multitier roadside computing
(MRC) plays a key role in an intelligent transportation system
(ITS). MRC provides a localized cloudization capability in close
proximity to the connected vehicles. Because the massive data cor-
respondingly necessitate a high computing energy consumption,
stable workload processing with respect to energy efficiency is a
crucial problem of MRC. To address this problem, we propose
an energy-efficient workload (E2W) scheduling algorithm for
flexibly handling the random offloading traffic from connected
vehicles. In our E2W algorithm, an MRC is transformed into
a multitier queuing system, where the workload arrived from
the vehicles and the computing capability of the roadside units
are considered to be arrival and departure processes, respectively.
The departure rate that closely impinges on the computing energy
consumption is supervised using the Lyapunov drift-plus-penalty
policy to achieve efficient energy reduction while maintaining
service satisfaction. In addition, the deterministic upper bound
of the Lyapunov optimization provides the MRC system with
stable operation. Simulation results demonstrate that the E2W
algorithm outperforms existing optimization strategies in terms
of energy efficiency and system stability.

Index Terms—multitier roadside computing, system stability,
vehicular communication, mobile edge computing.

I. INTRODUCTION

IOTIZATION has dramatically promoted the evolution of
next-generation intelligent transportation systems (ITSes),

where a large number of vehicles are connected in a unified
networking infrastructure, realizing an Internet of vehicles
(IoV) paradigm. In an IoV paradigm, the vehicles, regardless
of their hardware performance, are connected to innovate
heterogeneous services, which have diverse requirements in
terms of latency, bandwidth, and reliability [1], [2]. As vehicles
are considered to be lightweight devices from a computing per-
spective, they are seen to increasingly transfer their workload
to the network for an offloaded processing [3]. For instance,
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sensor and tracking-camera information in autonomous driving
cars is offloaded to the network in order to acquire optimal
guidance for drivers. An in-vehicle infotainment system re-
quires comprehensive image processing to offer passengers
a virtual-reality game for relaxation on the move [4], [5].
Under these circumstances, owing to the heterogeneity and
massiveness of the offloaded data, flexible and powerful net-
working and computing infrastructures are required to achieve
satisfactory performance.

Emerging multi-access edge computing (MEC) technolo-
gies [6], [7] are considered to be a solution to the afore-
mentioned challenges. As defined by the European telecom-
munications standards institute (ETSI), MEC provides cloud-
computing capabilities and an IT service environment at the
edge of the network [8]. Exploited the advantages introduced
by MEC technologies, a fog-enabled access network [9]–[11]
has been developed, which is constituted by high power nodes
(a.k.a. macro remote radio heads) and multiple fog access
points located at small base station/femtocell/remote radio
heads. In this model, fog access points have low computational
power but very low response times while high power nodes
have high computational power but higher response times.
Matching into this model, we proposed a 2-tier computing
model for connected vehicle networks, referred to as multitier
roadside computing (MRC) platforms. Here, an integration of
MEC into ITSes can offer the advantage of a flexible hier-
archical computing infrastructure. In particular, MRC orches-
trates computing capabilities among heterogeneous roadside
units (RSUs) such as macro base stations (MBSs) with high
computing power in upper tier and small base stations (SBSs)
and road traffic control (RTC) devices with small computing
power in lower tier. Fig. 1 depicts a typical two-tier MRC
system. Almost all vehicles (including personal devices of
passengers) connect to RSUs in the lower tier, i.e., tier-α
MRC. A part of the workload that is offloaded from the
vehicles is delivered to the upper tier (tier-β MRC) for further
processing. In this model, tier-β is assumed to possess higher
cloudization capability and latency compared to tier-α. For
instance, a federated learning based navigation system may
deploy pre-configured learning models at every tier-α RSUs
for local traffic training while the central scheme which fuses
these local models is located at tier-β RSUs owing to high
processing requirement.

As aforementioned, an effective scheduler, which manages
workload distribution among RSUs, plays an important role
in harmonizing the computing power of diverse RSUs in the
MRC platform. In particular, massive IoV data generated by
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the connected vehicles correspondingly results in a high com-
puting energy consumption. Consequently, energy efficiency
is of importance in the MRC platform to reduce the overall
cost of network operations for such in-network computation
services. In contrast, the heterogeneity of IoV data requires
a flexible schedule in order to assign each workload to an
appropriate RSU for user service satisfaction. Motivated from
this status quo, stable and dynamic workload processing with
respect to energy efficiency has been considered in our study
as one of the main purposes of the scheduler to reduce the
overall cost of system operations.

Literature reviews [12], [13] have shown that cutting-edge
workload scheduling techniques can be classified into two
categories: user satisfaction-aware and system resource-aware
approaches. User satisfaction-aware approaches aim at maxi-
mizing user satisfaction such as response latency and service
availability. These targets may require the approaches with
resource exhaustion in MRC systems in order to achieve the
one-handed optimization for user devices. In contrast, system
resource-aware approaches mainly focus on minimizing the
amount of MRC resources consumed for offloaded workload
execution within baseline requirements instead of high quality
of service. Therefore, to overcome the imbalanced perfor-
mance of these approaches, several hybrid solutions have been
proposed [14]–[16]. However, none of them have paid partic-
ular attention to internal orchestration among heterogeneous
computing entities (i.e., RSUs) inside the MRC system.

In this study, we propose an energy-efficient workload
(E2W) scheduling algorithm to resolve the aforementioned
problems in heterogeneous MRC platforms. The contributions
of this paper are summarized as follows.

