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Bitrate Streaming in Edge Caching Systems
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Abstract—This paper addresses the tradeoff problem between
hit ratio and content quality in edge caching systems for multi-
user adaptive bitrate streaming (ABS) services. A dynamic policy
for cache decision and quality level selection for each ABS content
during every cache cycle is proposed. Achieving this policy is NP-
complete. For this, the considered problem is transformed into
a nested multidimensional 0/1 knapsack optimization problem
which is then resolved by a cooperative transfer learning-
accelerated genetic algorithm. Performance evaluation demon-
strates an adaptation of the proposed algorithm on various video
stream popularity models in terms of algorithmic convergence
and cache balancing.

Index Terms—Adaptive bitrate streaming, cache balancing,
edge caching systems

I. INTRODUCTION

In a modern mobile video streaming, heterogeneous user
demands and preferences are supported by an adaptive bitrate
streaming (ABS) service. The ABS service enables networks
to dynamically adjust the quality level of content chunks
(represented by video bitrate) to respond to the change of
environmental conditions and resource availability [1]. To
ensure efficient cooperation between network elements in
the ABS systems, the International Organization for Stan-
dardization (ISO) publishes the ISO/IEC 23009-5:2017 stan-
dard [2] which defines a functional architecture, namecoded
SAND. The SAND architecture enables network-assisted video
streaming ability along with dynamic adaptive streaming over
HTTP (DASH) protocol utilization. Here, content chunks are
transcoded and/or cached on the delivery path by the network
elements closer to users. These in-network services are referred
to as the edge caching systems (ECSs).

However, the computing capacity of ECS network elements
(called edge servers) tend to be totally overwhelmed by the
increasing user demands and preferences [1]. As reviewed in
[3], [4], existing works mainly optimized the ECS towards its
service efficiency such as hit ratio and resource usage maxi-
mization. For instance, Wang et al. [5] exploit the collaboration
among edge servers for an integrated cache placement and
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video retrieval to obtain hit ratio maximization and content
access latency reduction. To extend this work, a joint cache
and radio resource allocation scheme is proposed in [6], where
wireless access from users to edge servers is controlled by us-
ing Stackelberg game theory to maximize spectrum efficiency
and hit ratio. On the other hand, a multipath video streaming
framework is designed in [7] with a scalable video coding
capability to maximize the video playback rate. Although
these approaches have successfully improved network service
efficiency, their achievements come at a cost of content quality
(i.e., user experience) reduction owing to resource constraints
at the edge servers.

To address this catch-22 situation, this paper investigates
the tradeoff problem between hit ratio and content quality
(referred to as HICOT) in the ECS for multi-user ABS services.
Specifically, cache decision and content quality selection are
tightly integrated into a flexible policy. Here, the hit ratio
is supervised by a logarithmic function whereas the content
quality is modeled by an average of production with content
popularity. Achieving this tradeoff policy is NP-complete. For
this, the policy is transformed to a nested multidimensional 0/1
knapsack (nMKP) optimization problem which delivers cache
decision on every ABS video content with their own optimal
bitrate. We propose the HICOT algorithm that integrates a
cooperative transfer learning technique into genetic mechanism
to quickly resolve the nMKP problem. The advantages of the
HICOT algorithm are summarized as follows:
• Its objective is developed to jointly consider two paradox-

ical objectives of ABS services, i.e., cache hit ratio and
content quality. Once the optimal solution is established,
the objective may shift its target towards either hit ratio
awareness or content quality awareness by just adjusting
the tradeoff factor.

• Although its optimization problem is NP-complete, the
HICOT algorithm obtains approximately optimal solution
with a quick convergence by accelerating a genetic mech-
anism using a cooperative transfer learning.

• Performance evaluation demonstrates that the HICOT
algorithm well adapts to all three typical video stream
popularity distributions such as Zipf, uniform, and random
models.

II. SYSTEM MODEL

A typical system model of ABS services is illustrated in
Fig. 1. In this model, a DASH player sends status messages to
the SAND servers to request for information about its desired
content. A SAND server located at the edge server in the
proximity of the user device then returns a response message
indicating a maximum bitrate available to the user, which is
calculated by the caching policy. Accordingly, a transcoder of
the SAND server inquires the original content from the content
providers and encodes the content at the assigned bitrate.
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Fig. 1. ABS services adopting SAND architecture deployment in an ECS.

