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Information Revealed by Vision: A Review on the
Next-Generation OCC Standard for AIoV

Nhu-Ngoc Dao, Trong-Hop Do, Sungrae Cho, and Schahram Dustdar

Abstract—The artificial intelligence of vehicles (AIoV)
paradigm defines an AI-empowered computational and com-
munication platform in which vehicles, pedestrians, roadside
units, and network infrastructures interact with each other to
fashion transportation ecosystems. However, the communica-
tion technologies that are currently available continue to be
plagued by practical problems such as high-cost implementation
and upgrade, thereby constraining this development. In this
regard, optical camera communication (OCC) is emerging as a
promising technology with excellent compatibility. In particular,
OCC utilizes the light sources and cameras that are already
incorporated with existing devices to act as transceivers, obviating
the need for additional specialized hardware. In this article,
we describe the current status of OCC standardization and
applicable AIoV scenarios. Then, the characteristics of OCCs
are analyzed, including channel modeling, adaptive modulation,
region-of-interest anchoring, and image enhancement. Finally,
open challenges are presented to drive future research on
improving OCC performance realizing the AIoV paradigm.

Index Terms—Intelligence of vehicles, intelligent transporta-
tion system, optical camera communication

I. INTRODUCTION

A. Intelligence of Vehicles

Recent years have witnessed an increase in the development
of Internet of Vehicles (IoV) toward intelligent transportation
systems (ITSs). However, the integration of Internet capabil-
ity is considered insufficient to promote the rapid evolution
of these systems. In other words, realizing the maturity of
ITSs requires all transportation components such as vehicles,
pedestrians, roadside units, and network infrastructures to be
connected via an artificial intelligence (AI)-empowered ubiq-
uitous platform with both computational and communication
abilities. Such a paradigm defines the next generation of IoV,
a.k.a. the AI of vehicles (AIoV) [1].

AIoV paradigms constitute the exploitation of AI technolo-
gies to improve the performance of ITSs, especially in terms
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of user experience and safety. In the AIoV paradigm, vehicle-
centric communications are envisioned to not only support
efficient autonomous driving but also to actively absorb as
much information from the surrounding environment as pos-
sible to meet user service requirements. Enriching knowledge
by actively absorbing information is critical to guarantee
user experiences and safety in ITSs because this approach
significantly reduces communication overhead and latency.
Although most available wireless technologies can disseminate
information through multicast and broadcast transmissions,
they do not offer affordable implementation or upgrades,
which is especially problematic with respect to backward
compatibility with low-tech vehicles.

B. Optical Camera Communications

Motivated to address the aforementioned practical problems,
optical camera communication (OCC) technologies are emerg-
ing as out-of-the-box solvers. OCCs utilize the existing light
sources and cameras on the devices to act as transceivers and
thus have no additional specialized hardware requirements [2].
The transmitters are detected using computer vision techniques
to analyze the images captured by the cameras. Meanwhile,
information such as the intensity, on-off states, frequencies,
and phases, are encoded in the characteristics of the light,
and this information is subsequently recognized by the image
sensor of the cameras. In layman’s terms, OCCs are software-
based solutions that enable vehicles to reveal information
based on what they visually perceive in their surroundings.
With this distinctive feature, OCCs have been proven poten-
tial to support application in multiple AIoV scenarios [3].
Several reviews on OCCs from various perspectives have
been conducted in [2]–[5] to investigate current advancements
and applicability of the technologies. However, a dedicated
investigation on the next-generation OCC standard for AIoV
was out of the focus. Especially, a comprehensive understand-
ing of novel characteristics of the next-generation OCC and
their exploitation to efficiently serve AIoV applications is of
importance.

From a technological perspective, OCC and emerging wire-
less vehicular communications, such as dedicated short-range
communications (DSRC) and cellular vehicle-to-everything
(C-V2X) are not in conflict but complement each other [6].
Specifically, DSRC and C-V2X operate at radio frequen-
cies, whereas OCC exploits the optical spectrum. Regard-
ing the base technologies, DSRC, C-V2X, and OCC have
been developed on the basis of Wi-Fi, cellular, and optical
wireless communications (OWC), respectively. As a result,
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TABLE I
COMPARISON OF DIFFERENT TECHNOLOGIES FOR AIOV COMMUNICATIONS.