• The MRC platform is modeled as a multitier queuing
system from a computing perspective. In this model,
traffic offloaded from the connected vehicles and the
computing capability of the RSUs play the roles of
arrival and departure processes, respectively. To ensure
the generality, the arrival process is considered to be
stochastic while the departure process is controllable.

• A dynamic trade-off between energy consumption and
service buffer, referred as energy-efficient workload
(E2W) scheduling algorithm, is developed using the
Lyapunov drift-plus-penalty (DPP) policy [17]. In this
context, the energy consumption is minimized by control-
ling the RSUs’ computing capabilities. On the contrary,
a deterministic upper bound provided by the Lyapunov
optimization ensures the MRC system buffer stable.

• Comprehensive simulation analysis was conducted to
prove the outperformance of the proposed E2W algorithm
compared to existing solutions. The evaluation consists of
three folds: trade-off factor selection, workload distribu-
tion, and performance metrics.

The remainder of this paper is organized as follows. Related
work is presented in section II, and the system model is
illustrated in section III. The proposed E2W algorithm is
described and analyzed in section IV. Section V discusses
performance evaluation. Finally, the paper is concluded in
section VI.
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Fig. 1: Multitier roadside computing platforms.

II. LITERATURE REVIEW

Following the taxonomy described in Section I, existing
workload scheduling techniques can be classified as (i) user
satisfaction-aware [18]–[23] and (ii) system resource-aware
approaches [24]–[28], as well as (iii) their hybrid solu-
tions [14]–[16], [29]

In user satisfaction-aware approaches, service availability
and latency minimization, two fundamental factors of quality
of service (QoS), are highly prioritized. In [18], Munoz et
al. described a method to adjust the uplink data rate that
minimizes the latency experienced by users with respect to
the targeted energy cost. The decision is made by carefully
evaluating the impacts of the transmission rate and the load of
the system on the QoS. To utilize potential dynamical mobile
users’ connectivity, Pu et al. [19] proposed a device-to-device
(D2D) fogging framework to achieve energy-efficient task
executions for network-wide users. This framework devises
efficient task scheduling policies and proactively adapt to
various features of the task type, user amount, and task gen-
eration frequency. In the field of mobile applications, Dolezal
et al. [20] implemented a computation offloading framework
to cope with low-level communication between applications
and a small cell cloud, which consists of cloud-enabled small
cells (CeSCs) serving as radio end-points for mobile users.
The offloading framework has a user stack, in addition to the
application in compile-time to facilitate low-level offloading
operations, to statically decide whether offloading should be
performed instead of local execution on user devices according
to the user’s choice. Following this, the alleviated latency and
reduced energy consumption of the UEs are proved by using an
augmented reality (AR) application as a testbed basement. In
another line of research, Liu et al. [21] set the minimum delay
and the average power consumption at a mobile device as the
goal of proposed efficient one-dimensional search algorithm
to find the optimal task scheduling policy. The algorithm
adopted a Markov decision process approach to address the
problem of power-constrained delay minimization to schedule
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the computation tasks based on the queuing state of the task
buffer, the execution state of the local processing unit, and the
state of the transmission unit. By investigating the problem of
minimizing the average energy consumed by all users under
average delay constraints [22], Labidi et al. jointly optimized
radio resource scheduling and computation offloading (CO)
via offline and online dynamic programming approaches. The
proposed solutions, derived from application rates, select only
one user for scheduling and offloading and decide whether
other users undergo local processing or stay idle. In [23],
Jovsilo and Dan developed a theoretical game model of
peer-aware and edge computing offload to improve user task
execution performance in terms of latency minimization.

There have been several studies conducted on system
resource-aware approaches, where approaches mainly focus
on minimizing the amount of MRC resources consumed for
offloaded workload execution within baseline requirements
instead of high quality of service. For example, Yang et
al. [24] derived an energy-efficient offloading optimization
problem from mutual computational tasks and transmission
requirements. The considered problem is addressed by an
artificial fish swarm algorithm-based scheme to reach the
global optimum in terms of energy efficiency. In [25], Wang et
al. proposed an alternating direction method of a multipliers-
based decentralized algorithm to find the global optimal so-
lution for resource-aware perspectives such as computation
offloading decision, resource allocation, and content caching
strategy. In [26], Chen et al. designed a distributed offloading
algorithm to achieve superior offloading performance and scale
with an incremental user size. This algorithm transformed
the offloading decision-making problem among multiple users
into a potential game, proved its Nash equilibrium state, and
used the advantages of game theory to solve it. In another
study, Zhang et al. [27] took the energy cost of both task
computing and file transmission into consideration, designed
a three-stage energy-efficient CO scheme to jointly optimize
offloading decisions and radio resource allocation strategies
while preserving latency constraints. In this scheme, through
type classification and priority assignment for users, the op-
timization problem is definitively processed in polynomial
complexity. By taking into account the completion time and
energy, Yu et al. [28] formulated a system cost minimiza-
tion problem for MEC and proposed a distributed algorithm
consisting of offloading strategy selection, clock frequency
configuration, transmission power allocation, and channel rate
scheduling. All optimal results exhibited a higher energy-
efficient offloading performance compared to other existing
algorithms.

