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Abstract—The rapid increase of diverse Internet of things
(IoT) services and devices has raised numerous challenges in
terms of connectivity, interoperability, and security. The hetero-
geneity of the networks, devices, and services introduces serious
vulnerabilities to security, especially distributed denial-of-service
(DDoS) attacks, which exploit massive IoT devices to exhaust
both network and victim resources. As such, this study proposes
FOGshield, which is a localized DDoS prevention framework
leveraging the federated computing power of the fog computing-
based access networks to deploy multiple smart endpoint defend-
ers at the border of relevant attack-source/destination networks.
Cooperation among the smart endpoint defenders is supervised
by a central orchestrator. The central orchestrator localizes each
smart endpoint defender by feeding appropriate training parame-
ters into its self-organizing map (SOM) component, based on the
attacking behavior. Performance of the FOGshield framework
is verified using three typical IoT traffic scenarios. Numerical
results reveal that FOGshield outperforms existing solutions.

Index Terms—heterogeneous IoT, defense framework, self-
organizing map, DDoS attack

I. INTRODUCTION

In a recent report by Gartner [1], approximate 5.8 billion
Internet of things (IoT) devices are expected to be in use this
year. These devices have become popular in whole market
segments of the fifth generation (5G) mobile networks, in-
cluding consumer applications, cross-industry business, and
vertical-specific industry. This big IoT data paradigm faces
a large variety of device vendors and network technologies,
often called heterogeneous IoT (HIoT) systems [2], [3]. HIoT
imposes several security challenges due to the heterogeneity
and massiveness of HIoT traffic. In particular, lightweight
HIoT devices, which are typically characterized by low com-
puting power, may be exploited by attackers to generate
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promiscuous flooding traffic in distributed denial-of-service
(DDoS) attacks [4]. For instance, a swarm of more than
400,000 vendor/technology-specific IoT devices, hijacked by
Mirai malware, generated about 1 Tbps of DDoS traffic to a
French webhost [5].

A. Literature Review and Motivations

In order to countermeasure against the DDoS issues, liter-
ature review [6], [7] has recognized that 5G cloudization is
beneficial for significantly strengthening DDoS prevention by
enabling various learning techniques, especially for such IoT
environments [8]. The cloudization extends computing capa-
bility from the cloud to the access tier realizing fog computing-
based radio access networks [9]. As a result, cloudization
provides IoT devices with intelligent DDoS prevention instead
of a simple defense as in the past. Cloudization-based DDoS
prevention solutions can be classified into either centralized or
distributed approaches.

As an example of the centralized approach, a multi-level
DDoS mitigation framework (MLDMF) [10] has been pro-
posed using machine learning techniques. In the MLDMF,
big IoT data, which is collected from multiple lightweight
endpoint defenders, is used to train a central controller in
the cloud. Based on the training results, the central controller
generates a common policy, which is then dispatched to all
endpoint defenders. Focusing the operational cost, Zheng et
al. [11] proposed a low-cost DDoS solution, DynaShield
working on the cloud infrastructure. DynaShield yields cost
reduction by considering on-demand defense services with
elastic resource allocation. To enhance the DDoS defense
capability in a software defined networking (SDN)-based
environment, Xu et al. [12] proposed a defense strategy based
on traffic classification, namely DDTC. The DDTC mechanism
is implemented as a virtualized network function to improve
the flexibility and reduce the load of SDN against DDoS at-
tacks. Nevertheless, it is observed that centralized approaches
generally face bottleneck and reaction latency issues due to
overload of the central controller, especially in the big IoT
context.

To mitigate these issues, Phan et al. proposed a distributed
DDoS prevention system (namely D-SOM) [13]. Unlike the
centralized counterpart, training is cooperatively performed
among the distributed controllers. Hereafter, the training re-
sults are collected in a central head in order to generate a
common policy. Then, the central head dispatches its final
policy to all endpoint defenders. In [14], Liu et al. proposed
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a defense method in edge environment to handle large-scale
and low-rate DDoS attacks. The solution exploits advantages
of data locality by using deep convolution neural network to
learn traffic features. Similarly, Jia et al. [15] presented the
FlowGuard system for detection, identification, classification,
and mitigation of IoT DDoS attacks at the edge. The proposed
detection algorithms adapt to the traffic variances by using
long short term memory networks.

Although distributed approaches might perform suitably in
light and homogeneous IoT traffic in general, they may not do
so for massive HIoT traffic since promiscuous big HIoT data
is not easily classifiable. A mixture of data flows from various
webcams, DVRs, and routers, generated by Mirai attacks,
for instance, might be considered as normal traffic at first
glance in central analysis even though they are collected from
non-certified sources. To achieve better classification, existing
approaches require comprehensive analysis and consume a
significant amount of time [5]. Consequently, reaction latency
and accuracy detection remain open challenges to protect the
HIoT networks against DDoS attacks.