Criteria DSRC C-V2X OCC
Reference standards IEEE 802.11p/bd 3GPP Release 14/15 (LTE C-V2X)

and 3GPP Release 16 (5G NR V2X)
IEEE 802.15.7-2011/-2018/a

Base technology WiFi Cellular OWC
Frequency 5.9 and 60 GHz Cellular sub-6 and mmWave IR, VL, and UV (300 GHz–30 PHz)
Bandwidth 40 MHz 400 MHz (CC) Hundreds of MHz
Transceiver RF antenna RF antenna Tx: LED and screen

Rx: Image Sensor
Modulation Up to 256-QAM OFDM Up to 256-QAM OFDM OFDM, OOK, PPM, PSK, etc.
Interference Higher Higher Lower
Distance Hundreds of meters Up to thousands of meters 200 m
Data rate Hundreds of Mbps Up to Gbps Up to 100 Mbps
Latency 3–100 ms 3–100 ms < 100 ms
Reliability 99–99.999 % 99–99.999 % 90–99 %
Mobility 500 km/h 500 km/h 350 km/h
Localization Meters Meters Centimeters
Safety of human body Lower Lower Higher
Implementation cost Higher (hardware installation) Higher (hardware installation) Lower (software installation)
Compatibility Lower (new hardware requirements) Lower (new hardware requirements) Higher (software updates)
Applications Automated driving assistance, aerial

transportation, basic safety messages,
observed information sharing, in-car
infotainment, low latency service of-
floading, service and information lo-
calization, etc.

Automated driving assistance, aerial
transportation, basic safety messages,
observed information sharing, in-car
infotainment, low latency service of-
floading, suburban and rural trans-
portation, etc.

Automated driving assistance, basic
safety messages, observed informa-
tion sharing, service and information
localization, vehicle-to-vehicle (V2V)
communication, indoor 3-D position-
ing and navigation, aerial traffic mon-
itoring, etc.

Abbreviation—3GPP: the 3rd Generation Partnership Project; IEEE: Institute of Electrical and Electronics Engineers; IR: Infrared Radiation; LED:
Light-Emitting Diode; LTE: Long-Term Evolution; NR: New Radio; OFDM: Orthogonal Frequency-Division Multiplexing; OOK: On-Off Keying;
PPM: Pulse Position Modulation; PSK: Phase Shift Keying; QAM: Quadrature Amplitude Modulation; RF: Radio Frequency; UV: Ultraviolet; VL:
Visible Light.

their communication characteristics, including carrier band-
width, modulations, access schemes, interference levels, and
propagation models, are distinct from each other. Regard-
less the implementation cost, DSRC and C-V2X have been
considered more potential for unicast and bidirectional ser-
vices whilst OCC is more suitable for multicast/broadcast
and unidirectional services. A comprehensive comparison of
the mentioned technologies is presented in Table I. Notably,
OCC technologies have unique advantages in terms of their
larger bandwidth at a higher spectrum, lower interference,
line-of-sight (LoS) propagation, harmlessness to the human
body, lower implementation cost, and higher compatibility,
compared with other technologies.

C. Standardization Milestones

OCCs have been developed and managed as members of
the family of optical spectrum standards by the Institute of
Electrical and Electronics Engineers (IEEE) Standards Asso-
ciation, and released under the official name IEEE 802.15.7-
2018 [7], which is a revision of the original IEEE 802.15.7-
2011 standard for VLC. The IEEE 802.15.7-2018 standard has
successfully specified foundational concepts and techniques
at the physical (PHY) and medium access control (MAC)
layers of OCCs. In particular, five novel PHY modes were
proposed along with their specific modulation schemes to
facilitate different service categories. Among them, three PHY
modes (IV, V, and VI) based on image sensors are considered

appropriate for vehicular communications [8]. In particular,
the IEEE 802.15 Working Group has recently initiated Task
Group 7a to produce an amendment to IEEE 802.15.7-2018.
The envisioned strategic majors are to exploit the advantages
of multiple-input multiple-output (MIMO) transmissions and
AI techniques for the next-generation OCC optimization to
increase the data rate (to as high as 100 Mbps), long-range
transmission (to as far as 200 m), and high mobility (to as fast
as 350 km/h), mainly focusing on promoting AIoV scenarios
toward the age of ITS.