To overcome the imbalanced performance of the above
approaches, several hybrid solutions have been proposed.
They mainly concentrate on finding an optimal solution that
compromises between QoS and energy efficiency. In [14],
a lightweight heuristic stabilized green cross-haul orchestra-
tion scheme, which utilizes Lyapunov-theory-based drift-plus-
penalty policies, was proposed to jointly consider stabiliza-
tion, energy efficiency, and latency for dense IoT offloading
services. The scheme aimed at time-average minimization of
energy consumption by providing an adjustable computing

latency threshold. In another perspective, upstreaming IoT
offloading services in fog radio access networks spurred Vu et
al. [15] to formulate a joint energy and latency optimization
scheme to strictly manage energy consumption, load balanc-
ing, and critical IoT service level of satisfaction. In [16], Cui
et al. speculated on the problem of computation offload in a
centralized MEC network with multi-cells to obtain a trade-off
between average energy consumption of the system and users’
latency. This issue was formulated into a constrained multi-
objective optimization problem and was solved by a modified
fast elitist non-dominated sorting genetic algorithm. Deng et
al. [29] formulated a workload allocation problem in fog-cloud
computing toward power consumption with service delay and
used an approximate approach to decompose it into three
subproblems. The optimal workload allocation, determined
by the generalized Benders decomposition algorithm and
Hungarian algorithm, showed that communication bandwidth
and transmission latency can be saved by sacrificing modest
computation resources.

These aforementioned studies have significantly improved
edge computing performances from multiple perspectives.
However, neither their one-handed optimization focuses in
the user satisfaction- and system resource-aware categories
nor the environmental adaptations of the hybrid category
have not sufficiently taken into account an internal cross-tier
orchestration among computing entities in the MRC system.
This lack has inspired our study in this paper.

III. MULTITIER ROADSIDE COMPUTING PLATFORMS

A. Computational Model

As described in Section I, an MRC system typically consists
of two tiers, i.e., tier-α and tier-β. Tier-α has low computing
power; however, it issues low response latency owing to its
positioning in proximity to vehicles. On the contrary, tier-β
equips high computing capability and a high response latency
for handling aggregated complex traffic. According to queuing
theory [30], the MRC system can be modeled as a hierarchical
queuing system. In this model, the offloaded workloads arrive
at tier-α randomly; consequently, a part of them are delivered
to tier-β according to a descending-index-based order. The
higher the response latency requirement and complexity of a
workload, the higher the index it obtains. For convenience, a
summary of key notations are described in Table I. It is worth
noting that theoretical analysis can involve an upper tier to
represent the central cloud. However, extending the system
to cover one more tier may generate a significant complexity
to the optimization problem. Instead, we can transform the
extension into two-stage optimization, which consists of 2-
tier edge computing (e.g., the MRC considered in our paper)
in the first stage and edge–cloud computing orchestration
in the second stage. Fortunately, the edge–cloud computing
orchestration problem has been investigated thoroughly in
many studies in the literature [31]. Here, we investigated
the multitier in the first stage to complement the extended
scenarios.

From a computing perspective, the i-th workload is char-
acterized by a three-parameter tuple of 〈ui, ci, ri〉, where ui ,
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TABLE I: Key notation description.

Notation Description
〈ui, ci, ri 〉 Parameter tuple of i-th workload, where ui , ci , and

ri are the workload size in bits, complexity, and
response latency in ms, respectively.

λt Arrival rate at tier-α in timeslot t.
µtαi

and µtβ j
Departure rate of i-th and j-th RSUs in tier-α and
tier-β in timeslot t, respectively.

κα and κβ Coefficient factors of the RSUs in tier-α and tier-β,
respectively.

fα and fβ CPU frequencies of the RSUs in tier-α and tier-β,
respectively.

Et Energy consumption of the MRC system in timeslot
t.

Bt Workload buffer (in bits) of the MRC system in
timeslot t.

Qt
i Virtual workload buffer (in cycles) of i-th RSU in

tier-α in timeslot t.
V Lyapunov control factor.

ci , and ri are the workload size in bits, complexity, and
response latency in ms, respectively. It is worth noting that
the workload complexity parameter represents the difficulty
of workload execution; hence, it is calculated by the average
number of central processing unit (CPU) cycles required to
process a bit of the workload, i.e, in Hz/b. Accordingly, a
specific workload can be identified by its virtual computing
size, which is determined by ui × ci in Hz. As a result, the
arrival rate (λt ) of the tier-α at timeslot t is given by

λt ,
∑
∀i∈Λt

λti =
∑
∀i∈Λt

(ui × ci) in Hz, (1)

where Λt is the arrived workload set at timeslot t. A timeslot
is defined as a given duration. During this time, the system
performs configured algorithms to obtain optimal operation pa-
rameters. Depending on real environmental implementations,
a timeslot can be selected as several hundreds of ms (e.g., 100
ms) or several seconds (e.g., 3 or 5 s). Selecting the duration
of a timeslot should consider how much the system changes in
time. For instance, if environmental conditions and user traffic
volume are fluctuated highly, a short timeslot should be used
for timely adaptation to the changes.

In contrast, energy consumption for workload execution
during each CPU cycle is assumed to be κ f 2 in Joule [14],
[15], where κ and f are the coefficient factor and CPU
frequency, respectively. Note that κ varies depending on the
CPU category. Hence, the MRC system consumes energy (Et )
during timeslot t owing to workload execution at both the two
tiers

Et = κα

Nα∑
i=1

f 2
αi
µtαi
+ κβ

Nβ∑
j=1

f 2
β j
µtβ j

, (2)

where Nα and Nβ are the number of RSUs at tier-α and tier-
β, respectively. In addition, µt denotes the departure rate of
the RSU at timeslot t. αi and βj indicate the i-th and j-th
RSUs at tier-α and tier-β, respectively. Consequently, the total
workload buffer (Bt ) of the MRC system at timeslot t is given
by

Bt = B(t−1) +
∑
∀i∈Λt

ui −
(
γα + γβ

)
, (3)

where γα and γβ are the total workload processed by tier-α
and tier-β, respectively, during timeslot t.