B. Paper Contributions

In this article, we propose a DDoS prevention framework
called FOGshield. Distinguished from the above approaches,
FOGshield exploits a federated learning model, which shifts
the training function from a cloud-based orchestrator to every
fogging-based smart endpoint defenders while the orchestrator
performs defense policy orchestration at the central. In a
nutshell, the contributions of this paper are as follows:
• A HIoT system was investigated to expose the vulnerabil-

ities and resistances to DDoS attacks. Consequently, we
analyzed the adversary model of two typical DDoS attack
scenarios in such a HIoT system (i.e., volumetric and
application layer attacks) in terms of the attack objectives,
initial capabilities, and processes.

• We proposed the FOGshield framework, which exploits
the federated learning model consisting of a cloud-based
orchestrator and multiple fogging-based smart endpoint
defenders to improve the attack detection performance.
Empowered by fog computing technology, the smart
endpoint defenders continuously train their own self-
organizing map (SOM) components [16] by exploiting
their local traffic to filter abnormal flows. A central or-
chestrator coordinates the training results among multiple
smart endpoint defenders to generate appropriate filter
policies (i.e., centralized controls).

• As a result, FOGshield prevents both ingress and egress
malicious threats at the border of relevant attack-
source/destination networks, respectively. These advan-
tages of the FOGshield are demonstrated by conduct-
ing a security performance analysis among FOGshield,
MLDMF [10], and D-SOM [13] in three typical IoT
traffic scenarios extracted from reputable datasets such as
CAIDA-attack-traffic [17], NSL-KDD [18], and DARPA
Intrusion Detection [19]. The performance comparison
consists of reaction latency, detection rate and accuracy,
bottleneck handling, and resource consumption.

The rest of the paper is organized as follows. In Section II,
we investigate the vulnerabilities and resistances of HIoT
systems against DDoS attacks. Consequently, two typical
attack scenarios are analyzed in Section III. We propose
the FOGshield platform development and operations in Sec-
tion IV. To validate security performance of the FOGshield,
emulation and result analysis are discussed in Section V.
Finally, the paper is concluded in Section VI.

II. VULNERABILITIES AND RESISTANCES

This section describes the features of HIoT system for
determining their vulnerabilities (V1, V2, and V3) and resis-
tances (R1, R2, and R3) to DDoS attacks; see Fig. 1 for the
reference model. Fogging-enabled HIoT networks consist of
various homogeneous IoT networks distributed at the edge
and interconnected via the networking infrastructure. The fol-
lowing features are derived from two distinguishing facets of
the network: the heterogeneity of IoT devices, and in-network
computation served by fog servers. Detailed description is as
follows.

Power-constrained devices (V1): Although IoT does not
exclude high-power devices, those with constrained power in
terms of computing resources and memory typically occupy
the dominant positions [2]. Owing to their lack of compu-
tational power, these IoT devices may not support complex
and evolving security algorithms, such as effective encryption
for data transfer and endpoint protection against local security
attacks. Furthermore, the weak security implemented on these
devices means exploiting and recruiting them into botnets and
injecting different types of malware are trivial tasks for even
unskilled attackers.

Massive connections (V2): Billions of connected IoT de-
vices generate massive volumes of data. This is an important
ingredient for effective DDoS attacks. The traffic is usually
generated from many constrained HIoT devices. However, the
same amount of traffic might also be generated from fewer
powerful devices in other networks [7]. These factors make
HIoT traffic containing malicious DDoS flows more difficult
to handle than other network traffic.

Heterogeneous group-specific traffic (V3): HIoT traffic is
considered heterogeneous from a macro perspective, but
group-specific from the perspective of each local network
[20]. In particular, IoT devices serving individual applications
may be separately connected in different virtual local area
networks. As such, behaviors of the generated traffic can be
identified via a tuple of flow parameters such as protocols,
ports, transmission rates, and port growth. From a security
viewpoint, the aggregated traffic at the attack-destination site
is classified into a heterogeneous category, while the egress
traffic from the attack-source sites is divided into group-
specific categories.

Mobile cloudization (R1): Fog computing technology pro-
vides cloudization capabilities at the access networks, where
beneficial applications are from latency sensitive devices
such as factory automation, autonomous driving, and remote
surgery. The fog computing is characterized by low execution
latency and context-aware computation. This environment
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Fig. 1. FOGshield deployment to protect HIoT systems against DDoS attacks leveraging fog computing capability.

enables services such as resource scheduling, and security
protection to be scalably deployed in proximity to the IoT de-
vices. Therefore, comprehensive DDoS prevention, facilitated
by the fog computing, can be implemented in collaboration
with advanced techniques such as machine learning and big
data mining in a local context.