II. ENABLING AIOV PARADIGMS USING THE
NEXT-GENERATION OCC

The potential incorporation of the next-generation OCC in
the AIoV paradigm is a manifold for emerging scenarios. Pri-
mary examples consist of bidirectional communications (e.g.,
V2V and vehicle-to-infrastructure (V2I) communications) and
unidirectional communications (e.g., indoor 3-D positioning,
navigation, and aerial traffic monitoring), as illustrated in
Figure 1.

Bidirectional communications: As the transmitter (the light
sources) and the receiver (the image sensors) are typically
separate and located in different positions on devices, mutual
communication channels require two pairs of these compo-
nents to be inversely equipped on both sides for transmitting
and receiving data in OCC. For instance, V2V communica-
tions consist of two directional links (taillights of the car
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Fig. 1. Emerging scenarios of the next-generation optical camera communications in the AIoV paradigm: a) V2V communications; b) V2I communications;
c) Indoor 3-D positioning and navigation; d) Aerial traffic monitoring.

ahead → front cameras of the car behind) and (headlights of
the car behind → mirror mounted and rearview cameras of the
car ahead); see Figure 1(a). In V2I communications, the head-
and taillights of cars transmit data to roadside networking in-
frastructures via traffic cameras designed to monitor these light
sources, whereas messages delivered from the networks to cars
are carried on the links between traffic lights and car-mounted
cameras (see Figure 1(b)). These communications augment
and complement existing services such as road illumination,
driving indication, and traffic monitoring, and they additionally
offer environmental details to enhance vehicle security, driver
and passenger safety, and convenience.

Unidirectional communications: Bidirectional OCC topolo-
gies are relatively complicated, whereas unidirectional OCCs
are considered to be based on a simple transmission scheme.
In unidirectional OCCs, the transmitters frequently encode
information bits containing characteristics of the light emitted
by light sources regardless of acknowledgment of receipt, and
the receiver cameras freely capture and extract information
on demand. By demonstrating excellent localization accuracy
of the order of centimeters, unidirectional OCCs substantially
assist cars with indoor 3-D positioning and navigation ser-
vices by combining the coordinates of LED road markers
in proximity. This feature is especially useful in the case
of tunnels or underground roads and in parking garages in
modern cities, as shown in Figure 1(c). For traffic monitoring
purposes, aerial vehicles are deployed on a predefined tra-
jectory to periodically collect traffic reports from dedicated
roadside units at particular locations (see Figure 1(d)). To
summarize, OCCs facilitate the extension of knowledge about
the driving conditions of vehicles by obtaining and sharing the
information these vehicles visually detected.

III. THE NEXT-GENERATION OCCS

A. Learning-based Channel Model

As information is modulated by symbols representing
pixel attributes such as transparency and color values (e.g.,
red/green/blue/alpha–RGBA), the pixel signal-to-noise ratio
(SNR) is used as a metric to evaluate the quality of communi-
cation channels in OCC. Based on the definition of the pixel
SNR in the IEEE 802.15.7-2018 standard [7], the pixel SNR is
proportional to the amplitude of the light frequency and the rel-
ative camera exposure time during a sampling period. In other
words, adaptively adjusting the illumination and exposure time
according to particular environmental conditions is of great
importance for obtaining the desired pixel SNR. In this regard,
AI technologies have recently been increasingly used to refine
theoretical channel models and algorithms for optimizing wire-
less communications. Suppose that environmental conditions
(e.g., the weather and ambient light) are observed using local
sensors, then AI techniques could be utilized to fine-tune the
noise coefficients of the channel model, increase the accuracy
of light source detection, determine appropriate modulation
schemes, and improve demodulation error correction [9], [10].
It is worth noting that, even under similar environmental con-
ditions, channel optimization distinguishes between downlink
and uplink communication in bidirectional communications
owing to the different spatiotemporal capabilities of their
transceivers.