B. Problem Clarification

(2) and (3) show that a minimization of both energy
consumption Et and system workload buffer Bt at timeslot
t is unachievable because of their dependence on the de-
parture rates and processed workloads. Therefore, trade-off
approaches have been utilized in order to address this situation.
Typically, the trade-off function at timeslot t is expressed as

min : g(Et ) + h(Bt ), (4)

where g(·) and h(·) are the functions of Et and Bt , respec-
tively. By extending equation (4), cumulative minimization of
the trade-off during [0, t] is given by

min :
t∑
τ=0
(g(Eτ) + h(Bτ)) . (5)

Equation (5) obtains its minimum solutions if and only if the
following time-average expression is minimized

min :
1
t

t∑
τ=0
(g(Eτ) + h(Bτ)) . (6)

The MRC system is considered stable if equation (6) is
achieved when t →∞. To this end, a feasible strategy (P) is
used to minimize the time-average energy consumption, while
keeping the workload buffer stabilized under its maximum
threshold (W) as

(P) min : lim
t→∞

1
t

t∑
τ=0

Eτ (7)

s.t. lim
t→∞

1
t

t∑
τ=0
‖Qτ ‖1 ≤ C, (7a)

C ≤ W, C is constant, (7b)Qt


1 ≤ W, ∀t ∈ [0,∞). (7c)

IV. ENERGY-EFFICIENT WORKLOAD SCHEDULING

A. Joint Platform Stability and Energy Efficiency Optimization

As aforementioned in Section III-A, the MRC system has
a stochastic property. The problem P represents a stochastic
optimization of the MRC system, which aims at time-average
minimization of energy consumption subject to workload
buffer stabilization support. In this view, Lyapunov-theoretic
optimization has been proven to be a potential solution [32]–
[34]. In particular, studies have shown that the Lyapunov DPP
policy provides a dynamic adjustment of energy consumption
following a stochastic change in the workload buffer size.
The outcomes of the Lyapunov DPP policy include a minimal
energy consumption achievement and an assurance of an upper
bound of the workload buffer. The Lyapunov DPP expression
is given by

(P) min : VEt +Qt ©«λt − ©«
Nα∑
i=1

µtαi
+

Nβ∑
j=1

µtβ j

ª®¬ª®¬ , (8)



5

where V is the control factor that balances the ratio between
energy consumption and workload buffer size. By using an
appropriate V , the constraints (7b) and (7c) are ensured. In
addition, Qt is the virtual workload buffer size in computing
cycles, which is a scalar product of the workloads in bits and
their complexities, i.e., Qt ∝ Bt, {ci}∀i∈Λt . Moreover, Qt =

Q(t−1)+λt −
(∑Nα

i=1 µ
t
αi
+

∑Nβ

j=1 µ
t
β j

)
. Therefore, the problem P

is equal to

min : F ( f , µ) =
Nα∑
i=1

(
Qt

i

(
λti −

(
µti +

Nβ∑
j=1

δi j µ
t
i j

))
+V

(
καi

(
f tαi

)2
µti +

Nβ∑
j=1

δi j κβ j

(
f tβ j

)2
µti j

))
(9)

s.t. 0 ≤ µti +
Nβ∑
j=1

δi j µ
t
i j ≤ Qt

i + λ
t
i, ∀i, (9a)

µti, µ
t
i j ≥ 0, ∀i, j, (9b)

0 ≤ f tαi
≤ Fmax

αi
, ∀i, (9c)

0 ≤ f tβ j
≤ Fmax

β j
, ∀ j . (9d)

It is observed that the data processing rate of each RSU f tαi
≥

µti and f tβ j
≥ ∑Nα

i=1 δi j µ
t
i j . In order to minimize the energy

consumption of each RSU for processing tasks, the optimal
data processing rate f

t

αi
= µti and f

t

β j
=

∑Nα

i=1 δi j µ
t
i j [14],

[21]. Thus, the problem (9) is equivalent to

min : F (µ) =
Nα∑
i=1

(
Qt

i

(
λti −

(
µti +

Nβ∑
j=1

δi j µ
t
i j

))
+V

(
καi

(
µti

)3
+

Nβ∑
j=1

δi j κβ j

( Nα∑
i=1

δi j µ
t
i j

)2
µti j

))
(10)

s.t. (9a), (9b),
0 ≤ µti ≤ Fmax

αi
, ∀i, (10a)

0 ≤
Nα∑
i=1

δi j µ
t
i j ≤ Fmax

β j
, ∀ j . (10b)

Problem (10) can be considered a nonlinear optimization
problem with constraints. It is observed that F (µ) is convex
since its second derivative F ′′(µ) ≥ 0 for all µ ≥ 0 (see (9b)).
Therefore, Karush-Khun-Tucker (KKT) conditions can be used
to find the optimal solution of the optimization problem [35].
Accordingly, the Lagrange multiplier technique is exploited
to find the optimal value of µ. Here, the equivalent Lagrange
function for the objective function is expressed as

L(µ, ε) = F (µ) +
Nα∑
i=1

εi

(
µti +

Nβ∑
j=1

δi j µ
t
i j −Qt

i − λti
)

