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Abstract

Distributed machine learning utilization in the metaverse exposes many potential benefits. However, the combination of these
advanced technologies raises significant privacy concerns due to the potential exploitation of sensitive user and system data. This
paper provides a systematic investigation of over 100 recent studies across key academic databases obtained by initial keyword-
filter screening followed by a thorough full-text review. Particularly, metaverse evolution and enabling infrastructure technologies
are briefly summarized. Subsequently, the distributed learning architectures and their features are analyzed as well as possibly
associated vulnerability discussions. Then, envisioned metaverse applications and future research challenges are highlighted before

concluding remarks.
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1. Introduction

In recent years, mobile networks have witnessed a rapid
evolution facilitating various services and applications with In-
ternet access through efficient wireless communication infras-
tructures. In particular, the emergence of fifth-generation (5G)
technology has prompted extensive research and development
of mobile ecosystems, especially with the remarkable emer-
gence of the metaverse [1} 2. The mobility and ultimate net-
working performances such as mobile broadband, ultra low la-
tency, high reliability, and offloading computation capabilities
in 5G networks and beyond have shown great promise in ad-
vancing metaverse ideas. In this paradigm, vast volumes of user
data and metaverse content can be exchanged over mobile net-
works to meet urgent, time-sensitive demands [3]]. Meanwhile,
artificial intelligence (AI) techniques may be involved in multi-
ple operations of the metaverse services including data process-
ing and generation as well as control decision-making [4} [5].
Al is increasingly being used in metaverse-driven smart city
applications, enabling data-driven urban services through ma-
chine learning, deep learning, and generative Al [6]. Moreover,
the advent of the sixth-generation (6G) technology, promising
extremely lower latency, ultra-higher reliability, and extensive
spectrum resources support, is expected to further enhance meta-
verse experiences, especially those involving shared real-world
integration [[7} [§]].
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The metaverse concept has been the subject of extensive
recent debates, in which each manifestation of the metaverse
strives to create a unique environment defined by distinct char-
acteristics [9]]. Scholars have since observed that the metaverse
is moving from a science-fiction-inspired concept to a digi-
tal reality with widespread applications across various domains
such as gaming, education, healthcare, and entertainment [10].
These concepts are typically tailored to align with the vision of
the companies or organizations that develop them [11]. Nev-
ertheless, the standard theme throughout metaverse concepts
can be represented as an emulation of society in a digital form.
Through such an emulation, companies aim to create shared
experiences that seamlessly integrate with the real world, pro-
viding users with a more efficient and engaging way to expe-
rience reality and fostering various social benefits [[12]. This
integration can take various forms, including connections with
digital asset systems that leverage blockchain technology and
cryptocurrencies [13]. The advantages of this integration are
multifaceted. For example, the metaverse can offer greater free-
dom to patients who have difficulty socializing outdoors due to
physical or mental health challenges by enabling remote health-
care services[14]]. The data derived from these sources is valu-
able contributing to further research in healthcare and social
environments [[15].

1.1. Motivations

Despite diverse potentials, the metaverse has been facing
various challenges, particularly concerning data security and
privacy issues due to the vast amounts of sensitive user data
involved [19]]. A recent sentiment analysis study on public per-
ceptions of the metaverse revealed that while 59% of users had
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Table 1: Summary of recent surveys and reviews of existing metaverse studies.

Limitations

Investigates big data’s role in metaverse applica-
tions, highlighting data processing, privacy con-
cerns, and opportunities for growth.

Discusses how emerging technologies like Al,
blockchain, and MEC converge to enhance meta-
verse capabilities.

Metaverse applications in healthcare, including
VR-based surgeries, Al-assisted diagnostics, and
immersive patient experiences.

Examines blockchain’s role in securing digital
content, data interoperability, and smart contracts
in metaverse applications.

Explores federated learning’s role in preserving
data privacy and improving Al training efficiency
in metaverse environments.