B. Enhanced Cooperative MIMO

As the single-channel data rates (in Mbps) provided by the
current OCC standard (i.e., IEEE 802.15.7-2018) are typically
insufficient to serve multimedia infotainment services in the
AIoV paradigm, AI-enhanced cooperative MIMO technologies
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are considered an effective solution to improve the communi-
cation throughput multifold. Practical AIoV scenarios utilizing
cooperative MIMO are presented in Figure 1(a) and 1(b),
where both the cars and the ITS infrastructure are equipped
with various sources of light and cameras. Cooperative MIMO
exploits the benefits of distributed transmitters and receivers in
macro-diversity (e.g., the different cameras mounted on cars)
as well as micro-diversity (e.g., the different LEDs in the head
light of a car) to significantly improve the communication
capacities [11]. Here, cooperative multiple-input single-output
(MISO) and single-input multiple-output (SIMO) are consid-
ered special cases of cooperative MIMO applications.

The current OCC standard has successfully demonstrated
the reliable performance of MIMO in terms of micro-diversity
with spatiotemporal modulations (e.g., twinkle variable pulse
position modulation, Twinkle VPPM, and hybrid spatial phase
shift keying, HS-PSK) [8]. The the next-generation OCC in
IEEE P802.15.7a aims to exploit and enhance the MIMO in
macro-diversity using emerging AI techniques in two ways.
First, low-frame-rate cameras utilize deep learning techniques
in light source detection and tracking to capture control
and management flows as well as redundancy messages for
error correction [12]. High-frame-rate cameras concentrate on
demodulating the main data streams from the tracked light
sources using the redundancies provided by the low-frame-
rate cameras. Second, novel spatiotemporal modulations and
scheduling schemes can be developed to exploit the correla-
tions between different communication channels to adaptively
transmit data [13]. The former and latter strategies complement
rather than conflict with each other.

C. Automatic Modulation Decision

In most wireless communication systems, optimal modula-
tion schemes are decided by using negotiation procedures or
automatic recognition by the receiver. As IEEE 802.15.7-2018
does not cover modulation decision methods, automatic recog-
nition is preferred owing to its appropriateness for directional
communications. Although the current OCC standard allows
a shortlist of effective modulation schemes that correspond
to different PHY modes (e.g., the on-off keying (OOK),
VPPM, and HS-PSK) [8], selecting the optimal modulation
under particular circumstances remains an open challenge.
The latency of modulation recognition significantly impacts
the system capabilities, especially in terms of throughput and
mobility support.

However, IEEE P802.15.7a envisions novel approaches
toward automatic modulation decisions at both transmitters
and receivers. In collaboration with the enhanced cooperative
MIMO, a dedicated pilot light source is assigned to transmit
control messages, informing modulation schemes of every
transmitter that has been identified. In this regard, deep learn-
ing techniques can provide robust detection performance for
detecting pilot light sources and transmitters [14]. In practice,
reinforcement learning may assist transmitters in deciding
optimal modulation schemes by jointly considering observed
environmental coefficients and data traffic features.

Car ahead 
(Tx #1)

The Sun

Traffic light 
(Tx #2)

Illuminated 
light

Noise disregard

RoI detection and 
anchoring

Tx #1

Tx #2

Car behind (Rx)

Fig. 2. RoI detection and anchoring in the next-generation OCC.