+

Nα∑
i=1

εNα+i

(
µti − Fmax

αi

)
+

Nβ∑
j=1

ε2Nα+j

( Nα∑
i=1

δi j µ
t
i j − Fmax

β j

)
+

Nα∑
i=1
−ε2Nα+Nβ+iµ

t
i +

Nα∑
i=1

Nβ∑
j=1
−ε3Nα+Nβ+(i−1)Nβ+j µ

t
i j, (11)

where εi(∀i = 1, 2, . . . , 3Nα + Nβ + NαNβ) denotes KKT
multipliers. The optimal solution of the equivalent problem
satisfies the KKT conditions, derived by

∇µL(µ̂, ε) = 0, (12a)

µ̂ti +

Nβ∑
j=1

δi j µ̂
t
i j ≤ Qt

i + λ
t
i, ∀i, (12b)

µ̂ti ≤ Fmax
αi

, ∀i, (12c)
Nα∑
i=1

δi j µ̂
t
i j ≤ Fmax

β j
, ∀ j, (12d)

µ̂ti, µ̂
t
i j ≥ 0, ∀i, j, (12e)

εi ≥ 0, ∀i, (12f)
Nα∑
i=1

εi

( Nβ∑
j=1

δi j µ̂
t
i j −Qt

i − λti
)
= 0, ∀i, (12g)

Nα∑
i=1

εNα+i

(
µ̂ti − Fmax

αi

)
= 0, ∀i, (12h)

Nβ∑
j=1

ε2Nα+j

( Nα∑
i=1

δi j µ̂
t
i j − Fmax

β j

)
= 0, ∀ j, (12i)

Nα∑
i=1
−ε2Nα+Nβ+i µ̂

t
i = 0, ∀i, (12j)

Nα∑
i=1

Nβ∑
j=1
−ε3Nα+Nβ+(i−1)Nβ+j µ̂

t
i j = 0, ∀i, j . (12k)

where ∇µL is the gradient of the L(µ, ε) function with respect
to µ, and µ̂ is the optimal value of µ. The equivalent problem
is now a constrained optimization problem.

By using the barrier method [36], the constrained problem
is transformed to an unconstrained problem as follows

L̃(µ, ε) = F (µ) −
Nα∑
i=1

εi ln
(
Qt

i + λ
t
i − µti −

Nβ∑
j=1

δi j µ
t
i j

)
−

Nα∑
i=1

εNα+i ln
(
Fmax
αi
− µti

)
−

Nβ∑
j=1

ε2Nα+j ln
(
Fmax
β j
−

Nα∑
i=1

δi j µ
t
i j

)
−

Nα∑
i=1

ε2Nα+Nβ+i ln µti −
Nα∑
i=1

Nβ∑
j=1

ε3Nα+Nβ+(i−1)Nβ+j ln µti j, (13)

where L̃(µ, ε) is the equivalent unconstrained problem. We
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define

Gn(µ) =



Qt
i + λ

t
i − µti −

∑Nβ

j=1 δi j µ
t
i j,

{
∀i = n,
n = 1, 2, . . . , Nα,

Fmax
αi
− µti,

{
∀i = n − Nα,
n = Nα + 1, . . . , 2Nα,

Fmax
β j
−∑Nα

i=1 δi j µ
t
i j,

{
∀ j = n − 2Nα,
n = 2Nα + 1, . . . , 2Nα + Nβ,

µti,

{
∀i = n − 2Nα − Nβ,
n = 2Nα + β + 1, . . . , 3Nα + Nβ,

µti j,


∀i = (n − 3Nα − Nβ) mod Nβ,
∀ j = n − 3Nα − Nβ − (i − 1)Nβ,
n = 3Nα + Nβ + 1, . . . , 3Nα + Nβ + NαNβ .

(14)
Accordingly, the above problem is represented as

L̃(µ, ε) = F (µ) −
3Nα+Nβ+NαNβ∑

i=1
εi lnGi(µ). (15)

As ε converges to zero, the minimum of L̃(µ, ε) should
converge to a solution of problem (10). Similarly, the solution
of problem (15) can be derived by using KKT conditions

∇µL̃(µ, ε) = H(µ) −
3Nα+Nβ+NαNβ∑

i=1
εi
∇µGi(µ)
Gi(µ)

= 0, (16)

where H(µ) is the gradient of the original function F (µ) and
∇µGi(µ) is the gradient of lnGi(µ).

In addition to the original primal variable µ, we define a
Lagrange multiplier-inspired dual variable ω subjects to

Gi(µ)ωi = εi, ∀i = 1, 2, . . . , 3Nα + Nβ + NαNβ . (17)

(17) is the complementary slackness in KKT conditions.
Substituting (17) to problem (16), an equivalent problem is
derived as

H(µ) − JTω = 0, (18)

where the matrix J is the Gi(µ) Jacobian. The gradient of F (µ)
should lie in the subspace spanned by the constraint gradients.
The complementary slackness with a small ω can be realized
as the condition where the solution should either lie near the
boundary Gi(µ) = 0 or that the projection of the gradientH(µ)
on the constraint component Gi(µ) normal should be almost
0.

By using Newton’s method [37], we can obtain the near
optimal solution of problem (16). The parameters µ and ω
will converge to the optimal value after each iteration. These
values are updated at the k+1-th step by{

µk+1 = µk − ∇µ,
ωk+1 = ωk − ∇ω,

(19)

where ∇µ and ∇ω are obtained by(
W −JT
JΩ G

) (
∇µ
∇ω

)
=

(
−H + ωJT
µ1 − ωG

)
, (20)

where W is the Hessian matrix of L̃(µ, ε), Ω is a diagonal
matrix of ω, and G is a diagonal matrix, where Gii is Gi(µ).