Service execution offloading (R2): Mobile cloudization has
enabled the increasingly popular service execution offloading
in HIoT. While lightweight IoT devices lack the powerful
computation capability necessary for the timely execution of
complex services, the networks are equipped with sufficient
computational resources to provide tailored service execution
on demand. This trend has resulted in traffic behavior that
prioritizes local processing at the access tier, rather than on
Internet servers. Tracking this traffic behavior of each local
network might help to detect security threats when abnormal
traffic behavior occurs.

Contextual information fusion (R3): Although the traffic
properties can be distinguished among local IoT networks,
applications running at the access tier may need to merge
contextual IoT data to obtain comprehensive information. The
relationships among contextual IoT data can be considered a
criterion for abnormal traffic detection when individual part-
ners defect [21]. For instance, standard images are transferred
from cameras to a surveillance system during the day, while
thermographic images and motion detection signals are more
useful at night. The traffic is considered abnormal when, for
example, thermographic images are sent during the day, or
standard images are sent at night.

III. ADVERSARY MODEL ANALYSIS

This section analyzes the adversary models of two DDoS
attack scenarios (a volumetric DDoS attack and an application

layer attack) in terms of the attack objectives, initial capabil-
ities, and process.

Objective: The objectives of the scenarios are as follows:
(i) Scenario 1 – A volumetric DDoS attack on the infras-

tructure between users and data centers. The objective is
to send lots of bogus traffic generated from compromised
HIoT devices, resulting in the total malicious traffic size
exceeding the network capacity.

(ii) Scenario 2 – An application layer DDoS attack generally
focuses on servers as its victim. The objective is to flood
the server with seemingly legitimate, but bogus requests
in order to exhaust the ability of the application to serve
legitimate users. This is a more sophisticated type of
DDoS attack, and is difficult to detect because the attack
traffic is not easily distinguishable from benign traffic.

Initial capabilities: In order to execute the attacks, we
assume the adversary has the following capabilities:
• Botnet: Access to a group of compromised HIoT devices

(HIoT botnet). The adversary may be the owner of the
botnet (botmaster), or may have access to it through a
third party (e.g., a DDoS-for-hire service).

• Command and Control (C2): A command and control
infrastructure (C2), which is used to control the compro-
mised devices and possibly recruit additional devices.

• System Knowledge: Some knowledge about the victim,
such as IP addresses, domain names, existing vulnerabil-
ities, and so on.

• Amplifiers: Poorly configured network services (e.g.,
Open DNS resolver), which the attacker can exploit to
increase the volume of the generated botnet traffic. This
capability is crucial for the attack in scenario 1.

• IP Spoofing: Ability to spoof the source IP address of
the botnet traffic. This capability reflects the amplified
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botnet traffic by sending it to the victim rather than the
real source.

Attack process: The attack process in each scenario is
described as follows:

(i) Scenario 1:
• Botnet Activation: The attacker uses a controller to

send commands to the HIoT botnet. The instructions
may include the victims IP address, attack rate, and
target services.

• Traffic Generation: The botnet is used to generate
traffic using the above parameters.

• Amplification: Some UDP-based network protocols
have a high bandwidth amplification factor, which
simply means they return very large responses for
much smaller requests. For example, DNS has an
amplification factor of 28 to 54, NTP has a factor
of 556.9, and SSDP has a factor of 30.8 [22]. This
property is exploited by attackers in volumetric DDoS
attacks, in which a large HIoT botnet is used to send
requests to these services in order to generate an
enormous amount of traffic as a response.

• Reflection: The source IP address of the botnet packets
is spoofed and replaced with the IP address of the
victim. Therefore, the amplified traffic is sent to the
victim rather than to the attacker.

• Network Disruption/Degradation: The network capac-
ity is eventually exceeded by the amplified and re-
flected traffic, thereby degrading or disrupting the
operations of the network.

(ii) Scenario 2:
• Botnet Activation: This process is the same as that in

scenario 1.
• Traffic Generation: At this stage, traffic is generated

from each compromised device in the HIoT botnet. The
intent of the attacker is not easily discernible because
the traffic conforms to all protocols.

• Flooding: At this stage, the attacker floods the server
with requests from each compromised device in the
HIoT botnet. There are three types of application
layer flooding attacks: session flooding, where each
device sends sessions at higher rates than those of non-
malicious users; request flooding, where each attack
session involves sending higher requests than those of
non-malicious users; and an asymmetric attack, where
each attack session contains requests with much higher
workloads than those of non-malicious sessions.

• Service Disruption/Degradation: The capacity of the
server to respond to user requests is eventually ex-
ceeded, thus making the server unavailable.