Analyzes Al’s influence on metaverse applica-
tions, focusing on user engagement, ethical con-
cerns, and future developments.

Examines how Al enhances smart cities via the
metaverse, focusing on urban planning, gover-
nance, and sustainability.

Year Ref Research Topic Research Findings
Type

2022 [1S] Big Data Meets Metaverse: A Survey Survey

2022 [53]  Mobile Edge Computing, Metaverse, 6G  Survey
Wireless Communications, Artificial Intel-
ligence, and Blockchain: Survey and Their
Convergence

2023 [14] Metaverse for Healthcare: A Survey onPo-  Survey
tential Applications, Challenges, and Fu-
ture Directions

2023 [16] Blockchain for the Metaverse: A Review Review

2023 [17] Federated Learning for Metaverse: A Sur-  Survey
vey

2024 [18] Navigating the Metaverse: Unraveling the Review
Impact of Artificial Intelligence—A Com-
prehensive Review and Gap Analysis

2024  [6] Artificial Intelligence-Enabled Metaverse Review
for Sustainable Smart Cities: Technolo-
gies, Applications, Challenges, and Future
Directions

2025 Ours Metaverse Meets Distributed Machine Review

Learning: A Contemporary Review on
the Development with Privacy-Preserving
Concerns

Investigates the role of distributed machine
learning in metaverse applications, focusing on
privacy-preserving techniques such as federated
learning and split learning. Highlights vulnerabil-
ities, potential threats, and the need for enhanced
security frameworks.

Lacks empirical validation and real-world case
studies. Limited discussion on regulatory frame-
works for big data governance.

Does not address real-world integration chal-
lenges. Limited scalability analysis of MEC and
blockchain in large-scale metaverse applications.

High infrastructure demands are not addressed.
Lacks real-world implementation analysis and
discussion on legal and ethical implications.
Overemphasizes public blockchains while ne-
glecting permission-ed alternatives. Does not ex-
plore energy consumption concerns.

Limited discussion on communication overhead
and security risks. No real-world case studies to
validate federated learning applications.

Focuses heavily on ethical concerns while ne-
glecting performance optimization. Lacks com-
parative analysis of Al techniques for metaverse
applications.

No cost-benefit analysis of Al in smart cities.
Lacks discussion on cyber security threats related
to metaverse-based urban systems.

No in-depth performance benchmarks comparing
different privacy-preserving methods.

a positive outlook on security and 66% on privacy, concerns re-
garding legal and ethical uncertainties persisted, particularly in
relation to identity protection and personal data security [20].
The lack of universally accepted security frameworks and data
protection mechanisms poses a significant barrier to metaverse
adoption [10]. Recent research highlights concerns over how
user data is stored, accessed, and leveraged within the meta-
verse ecosystem, further emphasizing the need for comprehen-
sive privacy-preserving solutions. Distributed machine learning
approaches such as federated and split learning, which are con-
sidered efficient tools to optimize metaverse operations, exhibit
vulnerabilities during data processing and mining, particularly
information leakage and integrity [21]. One potential solution
to mitigate these risks is the integration of blockchain technol-
ogy, which ensures that all transactions and model updates are
immutably recorded and verified through decentralized consen-
sus mechanisms [22]]. Despite these possible mitigations, these
vulnerabilities could limit the potential of the framework imple-
mentation and necessitate further research to protect user data
from illegal interception and exploitation. Furthermore, users
have expressed hesitancy towards fully engaging with meta-
verse platforms due to the absence of security guarantees, with
some tweets highlighting fears of personal identity exposure
and digital footprint misuse [20]. Additionally, learning model
manipulation by attackers may have unintended negative con-
sequences on the metaverse operations and user assets. Further-
more, threats to identity authentication and access control in the
metaverse remain critical, as attackers can impersonate users to
steal digital assets and manipulate social interactions [23]. As
the metaverse expands, research into preserving privacy is cru-

cial to ensure its future success[24].