Algorithm 1 E2W Scheduling Optimization.
Require: λ,Qt,V, κα, κβ
Ensure: Optimal µ∗
1: Initialization
2: H(µ), J, W, G
3: µk , ωk is the µ and ω at k-th step, respectively, µ0 = 0, ω0 = 0, and

k = 0
4: ξ is the tolerance
5: repeat
6: Given µk and ωk , calculate the H(µk ), J(µk ), W(µk, ωk ), and

G(µk )
7: Find the ∇µ and ∇ω by equation (20)
8: Update µk+1 and ωk+1 by equation (19)
9: k = k + 1

10: until | | L̃(µk, ωk ) | | ≤ ξ
11: µ∗ = µk and ω∗ = ωk

Algorithm 1 summarizes the steps for determining the op-
timal value µ∗. At each step k, H(µk), J(µk), W(µk, ωk), and
G(µk) are calculated with the given µk and ωk . Accordingly,
∇µ and ∇ω at step k are determined by equation (20). Then,
µk+1 and ωk+1 for step k +1 are obtained by (19). Parameters
µ and ω will converge to optimal values after iterations. The
iteration stops when | |L̃(µk, ωk)| | ≤ ξ. Finally, the optimal
value µ∗ = µk is derived.

B. Computational Complexity Analysis

As described in Section IV-A, the problem P for finding
the optimal processing workload µ∗ is transformed to the
equivalent problem (18) by using the barrier method and
KKT conditions. The near optimal solution of problem (18)
can be achieved by using an E2W scheduling optimization
algorithm based on Newton’s method. Because of quadratic
convergence to the optimal value of Newton’s method, the pro-
posed algorithm can obtain the solution rapidly and effectively.
The computational complexity of the proposed algorithm is
O(ξ−2) [38], where ξ is the tolerance used for the stop condi-
tion of the iteration. It is observed that problem (10b) can also
be solved by using the ellipsoid method or the cutting plane
method [39]. The complexity of these approaches is O(n4),
where n is number of µ variables. Because n is relatively
large, these algorithms have a much higher complexity than
the proposed algorithm.

V. PERFORMANCE EVALUATION

A. Simulation Settings

System parameter setup: To evaluate the performance
of the MRC system, we developed a network model in-
cluding ten and five RSUs in tier-α and tier-β, respec-
tively. These RSUs are designed to operate on various
CPU frequencies in ranges of {1.5, 2.0, 2.5, 3.0, 3.5} and
{12.0, 14.0, 16.0, 18.0, 20.0} GHz [40]. Without loss of gener-
ality, we assumed different ranges of CPU frequencies for two
tiers in our model. It is worth noting that these assumptions
are selected randomly and they are used consistently among
simulated algorithms. Because the RSUs in tier-β have been
assumed to be equipped with a higher computational capacity
owing to flexible virtualization, the coefficient factor of tier-
β RSUs is smaller than that of tier-α RSUs. In particular,
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TABLE II: Simulation parameters.

Parameter Value
Number of RSUs in tier-α 10
Number of RSUs in tier-β 5
fα {1.5, 2.0, 2.5, 3.0, 3.5} GHz
fβ {12.0, 14.0, 16.0, 18.0, 20.0} GHz
κα 5.0E-09
κβ 4.0E-09
Average arrival rate (λ̄) {50–300} Mbps
Workload complexity {100, 200, 500, 1000} cycle/bit
Simulation time 500 timeslots

κα and κβ are set as 5.0E − 09 and 4.0E − 09, respectively.
The offloaded workload of the vehicles is deployed as follows.
During each timeslot, an offloading traffic from the vehicles
arrives at tier-α RSUs with average arrival rate (λ̄) varying
from 50 to 300 Mbps in each simulation. Each simulation
lasts 500 timeslots. A timeslot is 100 ms. In this context,
to represent various services such as navigation, in-vehicle
infotainment applications, vehicle social services, and virtual
reality gaming, a complexity set of {100, 200, 300, 1000} cy-
cle/bit, which can be obtained through practical experiences as
done in [26], [41], is used to map to the offloaded workload.
Details of the simulation parameters are provided in Table II.

Competitor description: To demonstrate the advantages
of the proposed E2W scheme, three typical schemes are
additionally simulated to draw a comparison, including self-
calibrating (SC), zero-buffering (ZB), and energy-aware (EA)
schemes [16], [21].
• Self-calibrating (SC) scheme: The SC scheme aims at

self-balancing between computational energy consump-
tion and local buffer in each RSU separately. Each RSU
maintains its operation based on the arrived offloaded data
without considering the external entities’ status.

• Zero-buffering (ZB) scheme: The ZB scheme prioritizes
response latency to the vehicles by mitigating waiting
time in the buffer. To this end, tier-α RSUs handle the
arrived data with their maximal CPU frequencies. Then,
the remaining offloaded data is delivered to tier-β RSUs
to release the buffer.

• Energy-aware (EA) scheme: The EA scheme focuses on
minimizing energy consumption of the offloading ser-
vices. Therefore, the offloaded data is directly streamed
to tier-β RSUs to use their maximum computational
capacities because they have a high energy efficiency. The
remaining data are stored in tier-α RSUs for processing
and possibly buffering.

Evaluation methodology: As our focuses are to resolve
the system stability and energy efficiency in MRC platforms.
Hence, performance evaluation paid much attention on system
aspects. Accordingly, the simulation was performed in two
parts.
• First, the evaluation investigates appropriate control factor

selection and reactive behavior of the proposed E2W
scheme against different scenarios with varying offloaded
arrival rate.