Feasible defense strategies: Based on the aforementioned
behavior analysis, it is seen that source-based prevention could
effectively mitigate and block bad traffic at proximity to the
source of attack in the volumetric attack scenario. By contrast,
the destination-based prevention strategy plays a key role in
mitigating the impact of the application layer attack. In partic-
ular, the endpoint defender located at the front of the victim
must deploy an adaptive policy to prioritize the IP reputation

database while limiting, filtering, and rerouting the suspicious
traffic. Moreover, additional utilization of source-based pre-
vention and software-based techniques (e.g., the CAPTCHA
test [23]) can supplement the defense performance.

IV. FOGSHIELD FRAMEWORK

On the basis of the previously mentioned adversary model
analysis, we propose FOGshield, a novel DDoS prevention
framework.

A. Design Rationale

The rationale behind the FOGshield framework design
includes (i) utilizing fog computing capability to provide
training-enabled endpoint defenders in front of the attack-
source/destination sites; (ii) well-adaptation to local traffic
of the smart SOM filter at each endpoint defender with
the purpose of abnormal detection improvement; and (iii)
cooperation among the endpoint defenders, supervised by a
central orchestrator.

B. Self-Organizing Map Algorithm

The SOM algorithm is one of the most effective un-
supervised learning solutions in artificial neural networks,
which converts a higher-dimensional input space into a lower-
dimensional representation called an SOM as illustrated on
the left side of Figure 2. An SOM consists of S neurons
arranged on a grid. Neuron j has a weight vector ®wj , which
has the same size as the input training vector ®xi , i.e., ®wj =

[wj1,wj2, . . . ,wjm] and ®xj = [xi1, xi2, . . . , xim], where m is the
input dimension. Let R is radius of the SOM map which is
given as

R =
max (MapWidth,MapHeight)

2
. (1)

Let σ (t) represent the neighborhood radius of a winning
neuron. At the iteration i of the training process, σ (t) is
defined as

σ (t) = R × e−
t
λ , t = 1, . . . , k, (2)

where k is the number of input vector and λ is calculated as

λ =
k

lg (R)
. (3)

It is observed that σ (t) decreases by time during the training.
A pseudocode of the SOM algorithm is illustrated in Fig-

ure 2 as follows:
1) In the preparation stage, all neurons initiate their weight

vectors adopting a common policy to ensure equality
among neurons, i.e., ®wj = [wj1,wj2, . . . ,wjm], where
1 ≤ j ≤ S.

2) In the training stage, when an input vector is fed to the
SOM map, a wining neuron w∗ is elected. The wining
neuron is the one with the smallest Euclidean distance
from its weight vector to the input vector. That is,

w∗ = argmin
j

 ®xi − ®wj

 , ∀ j . (4)
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Fig. 2. FOGshield architecture design adopting the federated learning model and SOM algorithms.

Consequently, all neighboring neurons around the wining
neuron w∗ update their weights to represent relations to
the input vector based on the following policy

®wj ← ®wj + α(t) × Θ(t) × ( ®xi − ®w∗), (5)

where α(t) is a learning rate function which decays over
time and is expressed as

α(t) = α0 × e−
t
λ , (6)

and Θ(t) is an influence function which is calculated by
the distance between neurons j and w∗ as follows

Θ (t) = e
−
‖ ®xi− ®wj ‖

2

2σ2(t ) . (7)

This procedure is repeated until there is no more input
vector fed into the SOM map.

3) In the testing stage, the SOM classifies a new input vector
by comparing the input vector to all neurons on the map.
The winning neuron indicates whether the input vector is
normal traffic or DDoS traffic.

Theoretically, the complexity of this algorithm depends on
step 2 operation. In particular, the argmin function in (4)
results in a complexity O(Sm). While (5) has a complexity
O(Sm3) that is derived from (2), (6), and (7). Finally, the
total complexity is given by O(Sm + Sm3). In practice,
m is selected quite small. Especially, m = 3 and 5 in our

proposed framework (see the Feature extractor description of
the FOGshield endpoint defender in the next section).

C. FOGshield Framework

Figure 2 illustrates the proposed FOGshield framework.
Logically, the FOGshield framework consists of a central
orchestrator and multiple endpoint defenders located at the
border of each homogeneous IoT system.

The feature distribution of the FOGshield framework adopts
the federated learning model, wherein:
• The FOGshield endpoints: (i) Exploit local data to train

their own SOM maps. By this way, the SOM map at
each endpoint better represents specific traffic classifi-
cation for the network sites protected by the endpoint.
(ii) Frequently, send traffic statistics reports and SOM
parameters to the FOGshield orchestrator.