1.2. Related Works

Multiple aspects and versions of potential metaverse evo-
lution have been investigated recently. Contemporary surveys
have focused on critical aspects of its evolution, including health-
care ecosystem development [[14]], blockchain integration [16]],
and multi-access edge computing utilization [5]. Particularly,
Chen et al. [17] highlighted the application of Al to promote
the metaverse evolution in both service features and manage-
ment domains. Although AI technologies have been widely
acknowledged as one of the foundational tools for the develop-
ment of the metaverse [18]]. The social and privacy implications
of user and system big-data exploitation remain crucial con-
cerns [15]. In particular, Al-driven metaverse platforms raise
challenges related to data privacy, security, and ethical concerns
in smart city implementations, necessitating robust governance
frameworks [6]. Furthermore, the overwhelming majority of
existing surveys have not yet been focused on exposing in de-
tail the privacy preservation within distributed machine learning
applications utilized for the metaverse ecosystems. However, in
recent years, authors in [25]] and [26]] have offered a particularly
insightful perspective into the privacy issues that come with the
integration of Al technologies into existing metaverse ideas.

When comparing existing surveys, it is evident that most fo-
cus on specifics such as edge computing [5]) or broad overviews
[15]]. Rather than detailing how distributed ML creates unique
risks and opportunities for metaverse operators when it comes
to privacy. We further respond to the need for clear and prac-
tical implementations of privacy techniques in distributed deep



Table 2: Nomenclature

[ Abbreviation | Description
6G Sixth-Generation Technology
Al Artificial Intelligence
AR Augmented Reality
DCOR Distance Correlation
DNN Deep Neural Network
DL Deep Learning
DQN Deep Q Networks
DRL Deep Reinforcement Learning
DT Digital Twin
FL Federated Learning
FSS Function Secret Sharing
FSHA Feature Space Hijacking Attack
HFL Horizontal Federated Learning
HMD Head-Mounted Display
IEEE Institute of Electrical and Electronics Engineers
IoMT Internet of Medical Things

IoT Internet of Things
LocFedMix-SL Local Federated Mixed Split Learning

LocSplitFed Local Split Federated Learning

MAR Mobile Augmented Reality

MEC Mobile Edge Computing

MISP Metaverse Infrastructure Service Provider

MR Mixed Reality

MSP Metaverse Service Providers

PGSL Proximal Gradient Split Learning

PRISMA Preferred Reporting Items for Systematic Reviews
and Meta-Analyses

SAC-GCN Soft Actor-Critic Convolutional Network

SAGIN Space-Air-Ground Integrated Network

SL Split Learning

SVRP Structure To Vector

URLLC Ultra-Reliable and low latency communications
VFL Vertical Federated Learning

VR Virtual Reality

VRTP Virtual Reality Transfer Protocol

VRITIP Virtual Reality IoT Platform

WSN Wireless Sensor Networks

learning by detailing the practical need for robust threat tax-
onomies and realistic defense strategies. Operators can lever-
age the resulting findings to fortify security through reduced
susceptibility to adversarial manipulations, without the penalty
of worst performance. Therefore from a theoretical standpoint,
we create a clearer map of the technical and algorithmic pitfalls
of their resulting implementations. Overall, the metaverse’s
rapidly expanding user base and extreme real-time data pro-
cessing demands underscore why a focused study on privacy-
aware distributed ML is essential. Table [1| summarizes recent
surveys and reviews of existing metaverse studies.

1.3. Our Contributions

Although prior research has focused on aspects such as blockchain-

assisted infrastructure [[16] and healthcare-oriented metaverse
solutions [14], very few articles have comprehensively exam-
ined the privacy vulnerabilities that arise when advanced dis-
tributed deep learning frameworks intersect with virtual envi-
ronments in metaverse infrastructure. We aim to address this by
exploring the possible implementations of privacy-preserving
distributed ML in the metaverse following the key research ques-
tions:

e Which distributed learning architectures potential to be
securely integrated into metaverse ecosystems?

e What common attack vectors pose high-impact threats to
certain deployment environments?

o How do recent privacy-preserving techniques improve user
trust while upholding moral and legal privacy require-
ments?