• Second, the proposed E2W scheme is compared to the
competitors to demonstrate its superior performance met-
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Fig. 2: Average energy consumption within various arrival
rates.

rics in terms of energy efficiency and system stability.
Simulation platform: MATLAB R2018a.
Numerical analysis tool: IBM SPSS Statistics 20.

B. Control Factor Selection

As aforementioned in Section IV-A, the control factor V
plays a key role in balancing energy consumption and system
stability (measured by the buffer size fluctuation). Equation (8)
shows that an increase in V minimizes the energy consumption
(i.e., energy efficiency prioritization) but increases the buffer
size fluctuation, and vice versa. Figs. 2 and 3 visualize the
effectiveness of V on these mentioned metrics under three
typical traffic patterns: 100-Mbps, 150-Mbps, and 200-Mbps
average arrival rates (λ̄), which require approximate 50%,
75%, and 100% of computational capacity of the MRC system,
respectively. When λ̄ = 200 Mbps, a change in V has an
insignificant impact on the energy consumption because the
system mostly operates at the maximum CPU frequency to
process the offloaded traffic as shown in Fig. 2. This circum-
stance leads to an uncontrollable state of the buffer. Therefore,
the buffer size fluctuates following the chaotic arrival rates as
shown in Fig. 3.

The impacts of V on the energy consumption and buffer size
can be clearly seen at a lower average arrival rate ᾱ. Fig. 2
shows that energy consumption decreases as V increases. The
energy consumption significantly decreases when V increases
from 100×1018 to 101×1018. During this scale of V , the buffer
size as well as its fluctuation increase proportionally. With
the observed results, given a maximum buffer size of 5 Mb,
100×1018 is considered to be an optimal selection for V as the
buffer size fluctuation is controlled under the 5-Mb threshold.
Similarly, V should be 101×1018 if the given maximum buffer
size is set to 10 Mb. Details on statistical indexes of buffer
sizes in RSUs are provided in Table III. The numerical results
reveal that the variation metric of buffer size, which represents
the system stability, increases when V and/or average arrival
rate increase. Because there is no universally optimal V for
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TABLE III: Statistical indexes of buffer size in RSUs.

V (×1018)
Buffer size in RSUs (Mb)

λ̄ = 200Mbps λ̄ = 150Mbps λ̄ = 100Mbps
Mean Min Max SD Mean Min Max SD Mean Min Max SD

0.05 1.1071 2.86E-10 4.5775 0.7523 0.0726 1.53E-09 1.3665 0.0721 0.0727 1.73E-09 0.3776 0.0686
0.1 1.122 2.62E-10 4.4507 0.7587 0.0696 1.62E-09 0.4993 0.0632 0.0597 1.89E-09 0.3776 0.0548
0.5 1.119 7.12E-11 4.7383 0.7576 0.0727 1.29E-09 1.0421 0.0742 0.0603 1.83E-09 0.3736 0.0557
1 1.1094 2.32E-10 4.5933 0.7554 0.1184 1.19E-09 1.4581 0.1204 0.0567 2.22E-09 0.3543 0.0529
5 1.1356 2.66E-10 4.64 0.7652 0.373 1.45E-09 2.0409 0.3198 0.0433 4.27E-09 0.4966 0.0490

10 1.1653 2.29E-10 4.6562 0.7823 0.5433 1.27E-09 2.0765 0.4399 0.0716 3.54E-09 0.9746 0.0900
50 1.2319 2.47E-10 5.3397 0.8131 0.6144 3.90E-10 2.123 0.4846 0.1601 2.36E-09 1.2563 0.1825
100 1.356 2.15E-10 5.4949 0.8585 0.6355 1.20E-09 2.293 0.4957 0.2472 1.84E-09 1.3944 0.2540
500 1.6252 2.16E-10 5.6355 0.9616 0.6723 1.19E-09 2.3889 0.5222 0.3485 1.40E-09 1.6683 0.3266
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Fig. 3: System buffer size fluctuation with various arrival rates.

all scenarios [14], [42], [43], hereafter we assume a 10-Mb
buffer size and select a V of 101 × 1018 for further simulation
and comparison.

C. Workload Distribution

This section investigates workload distribution between tier-
α and tier-β in the MRC system within an arrival rate range
of 50 to 300 Mbps. Fig. 4 depicts the results in terms of
CPU utilization (Fig. 4a), offloaded data transfer (Fig. 4b),
and successfully executed workload (Fig. 4c).

Fig. 4a illustrates the dynamic adjustment of CPU utilization
between tier-α and tier-β based on arrival rate observations.
Because tier-β RSUs have a higher energy efficiency (κβ <
κα), their CPUs are highly utilized. However, as energy
consumption is a cube function of CPU frequencies as shown
in Equation (10), a harmonization of both tiers is required to
achieve optimal results. Because of the stochasticity of arrival
rate λ, CPU utilization has fluctuated accordingly. Numerical
results expose that the standard deviation of CPU utilization
percentage is high (approximate 36.77%) at a low arrival rate
and low (approximate 11.93%) at a high arrival rate. The
reason behind this phenomenon is when the arrival rate was
low, available CPU capacity is high and hence flexible to
be controlled. Whilst the arrival rate was reaching saturation
condition, i.e., most of the CPU capacity is occupied, the
flexibility of the algorithm is limited owing to a small room

of available CPU capacity. It is worth noting that in all cases,
system buffers are maintained not exceeding the maximum
threshold of 10 Mb. Obviously, the CPU utilization percentage
of all RSUs increases following the increase in arrival rate.
In particular, tier-β RSUs reach approximate 100% CPU
utilization when the average arrival rate is 200 Mbps and tier-
α RSUs meet the same condition with an average arrival rate
of 250 Mbps or more. Similar to the CPU utilization behavior,
Fig. 4b shows the amount of data transferred to each tier for
offloading execution. The offloaded data is distributed between
the two tiers based on the computational capability, and the
data proportionally increase depending on the arrival rate.