• The FOGshield orchestrator: (i) Based on the traffic
statistics reports, the orchestrator clusterizes the endpoints
into two groups: (1) source-destination relationship and
(2) traffic similarity. (ii) Among the endpoints which have
traffic similarity, the orchestrator builds a SOM model
using the collected SOM parameters. This SOM model is
dispatched to these endpoints to update their local SOM
models. (iii) Among the endpoints which have source-
destination relationship, the orchestrator dispatches ap-
propriate policy to the source (of attack) endpoints to
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activate their source-site SOM maps for filter egress
traffic. In addition, the orchestrator specifies prominent
features in order to make a tuple of features for each
input vector in the local SOM map training procedure at
the source (of attack) endpoints.

The communication between the central orchestrator and the
endpoint defenders is facilitated via secure channels/protocols
supported by the networks (e.g., Openflow protocol). The
physical positions of the FOGshield components are also
depicted in Figure 1. Adopting the European telecommunica-
tions standards institute (ETSI) network functions virtualiza-
tion management and orchestration (NFV-MANO) model, the
FOGshield can be implemented as a virtualized network func-
tion of the 5G networks on the cloud. In contrast, FOGshield
endpoint defenders are deployed at the 5G point of attachments
(5GPoA) such as 5G NodeB (gNB), Wifi access point, and
gateways of emerging IoT technologies [24].

FOGshield orchestrator: The main purpose of the central
orchestrator is to cooperate training results and policies among
the localized endpoint defenders. To this end, the FOGshield
orchestrator is developed consisting of the following compo-
nents:

• Report collector: This component gathers traffic reports
from federated endpoint defenders, including traffic pro-
tocols, port ranges, volume or traffic flow quantity, source
IP address ranges, and destination IP address(es). Adopt-
ing the requirements of the detection mechanism applied
in the attack analyzer, the reported information is pre-
processed and updated at the report collector before being
transferred to the attack analyzer. For instance, to analyze
the characteristics of a spoofed DDoS flooding attack,
protocol, port range and volume are necessary for attack
investigation.

• Attack analyzer: First, this component clusterizes the
endpoint defenders into two groups by considering (i)
source-destination relationship and (ii) traffic similarity,
which can be derived from received information of the
report collector. The source-destination relationship cri-
terion identifies sources of attack if the attack is detected
at the destination site. Appropriate DDoS attack detection
techniques [6] are utilized to identify the attack symptoms
based on the processed information from the report
collector. For instance, multiple reports can indicate that
their egress traffic intends to reach a specific destination,
even if this destination has been reported as a victim
of a volumetric attack (i.e., abnormal extreme ingress
traffic statistics). Meanwhile, the traffic similarity crite-
rion identifies endpoint defenders who have similar traffic
patterns such as traffic types, protocols, and volume.
The SOM parameters in these endpoint defenders can be
collaborated to build an improved SOM map following
the federated learning model. Iteratively, notifications of
these analyses are sent to the policy generator to dispatch
updated protection policies to corresponding endpoint
defenders.

• Policy generator: As a result of the federated learning
model, the improved SOM parameters are sent to the

corresponding endpoint defenders to update their local
SOM maps. On the other hand, once a DDoS attack is
identified, primary policies are generated and forwarded
to the corresponding endpoint defenders located at the
borders of the source and destination sites of the attack.
The policies contain an activation command to activate
whether the destination-site or source-site SOM maps,
respectively. In addition, desired features of the local
traffic are specified accordingly. The feature information
will be delivered to the feature extractor module via the
local policy conductor in order to request the desired
extraction, which is used in the SOM training and clas-
sification processes.

FOGshield endpoint defender: The primary purpose of the
FOGshield endpoint defenders is training and classification of
the DDoS traffic. The components of the FOGshield endpoint
defenders are as follows:

• Traffic monitor: The main function supported by this
component is to generate the traffic statistics report.
It regularly records the statistics of ingress traffic, in-
cluding traffic protocols, service ports, volumes and
source/destination IP address ranges. A summary of the
information is periodically delivered to the report col-
lector in the central orchestrator. Depending on current
situation, the time period can be dynamically set to
reduce communication overhead on the link between
the endpoint defenders and the orchestrator. In addition,
ingress traffic is also forwarded to the feature extractor
in order to make the SOM map’s inputs.

• Local policy conductor: Based on the primary policy dis-
patched from the orchestrator, the local policy conductor
informs the feature extractor about prominent features in
order to make a tuple of features for each input vector
in the SOM map training procedure. Moreover, the local
policy conductor will send localized information to the
smart SOM filter to apply appropriate policies for attack
traffic classification. For example, a drop action should be
given to TCP SYN flooding attack flows if the number of
flows is huge and the packet per flow is tiny. Meanwhile,
a blocking action should be applied for attack flows
transferring a large amount of packet in a flow.