The system parameters at timeslot t are defined as follows.
The backhaul bandwidth between the edge server and the
content provider is W bps. Regarding user demands, let N
and N denote the set of desired ABS contents and its cardi-
nality, respectively. Assume that the ith ABS content has its
probabilistic popularity pi [4]. In addition, the ith ABS content
can be transcoded at a bitrate li bps with a computational cost
fi Hz from the original content. The bitrate li belongs to a
pre-determined bitrate set L with dimension L. In addition,
the edge server is equipped with a Q-byte cache storage and
it has a maximum computing capacity F Hz. A general form
of the tradeoff problem can be expressed by

max κf(hit ratio) + (1 − κ)g(content quality), (1)

where f(·) and g(·) are functions of the hit ratio and the content
quality, respectively; while κ (0 ≤ κ ≤ 1) is a tradeoff factor
to balance the impacts of these two functions.

III. HIT RATIO AND CONTENT QUALITY TRADEOFF

A. Problem Statement

To obtain an increase of the hit ratio at the edge server, f(·) ∝∑N
i=1 αipi must be satisfied, where αi is a binary parameter

presenting cache placement decision of the ith content in the
edge server. If αi = 0, the ith content is cached at the edge
server during the considered timeslot; otherwise, the content
is not cached. To control the priority of the hit ratio, a natural
logarithm is applied on f(·) in order to promote the impact of
the hit ratio when it is small and reduce its impact when its
volume is large enough [1]. That is, f(·) = log

(∑N
i=1 αipi

)
.

For content quality function development, g(·) is designed
as a linear function of li . To generalize the quality of all cached
contents in the edge server, an average bitrate is derived from
all user requests. As a result, g(·) at the edge server is given
by

g(·) =
1∑N

i=1 αipi

N∑
i=1

©«αipi
L∑
j=1

βi j li j
ª®¬

s.t.
L∑
j=1

βi j ≤ 1, βi j ∈ {0, 1}, ∀i,

where βi j is a parameter of bitrate selection for the ith content
in L. Accordingly, the tradeoff problem (P) is formulated as

(P) max
αi,βi j

κ log

(
N∑
i=1

αipi

)
+

+(1 − κ)
1∑N

i=1 αipi

N∑
i=1

©«αipi
L∑
j=1

βi j li j
ª®¬ (2)

subject to

0 <
N∑
i=1

αi

L∑
j=1

βi j li j ≤ Q, | αi, βi j ∈ {0, 1}, (2a)

N∑
i=1

©«αipiKci + (1 − αi)
L∑
j=1

βi j li j
ª®¬ ≤ W, (2b)

N∑
i=1

αi fi ≤ F, (2c)

L∑
j=1

βi j ≤ 1, ∀i. (2d)

In (2), (2a) ensures that total size of the cached contents does
not over-capacitate the cache. Moreover,

∑N
i=1 αi

∑L
j=1 βi j li j >

0; otherwise, no content is cached, i.e., an optimal calculation
is unnecessary. (2b) illustrates the total bandwidth occupation
for delivery of all ABS contents from the content provider to
the edge servers on the backhaul link. αipiKci is the amount
of bandwidth consumed by the ith content without cache,
where K and ci are the number of user requests and bitrate of
the original content, respectively. (2c) ensures the transcoding
workload can be managed by the computing capacity of the
edge server. (2d) insists that at most one bitrate can be selected
for each content. It is seen that (P) is NP-complete owing to
its form of an integer programming problem.

B. HICOT Algorithm

Lemma 1. Utility of selecting content k at bitrate lk j is positive
if lk jpk is not less than an average of all

∑L
j=1 βi j li jpi of the

decided contents.

Proof. Assume that the edge server has a decision on N1
contents excluding content k. If the content k satisfies all
constraints (2a)–(2d), the utility uk j of selecting the content
k at a bitrate lk j can be derived from the differential of the
objective (2) before and after selecting the content k, i.e.,

uk j = κ log

(
1 +

pk∑N1
i=1 αipi

)
+

+(1 − κ)
1∑N1

i=1 αipi + 1

©«lk jpk −

∑N1
i=1

(
αipi

∑L
j=1 βi j li j

)
∑N1

i=1 αipi

ª®®¬ .(3)

(3) shows that the utility of selecting the content k at the bitrate
lk j varies depending on the selection order of the content. In
spite of that, the variation of the utility with different orders
impacts on all contents equally. In addition, the right term in
(3) shows that this utility is positive if lk jpk is not less than
an average of all

∑L
j=1 βi j li jpi of the decided contents. �

Lemma 2. Utility of selecting the content k at the bitrate lk j
is independent of the order of content selection in the final
decision.