D. Region-of-Interest Anchoring

The region-of-Interest (RoI), a well-known concept in com-
puter vision, defines the borders of a specific area in an
image under consideration for a particular purpose. In OCC,
the RoI includes the light source by selecting a sufficient
number of pixels (i.e., an RoI of sufficient dimensions) to
represent the transmitter. As OCC incorporates cooperative
MIMO and simultaneous transmissions, multiple RoI elements
may exist in consecutive image frames. Hence, effective RoI
detection and anchoring are crucial for improving the com-
munication performance from several perspectives, such as
stably maintaining communication channels, eliminating noise
from ambient light, minimizing pixel processing overhead, and
reducing the demodulation latency [12]. In addition, accurate
RoI anchoring results are required to enable location-based
services in AIoV paradigms, such as augmented reality and
directional sounds. Figure 2 illustrates a scenario of RoI
detection and anchoring for vehicles traveling on the road.

Experimental studies [12], [14] revealed that a low frame
rate (e.g., 40–50 fps) is sufficient to detect and anchor RoI
elements within a highway scenario (approximately 60 km/h)
in real time. To accommodate mobility as high as 350 km/h,
as targeted by IEEE P802.15.7a, advanced motion tracking
techniques can be exploited to assist with the RoI anchoring
operation. In this regard, deep learning and neural networks
may provide reliable training facilities to efficiently predict
RoI motions. For instance, the rapid evolution of the You
Only Look Once (YOLO) platform with the latest version,
YOLOv3, and its variants such as YOLOv4 and PaddlePaddle-
YOLO based on parallel distributed deep learning (PP-YOLO)
is increasingly delivering high performance in terms of fast and
accurate real-time object detection.

E. Simultaneous Multirate Transmission

To achieve simultaneous multirate transmission, IEEE
P802.15.7a enables various channel coding and modulation
schemes for processing separate RoI elements. Recently, pio-
neering studies [14] proved the feasibility of simultaneously
transmitting low-rate vehicular identifications and high-rate
data streams by two separate LED arrays. In particular, low-
rate stream coding and AI-based error-correction methods
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are utilized in these two OCC channels. Accordingly, the
RoI elements that contain the light from these LED arrays
were detected and anchored via the same image frames at
the receiver cameras. The light attributes of the LEDs were
extracted and demodulated to reveal the information. Notably,
a cooperative MIMO architecture can orchestrate multiple
cameras with different frame rates to provide flexible adaptive
multirate transmission capabilities. In this context, the OCC
channels can be dedicated to specific services or aggregated
into the system throughput capacity.

F. Image Deblurring

Blurriness is considered an inevitable problem when a LED
image is captured on the road. The image is corrupted by
several blur kernels (e.g., Gaussian white noise radiating from
ambient light sources such as the sun and illuminated street-
lights) and spatially variant kernels (e.g., the motions of RoIs
and cameras). As the image quality directly and significantly
impacts the demodulation efficiency in OCC, image enhance-
ment is critical to improve the channel throughput. In this
regard, to mitigate the blurriness, image-deblurring techniques
are used to determine the blurring behavior and effects to
resharpen the image. In the IEEE 802.15.7-2018 standard, a
pixel noise model was developed by assuming Gaussian white
noise and for SNR calculation. However, such a theoretical
estimation faces several constraints to represent the complex
effects of real scenarios. Hence, IEEE P802.15.7a anticipates
the development of advanced methods based on machine
learning to adequately process real-world blurry LED images.
In particular, deep learning methods, especially convolutional
neural networks (CNNs) and generative adversarial networks
(GANs), have achieved remarkable success in this field [15].
Blurriness is mimicked by comparing blurry and sharp ver-
sions of the original LED images under various environmental
conditions. Conversely, the deblurring process recovers sharp
LED images from the captured images and blurriness training.
Such image enhancement significantly mitigates the noise in
OCC channels, resulting in improvements in demodulation
accuracy [16].

IV. OPEN CHALLENGES

Link blockage: Most of the reported OCC studies were
concerned with LoS transmission [17]. However, the stability
of LoS propagation from light sources to cameras varies owing
to link blockages caused by object movement and obstruction.
For instance, vehicles moving into road corners and crossroads
may lose their vision within the field of view of the camera
to vehicles traveling in the opposite direction and roadside
units because of trees, buildings, and traffic congestion. In
such cases, the optical attributes and image integrity sensed by
the receiver cameras would decrease dramatically, resulting in
significant OCC performance reduction. The next-generation
OCC would have to detect link blockage problems early and
estimate their negative effects by using environmental proxim-
ity learning. Consequently, the OCC parameter configuration
and vehicle movement control can be appropriately adapted to
optimize the communication performance.