• Feature extractor: This component extracts the features
of traffic delivered from the traffic monitor and gener-
ates tuples for the SOM training inputs based on the
requirements of the local policy conductor. In case the
source-site SOM map is activated, a tuple of traffic
features including (protocol, port number, flow number,
packet/flow, growth of source port) is extracted from the
monitoring traffic. Meanwhile, in case the destination-site
SOM map is activated, a tuple of (protocol, port number,
flow number) is extracted instead. Then, these tuples
are incorporated into the smart SOM for classification,
respectively.

• Smart SOM filter: This component applies the SOM al-
gorithm to classify ingress/egress traffic to/from the local
network. First, the SOM is trained continuously by input
vectors transferred from the feature extractor. Second,
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when a vector of DDoS attack traffic is recognized at the
SOM, the smart SOM filter notifies the switching/routing
component. Consequently, the protection mode is acti-
vated and the egress traffic is switched using the filter.
The protection mode is deactivated if the SOM does not
receive an input vector from a DDoS attack within a pre-
defined time length. This means that no DDoS attack
occurs.

• Switching/Routing: This is a basic function of borders
used to handle ingress/egress traffic.

D. Operational Workflow

Under normal conditions, the protection mode is deacti-
vated; that is, egress traffic from IoT devices bypasses the
smart SOM filter to improve the networking performance. In
this case, the traffic is still captured by the traffic monitor to
extract features for smart SOM training and for traffic statistics
reports (brown lines in Fig. 2). Whenever a DDoS symptom
is detected by the attack analyzer in the orchestrator or by
the smart SOM filter in the federated endpoint defenders, the
protection mode is activated.

In the DDoS attack condition, the egress traffic from IoT
devices should go through the smart SOM filter. Depending
on the classification provided by the filter, the detected DDoS
traffic is dropped. The traffic monitor collects statistics on
the DDoS traffic, which it then reports to the orchestrator.
After identifying the attack targets and attack methods, the
orchestrator dispatches primary policies to all endpoint de-
fenders distributed at the border of the corresponding local
networks. The local policy conductor in each FOGshield
endpoint defender assigns requirements to the feature extractor
to generate appropriate training vectors, and it also informs the
smart SOM filter of possible mitigation policies to tackle the
attack traffic flows. During the attack time, the smart SOM
filter still transfers ingress attack traffic (red lines in Fig. 2)
to the traffic monitor, eventually to generating statistics and
training samples. The security performance of the proposed
framework is achieved through two points of protection given
by the FOGshield endpoint defenders at the attack-source and
destination sites.

Regarding communication overhead, the endpoints fre-
quently send traffic statistic reports (traffic protocols, service
ports, volumes, and source/destination IP ranges) and SOM
parameters to the central orchestrator. Because the data fields
of the reports are fixed and the size of the SOM parameters is
deterministic, it is observed that the communication overhead
between the endpoint defenders and the orchestrator is con-
stant over time. In the downlink from the orchestrator to the
endpoint defenders, the primary policies have a constant size
as the size of the SOM activation command and desired traffic
features are fixed. In addition, these policies are only sent
whenever a DDoS attack is detected. Regarding the improved
SOM parameter updates, its size is deterministic. Therefore,
the communication overhead is controlable by the FOGshield.

V. SECURITY PERFORMANCE ANALYSIS

A. Experiment Preparation

Initially, the smart SOM filters are trained using data sets
of DDoS attacks and normal traffic. The DDoS-attack training
sets are obtained from three data sets: CAIDA-attack-traffic
[17], NSL-KDD [18], and DARPA Intrusion Detection [19].
The normal-traffic training set is derived from CAIDA-normal-
traffic [17]. The statistics of these data sets are provided in
Table I.

Owing to the wide variety of HIoT devices, we generalize
the types of traffic into three categories:
• Sensor traffic: This traffic is generated by sensor devices

in a fixed period, with a low number of packets per flow.
• Monitor traffic: This involves real-time traffic, character-

ized by a small number of flows and a significant number
of packets per flow.

• Alarm traffic: This traffic type is not easily discernible
because alarm IoT devices only generate traffic when an
abnormal event occurs. However, we assume the alarm
traffic has both moderate flows and a moderate number
of packets per flow.

Accordingly, 10,000 samples of the three categories are
extracted from the data sets. Static cross-validations with
rotated 7:3 ratio of the training and testing are conducted.
Within a validation profile, each testing sample is continuously
utilized for training after testing. In particular, a tuple (proto-
col, port number, flow number) is applied for SOM training
in the FOGshield endpoint defenders at the destination-site; at
the source-site, a tuple (protocol, port number, flow number,
packet/flow, growth of source port) is used. Details of these
features are as follows:
• protocol: this factor is crucial in recognizing the presence

of different types of DDoS attacks, e.g., ICMP, TCP SYN,
and UDP flood attacks.

• port number: this presents the number of layer-4 ports,
which can be significant under DDoS attacks that exploit
the vulnerabilities of transmission protocol, e.g., a TCP
SYN flood attack.