Proof. Similarly, given that the edge server finally has its
decision on all N contents including a content k, the utility
of selecting the content k at a bitrate lk j can be derived from
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Algorithm 1 Hit Ratio and Content Quality Tradeoff
1: Initiate I = {I1, I2, . . . , Ip }, Ii ∈ {0, 1}NL ;
2: Evaluate P(I) = {P(I1), P(I2), . . . , P(Ip )} using Eq. (4);
3: Imax = arg max

Ii ∈I
P(Ii );

4: t = 0, ε = 1;
5: while (t < T ) AND (ε ) do
6: Crossover C = X(I f , Im), {I f , Im } ∈ I;
7: Mutate and repair C = Ω(C) s.t. (2a)–(2d), C . ∃Ii ∈ I;
8: Evaluate P(C);
9: Imin = arg min

Ii ∈I
P(Ii ). In I, Imin ← C;

10: Imax = arg max
Imax,C

{P(Imax), P(C)};

11: Check the convergence and decide ε, ε ∈ {0, 1};
12: t = t + 1;
13: return Imax;

the differential of the objective (2) with and without selecting
the content k, i.e.,

κ log

(
1 +

pk∑N
i=1 αipi − pk

)
+

+(1 − κ)
1∑N

i=1 αipi − 1

©«lk jpk −

∑N
i=1

(
αipi

∑L
j=1 βi j li j

)
∑N

i=1 αipi

ª®®¬ .(4)

(4) is independent of the order of content k in N as all terms
in (4) is specified in the final decision. �

(P) expresses a situation in which the edge server must de-
cide which ABS contents at which bitrates to temporally cache
on the memory subject to the cache size, backhaul bandwidth,
and computing capacity limitations. Owing to Lemmas 1 and
2, (P) can be regarded as an nMKP optimization, where a
0/1 knapsack solution is applied on content selection, and for
each given selected content, another 0/1 knapsack solution is
applied on its bitrate. In order to reduce the complexity of
nMKP optimization, we transform (P) into a typical MKP by
considering that a content at each bitrate is a distinct item for
selection. The utility of an item is given by (3). Consequently,
we have:

max
γk j

NL∑
k j=1

uk jγk j (5)

s.t. (2a)–(2d), (3).

Because the cache size Q, backhaul bandwidth W , and comput-
ing capacity F are large compared to the number of contents
N L, we adopt a genetic mechanism to resolve the problem and
propose the HICOT. A pseudocode of the HICOT is illustrated
in Alg. 1.

Initially, a set of feasible solutions I is generated, where
each element Ii is a vector of γk j and Ii ∈ {0, 1}NL . The
utilities of the feasible solutions are calculated using Eq. (4).
Among these feasible solutions, a solution that has the max-
imum utility is labeled as Imax. The number of attempts T
and the convergence indicator ε are setup, where T defines
the maximum number of attempts in the genetic loop and
ε indicates whether the algorithm has converged (ε = 0)
or not (ε = 1) [Lines 1–4 in Alg. 1]. The algorithm is
considered convergent if a particular number of continuous
attempts returns no change in Imax. Each attempt in the genetic
loop [Lines 5–12 in Alg. 1], first selects a couple of I f and
Im arbitrarily in I. A crossover operation X(·) is constructed
by deriving γk j elements from I f and Im to generate a new

vector C of the same size N L. The selected γk j is the content
that has the best utility-constraint ratios rk j [8] given by

rk j =
uk j

1
3

(
v1lk j + v2

(
αkpkKck + (1 − αk)lk j

)
+ v3 fk

) , (6)

where v1, v2, and v3 are the corresponding Lagrangian mul-
tipliers of dimensions Q,W, and F, respectively. To ensure
C is unique and feasible, a mutation and repair operation
Ω(·) is performed on C by switching the values of several
γk j elements. Consequently, the utility of C is calculated to
update Imax as well as to replace the solution that has the
minimum utility in I. Lastly, the convergence of the algorithm
is checked to update ε . When the genetic loop is completed,
Imax is returned as the most appropriate solution.