Light source density: As cooperative MIMO and simul-
taneous multirate transmission are envisioned for the next-
generation OCC, fast RoI detection even in complex scenarios
is a must-have technique to efficiently anchor multiple light
sources throughout a series of captured contiguous images.
The detection complexity is proportional to the light source
density, including noise in the image, which consequently
affects the detection accuracy and latency. Improving the RoI
detection performance in dense scenarios with potential light
sources and ambient light is a significant challenge for the
next-generation OCC to yield a high data rate and communica-
tion reliability. Although emerging AI-based image processing
technologies have recently had impressive successes, several
problems relating to these advanced technologies would still
have to be solved to enable OCC to be employed toward
AIoV paradigms. Examples thereof are the tradeoff between
performance and resource consumption, as well as maintaining
a balance between detection accuracy and latency.

Modulation efficiency: Although the next-generation OCC
intends to standardize novel automatic modulation decision
techniques by using deep reinforcement learning, there are
still several obstacles in the way of achieving this target.
First, the high mobility requirements of the new OCC stan-
dard may generate unexpected noise and blurry effects on
the images captured by the receiver cameras. Consequently,
pixel attributes may not be accurately discovered, resulting
in possible high bit error rates and, therefore, a reduction in
the modulation efficiency. Second, joint micro- and macro-
diversity exploitation assisted by cooperative MIMO for spa-
tiotemporal modulations is considered a complex procedure
that requires significant research attention to address various
technical problems such as synchronization between transmit-
ters and receivers, transmission schedule, control overhead,
resource consumption, and modulation latency.

Security and privacy: Notwithstanding the fact that these
concerns are not major targets of the next-generation OCC,
V2V and V2I communication in the AIoV paradigms should
be protected and secured. The difficulties associated with the
secure and private deployment in OCC have their origins in the
initial synchronization between transmitters and receivers to
negotiate authentication and generate secret keys. In addition,
a clear vision of the information obtained from every camera
within the field of view makes it vulnerable to man-in-the-
middle eavesdropping in silence. Furthermore, OCC channels
may be easily attacked by jamming signals from high-intensity
ambient light in the proximity of the transmitters. These
critical issues need to be addressed to secure the success of
OCC.

Reliable simulation tools: Performance evaluations in pre-
vious OCC studies were mostly designed using either real
experiments or general communication simulation platforms
such as MATLAB and NS3. Although real experiments can
provide real observations to prove the practical applicability
of the research, these evaluation methods require supportive
dependencies, such as setups based on the environmental
conditions and experimental consistency. These factors may
have introduced bias in the observations. Moreover, time and
resources are consumed to develop experiments, as required by
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the studies. Apart from this, general communication simulation
platforms may not offer sufficient infrastructure and facilities
to characterize OCC, as expected. These limitations of both
the aforementioned evaluation methods imply that reliable
standard simulation tools for OCC are urgently required.

V. CONCLUDING REMARKS

The aim of this article is to provide engineers and re-
searchers in the field with cutting-edge knowledge regarding
the latest developments in OCC. The potential of the next-
generation OCC to realize AIoV paradigms was comprehen-
sively analyzed. First, multiple criteria are connected with each
other to distinguish the unique features of OCC for AIoV
communications compared with related technologies, such as
DSRC and C-V2X. Moreover, OCC standardization strategies
and enabling technologies were presented to clarify the tech-
nical feasibility of achieving the targets set by the standard.
Open challenges were then drawn to direct future research on
the next-generation OCC maturity. Despite several obstacles
that would need to be overcome, the next-generation OCC
could be considered a complementary solution to efficiently
promote and accelerate AIoV realization in upcoming years.
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