• flow number: this is a critical attribute for common DDoS
attacks, e.g., an ICMP flood attack has few flows, while a
TCP SYN flood attack generates a large number of traffic
flows.

• packet/flow: this feature represents how many packets are
transferred in a traffic flow, which is a crucial factor for
DDoS attack detection. For instance, a vast number of
packets are generated in one traffic flow in case of an
ICMP flood attack, while there are a few packets for a
TCP SYN flood attack.

• growth of source port: during DDoS attacks, the change
in the number of source ports is trivial in the case of
attacks that aim to send a massive number of packets in
a few flows, e.g., ICMP flood. Meanwhile, for attacks,
e.g., TCP SYN and UDP flood, a client generates many
service ports.

Under DDoS attacks, the destination-site victim (e.g., edge
network devices) usually has to deal with a massive traffic
volume sending from arbitrary networks where each source
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TABLE I
STATISTICAL INFORMATION OF CAIDA, NSL-KDD AND DARPA DATA SETS

Characteristics

CAIDA
Traffic state TCP (%) ICMP (%) Others (%)

Normal (2015) 88.45 6.0 5.55
Attack (2007) 7.58 91.25 1.17

NSL-KDD Attack type #Training patterns #Testing patterns #Features
back, land, neptune, 45927 7458 41

pod, smurf, and teardrop

DARPA Attack types Attack source Attack time Data size
SYN flooding 100 different IPs 6 minutes 3 GB

(of attack) network only generates a portion of the total traffic.
Therefore, to avoid resource exhaustion at the destination-site
in extracting detailed features for every incoming IP address,
a three-feature tuple for a destination-site SOM training is
used. Meanwhile, a five-feature tuple is chosen for a source-
site SOM training to exactly identify which IoT devices in the
local network are sending the attack traffic to the victim. As a
result, the malicious devices are prohibited from sending out
the traffic during a predefined period. In addition, the learning
rate is set 0.1 to ensure that the SOM map does not miss any
local minimal in all emulated systems.

B. Emulation Setup

A SDNFV-enabled network consisting of four Openflow
switches has been designed by using Mininet platform [25]
to represent a FOGshield orchestrator and three FOGshield
endpoint defenders directly connected to three IoT networks
(sensor, monitor, and alarm). FOGshield endpoint defenders
were implemented as a software-based box, including SOM,
an OpenvSwitch agent, and operational modules. An SDN
controller is placed in the same machine with the FOGshield
orchestrator to control traffic going through OpenvSwitch
agents (e.g., redirect traffic to the smart SOM filter). Applica-
tions in the servers are in charge of storing IoT traffic arrival
and responding to the IoT devices with acknowledgement
messages.

To analyze the security performance of FOGshield, we
conducted a comparison with two competitive frameworks on
the basis of SOM technique utilization, specifically MLDMF
[10] and D-SOM [13]. Note that all solutions use the same
training data sets. For each local homogeneous IoT network,
we use the BoNeSi DDoS Simulator [26] to generate different
levels of attack traffic (50, 100, 200, and 300 Mbps). The
BoNeSi output was configured to adopt the traffic features
of three generalized categories: Sensor traffic, Monitor traffic,
and Alarm traffic.

C. Emulation Results and Analysis

To analyze the security performance of FOGshield, we
conducted a comparison with two competitive frameworks on
the basis of SOM technique utilization, specifically MLDMF
[10] and D-SOM [13].

Reaction latency: The first criterion is the attack reaction
latency at each endpoint defender, which shows how fast a
policy is implemented by FOGshield endpoint defenders to
mitigate malicious traffic flows since an attack is detected by

Fig. 3. Reaction latency to various attack levels.

the smart SOM filter. In this measurement, we record four
different attack traffic levels, as depicted in Figure 3. These
results can be explained as follows:

• In the MLDMF, there is a considerable latency because all
of the traffic is forwarded to the central controller from all
endpoint defenders for attack investigation. Afterwards, a
common policy is sent back to the endpoint defenders for
traffic-handling operations. Moreover, the transmission
time between the central controller and endpoint defend-
ers supplement the overall reaction latency. Numerical
results reveal a linear proportional dependence of reaction
latency on the volume of traffic.

• In the other schemes, the attack investigation is performed
by adopting a distributed model. Therefore, whenever an
attack occurs, endpoint defenders immediately identify
and prevent the attack from entering the network or
reaching the victims. The data volume (and therefore, the
data transmission time) reported to the central entities
is inconsiderable. As a result, the reaction time of the
FOGshield and the D-SOM solutions are lower for all
traffic levels, e.g., 5 ms and 10 ms in the case of 50-
Mbps and 300-Mbps traffic, respectively; see Figure 3.