C. Cooperative Transfer Learning based Acceleration

In Alg. 1, the initial feasible set I mainly impact the
convergence. To accelerate the convergence of the HICOT
algorithm, we utilize the cooperative transfer learning method
among edge servers to initiate I for every genetic loop in
Alg. 1. Specifically, a common feasible set Ic is maintained by
learning the most efficient caching solutions transferred from
all edge servers. A solution in Ic is labelled by a corresponding
environment tuple 〈Q,W, F〉, which represents the context
where the contributor edge server found this solution. In
particular, each time an edge server obtains its own solution
by performing the HICOT algorithm, the edge server compares
its achieved utility (5) with the utility provided by the solution
that has the best matching environment tuple (i.e., the shortest
Euclidean distance) in Ic . From this comparison, the solution
that results in a higher utility is retained in Ic . Ic is used as
the initial feasible set I for the edge servers.

IV. PERFORMANCE EVALUATION

We generated 500 samples of 50 video streams adopting
three typical video stream distribution assumptions: (i) With
the Zipf distribution, the exponent is set to 1.161 following
the 20-80 Pareto law [9]; (ii) With the uniform distribution,
the popularity of every videos is perfectly set equal to
1/50, i.e., 2%, to follow a theoretical uniform distribution;
(iii) With the random distribution, we used the rand(·)
function available in MATLAB to generate video samples.
The rand(·) function returns uniformly distributed random
integer numbers in the interval [1, 50]. Video chunk size is set
2 s applying for all videos. The backhaul bandwidth between
the edge server and the content provider is assumed to be
1.0 Gbps. The video streams are encoded at a bitrate in L =
{235, 375, 560, 750, 1050, 1750, 2350, 3000, 4300, 5800} kbps
[1]. The computational costs to transcode the original contents
at the desired bitrates are proportional to the bitrates as
{235, 375, 560, 750, 1050, 1750, 2350, 3000, 4300, 5800} × 10
kHz [10]. Edge servers are equipped with a 2.4-GHz CPU.

Fig. 2 illustrates the convergence speed of HICOT algorithm
in the three experiments. The termination condition is set to
be a combination of the average relative change in the objec-
tive function value (10−3) and the minimum number of stall
generations (1000 iterations). In general, HICOT converges
rapidly to an approximately optimal solution in fewer than
20,000 iterations. In the uniform distribution, the convergence
is achieved after 100 iterations since all video demands have
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Fig. 2. Algorithmic convergence of HICOT.

Fig. 3. Bitrate selection of 50 video contents in popularity descending order.

an approximate popularity. Meanwhile, HICOT requires more
time to converge in the Zipf and random distributions as the
popularity of video demands is diverse.

Fig. 3 presents the box plots of the bitrate selection. The
red line is the mean of video bitrates while the dimension of
the box indicates the fluctuation of bitrate selection depending
on κ. It is observed that high-popularity video contents are
prioritized to be cached with high quality while low-popularity
videos might be cached with low quality or not be cached
at all. A high bitrate selection fluctuation occurred to videos
with medium popularity (e.g., videos indexed 20–25 with the
Zipf and random distribution). In the central plot, the uniform
distribution shows the mean and fluctuation of video bitrates
are approximate among contents.

Fig. 4 shows the impact of the tradeoff factor κ on hit ratio
and average video bitrate balancing. According to (2), two
special cases κ = 0 and 1 of the HICOT algorithm make the
objective be quality-aware and hit ratio-aware optimizations,
respectively. As discussed in Section III, κ prioritizes the hit
ratio compared to the average video quality. We observe that
the tradeoff value that switches priority on hit ratio and quality
is different according to video demand distributions. Hence, the
tradeoff factor should be selected around the switching tradeoff
value to get a dynamic balance between the hit ratio and the
video quality. In the Zipf case, the hit ratio slightly increases
before jumping to a high value compared to other distributions
because of the 20–80 Pareto law.

Fig. 5 shows the impact of cache buffer size on the average
bitrate. Since video demands with uniform distribution have
approximate popularity, all videos are handled equally with
the same caching priority that makes the average bitrate linear
in the cache size. In the Zipf and random cases, high-popularity
videos are cached with a high bitrate. Therefore, the average
bitrate rapidly increases when the cache buffer size is small.
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Fig. 5. Average bitrate of cached contents with various cache buffer sizes.

V. CONCLUSION

This paper proposes a dynamic policy for balancing between
cache decision and quality selection for multi-user ABS ser-
vices in an ECS. This tradeoff problem has been resolved by
the proposed cooperative transfer learning-accelerated genetic
algorithm named HICOT. Performance evaluation has been
conducted to investigate the adaptation of the proposed HICOT
algorithm against three typical video stream popularities. To
extend the study, user mobility and audience retention rate will
be considered in the future work.
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