Fig. 4c depicts the successfully executed workload in the
MRC system. It is observed that tier-α RSUs dynamically
contribute 20–25% of successful workload execution in the
entire network according to the arrival rate. When the average
arrival rate is under 200 Mbps, 100% workload is successfully
executed. The network overloads as the average arrival rate
increases to 250 and 300 Mbps. In these saturated traffic
environments, the CPU of both tiers mostly operate within
100% capability. The overloaded amount of the 250-Mbps
and 300-Mbps traffic results in losses of 16.13% and 30.10%,
respectively.

D. Performance Comparison

Fig. 5 shows a comparison of the competing schemes in
terms of average energy consumption in the entire system. It is
observed that the energy consumption of all schemes increases
proportionally with the arrival rate. Among these schemes,
the proposed E2W scheme exhibits a significant improvement
in energy efficiency. In particular, the proposed E2W scheme
reduces approximately 55.04%, 65.64%, and 61.40% of energy
as compared to the results of the SC, ZB, and EA schemes,
respectively, in a stable environment wherein the arrival rate is
lower than the maximum capacity of the MRC system. This is
because the E2W scheme has a sufficient buffer to dynamically
adjust the optimal amount of workload to be processed and
temporally stored in the buffer. Similar to the fluctuation
of CPU utilization percentage, energy consumption is pro-
portional to the amount of CPU usage, which subsequently
depends on the stochasticity of arrival rate λ (see Eq. (2)).
Numerical results show the standard deviation of the system
energy consumption is approximate 13.34, 18.08, 16.96, and
16.55 J/s in the E2W, SC, ZB, and EA schemes, respectively.
Although the E2W scheme flexibly adjusts the CPU utilization
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(b) Offloaded data transferred to RSUs.
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(c) Successfully executed workload in RSUs.

Fig. 4: Reactive behavior of computational tiers in the MRC system.
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Fig. 5: Average energy consumption.

at both tiers of the system resulting in a high fluctuation of
the CPU usage, the minimization of energy consumption leads
to a small standard deviation compared to those of the others.
In case the arrival rate increases and reaches the limit of the
system (e.g., λ̄ = 200 Mbps), all RSUs operate within their
maximum CPU frequencies. Owing to the dynamic workload
distribution between the two tiers, the E2W scheme can utilize
its entire system capacity while the others cannot. Therefore,
the average energy consumption generated by the E2W scheme
is higher than the SC and ZB schemes. Note that the SC and
ZB schemes consume lower energy than the E2W scheme
because a significant amount of workload is not processed yet
and stored in their buffer as shown in Fig. 6 and the following
analysis of the waiting queue in the system.

Fig. 6 illustrates the average waiting queue of workload
arrival at the MRC system. It is observed that the system main-
tains its stability when the arrival rate is under approximate
75% of the maximum system capability (i.e., λ̄ = 150 Mbps).
At this threshold, the statistical metric standard deviation of
simulation results exhibits that all schemes controlled the
system buffer to be fluctuated not exceeding its maximum
capacity of 10 Mb. Under these circumstances, the proposed
E2W scheme leads to a higher buffer along with a high
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Fig. 6: Waiting queue of workload arrival.

standard deviation as compared to those of other schemes.
However, this phenomenon is not disadvantage; it proves the
dynamic harmonization between energy consumption and the
system buffer of the E2W scheme, which optimally minimizes
the energy while keeping the buffer under the maximum size. It
shows the advantage of the Lyapunov optimization as applied
in the objective function P. The dynamic harmonization is
clearly depicted when the average arrival rate λ̄ = 200 Mbps.
As described in the analysis of Fig. 5, when λ̄ = 200 Mbps,
the E2W scheme consumes more energy than the SC and ZB
scheme and approximately the same energy as the EA scheme.
On the other hand, Fig. 6 shows the reason for this, i.e., the
E2W scheme can significantly reduce the system buffer size
to ensure system stability while the others cannot. It is clear
that the system is in overload under the saturated conditions
when λ̄ > 200 Mbps (e.g., λ̄ = 250|300 Mbps).

VI. CONCLUSION

In this study, an energy-efficient workload scheduling
scheme, namely E2W, is proposed for vehicle communications
in MRC systems. The E2W scheme provides a dynamic
balance between energy consumption minimization and sys-
tem stability by using Lyapunov optimization. Moreover, the
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advantages of the proposed E2W scheme can be utilized in
various heterogeneous networking scenarios such as smart
manufacturing and smart cities. Compared to existing studies,
the peculiarities of our work can be highlighted as: (i) Dif-
ferent from existing studies of generic edge computing, the
MRC platform representing a multitier edge computing and it
is modeled as a multitier queuing system from a computing
perspective, (ii) Whilst existing studies mainly resolved the
problems incorporated with latency, our paper targets the sys-
tem stability in a scalable network. To extend the application
of the proposed scheme on large-scale systems, a collaborated
and cluster-based approach based on deep learning methods
will be considered in future research.
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