Detection Rate and Accuracy: As a second criterion, we
measure the detection rate and accuracy of three schemes
during the whole experiment time. The detection rate and
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Fig. 4. Detection rate and accuracy in detecting abnormal traffic with the
SOM map.

accuracy are defined respectively as follows:

Detection rate =
TP

TP + FN
, (8)

Accuracy =
TP + T N

TP + T N + FP + FN
, (9)

where
• TP (i.e., true positive) indicates the number of correctly

identified attack flows;
• TN (i.e., true negative) indicates the number of correctly

identified normal flows;
• FP (i.e., false positive) indicates the number of normal

flows that are incorrectly identified as attack flows;
• FN (i.e., false negative) indicates the number of attack

flows that are incorrectly identified as normal flows.
Figure 4 presents the emulation results. In both criteria,
FOGshield performed better than the other schemes, up to ap-
proximately a 99.3% detection rate and 99.4% accuracy. This
is because SOM maps in the FOGshield endpoint defenders
are separately trained (offline and online training) by local
homogeneous IoT traffic. Hence, these filters find it easier to
recognize patterns or in other words, they are well-adapted to
local IoT traffic. Conversely, with a fixed and limited number
of neurons in the common trained SOM, if there are many
traffic types trained for a SOM map in the MLDMF case, or
several merging times in the case of the D-SOM mechanism,
the weights of each neuron in the SOM map will change
considerably. This leads to degradation of both the detection
rate and the accuracy of these schemes.

Bottleneck Handling: To assess the robustness of the
schemes, we investigate the problem of bottlenecks occurring
in the controller during our experiments. The results are shown
in Figure 5. A major difference is observed between the
distributed and centralized solutions. Both FOGshield and D-
SOM show acceptable CPU usage of around 35%. On the
other hand, the MLDMF mechanism shows a high usage of
the controller’s CPU (83%, on average). The reason is the
traffic is always forwarded to the MLDMF central controller
for processing, while the FOGshield and D-SOM process the
traffic in a distributed manner.
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Fig. 5. CPU utilization under DDoS attacks in controller.
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Fig. 6. CPU utilization under DDoS attacks in the whole protection system.

Resource Consumption: Finally, we assess the resource
consumption issues; see Figure 6. We record the CPU usage
of all machines and evaluate the average system resource
consumption. The CPU usages of FOGshield, D-SOM, and
MLDMF are 36%, 43%, and 46%, respectively. As discussed
in Section IV-C, we consider the IP ranges of ingress traffic.
Therefore, depending on the IP ranges, the FOGshield or-
chestrator can inform dedicated endpoint defenders to enable
the SOM filter function in the case of attacks. As a result,
the FOGshield framework can save resources because of the
limited number of running SOM filters. In contrast, the D-
SOM and MLDMF schemes always have to enable endpoint
defenders at all time. Hence, the computing resources are
consumed, even if there is no ingress traffic.

Remark: Based on the analysis, the benefits of FOGshield
can be summarized into three main points:
• Security improvement: Detection accuracy is increased,

while reaction latency is decreased. These achievements
are obtained via two main development strategies in
FOGshield. One is mitigation of the training functions
from the cloud to the access tier in order to separately
handle homogeneous IoT traffic. The other is cooperation
between the attack source and destination to provide two
protection points against malicious ingress and egress
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traffic.
• Traffic overhead reduction: Since smart endpoint defend-

ers are deployed in front of the attack source, mali-
cious traffic generated by the HIoT devices is typically
blocked at the border before traversing over the network.
Moreover, large data collection for training purposes is
unnecessary for delivery to the central controller. Instead,
statistics reports are used for local traffic management.

• System stabilization: Since the training operation is per-
formed locally for each individual IoT access network
by using fog computing technology, FOGshield avoids
the bottleneck problems experienced by the controller(s)
typical in DDoS attacks.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this study, we propose FOGshield, which is a DDoS pre-
vention framework at the border of attack-source/destination
in HIoT systems. FOGshield enables the network to defend
against malicious traffic from HIoT devices by using smart
SOM filters. Experimental results show that the detection
rate and accuracy are improved because of the adaptation
to local traffic at the SOM filters. Moreover, the federated
architecture and control scheme of the FOGshield avoid the
usual bottleneck occurring in DDoS attacks, saving around
10% resource consumption in terms of CPU usage compared
to the distributed approaches. Finally, FOGshield introduces
an efficient and feasible security framework for HIoT envi-
ronments. Since the 5GPoA nodes are equipped with various
computing capabilities and each local network is characterized
by different IoT traffic volumes, a flexible filter training
mechanism with optimal configurations should be considered
in order to balance the workload among the endpoint defenders
and central orchestrator as well as reducing unnecessary
training efforts. In addition, other specific attack analysis is
necessary for an efficient and comprehensive version of the
intelligent FOGshield.
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