A systematic approach has been employed to synthesize
the current research in literature. The methodology is consti-
tuted by four key stages: literature search, study selection, data
extraction, and synthesis. A comprehensive search was per-
formed across key academic databases, including IEEE Xplore,
ACM Digital Library, ScienceDirect, and SpringerLink as well
as Arxiv during the past 5 years. Search terms were formulated
based on central themes such as “Metaverse Applications and
Security,” “Federated Learning in AL’ and “6G Wireless Net-
works for the Metaverse.” Initially, articles were screened by ti-
tles and abstracts to eliminate duplicates and irrelevant entries.
Full texts were then evaluated against predefined inclusion cri-
teria: (i) studies addressing the intersection or creation of im-
mersive metaverse technologies with or without distributed ma-
chine learning; (ii) papers discussing privacy and security as-
pects with or without this integration; and (iii) works focusing
on technical innovations, practical applications, or future di-
rections in metaverse-related distributed learning and privacy
preservation. Data was systematically extracted using a struc-
tured template to capture details such as publication type, re-
search focus (e.g., applications, privacy attacks, defense mecha-
nisms), and the specific distributed machine learning techniques
(e.g., Federated Learning, Split Learning) as well as metaverse
technologies (e.g., VR, AR, MR). A narrative synthesis method
was employed to categorize the extracted data into major themes,
research gaps, and emerging trends. The categorization was
guided by the technological underpinnings presented in [7]] and
the metaverse taxonomies discussed in [2].

In summary, our main contributions in this paper include:
(i) cataloging the primary distributed ML strategies suitable for
a metaverse environment, (ii) classifying known and emerging
privacy and security issues specific to large-scale virtual envi-
ronments with distributed ML aspects, (iii) evaluating the rel-
ative merits of privacy-preserving technologies in realistic de-
ployment scenarios, and (iv) suggesting future research direc-
tions that balance user privacy protections with increasing com-
putational demands.

The following review methodology workflow is used to or-
ganize the paper from this point forward:

e Section [2] focuses on metaverse evolution by discussing
the advancement of virtual reality, augmented reality, mixed
reality, and the metaverse concept.

e Section[3|examines potential infrastructure-enabled tech-
nologies, that support the metaverse developments and
operations.

e We explore various distributed deep learning models that
support the metaverse ecosystems in Section 4}



Sony announces the release date
of playstation VR 2, offering
improved experience over the
original.

Consumer Virtual Reality headsets
soar in popularity after the release
of the Oculus

Nintendo Virtual Boy Released a
head mounted display for a more
affordable price.

MIT develop the Aspen Move
Map which allowed users to take a
virtual tour through a virtual
reality city.

Meta unveils its augmented
reality glasses named Orion.
Currently in the prototype
stage, the glasses are expected
to be released in 2027.

Apple release ARKit an API
toolkit to allow for the easier
development of mobile AR
applications.

AR Quake the first outdoor AR
game is released allowing users to
play in a mobile environment.

The first AR system part of a
Virtual Fixture is deployed for
usage by the US Air Force.

Google and samsung announce
their collaboration on a mixed
reality headset aiming for release
this year

Apple released a mix reality
headset named the vision pro that
competes with previous offerings
by microsoft.

2024

In October, South Korea announced
cross-border virtual asset
regulations, requiring businesses to
register and report transactions.

2022
South Korea announces it will
spend at least 186.7 million usd in

order to develop its own
Metaverse ecosystem.

Ivan Sutherland and his
Colleagues at MIT begin to
experiment with the world's first
head mounted displays for VR and
AR.

The term augmented reality is first
coined to describe a new AR
device being tested at boeing.

@ 2021
Eas_e Western ReAserve fU:leerlsny ;I Facebook announces their new
ggln(js to 111lse frmchrosloht ololens  focus on the creation of a
mixed reality for health care ' Metaverse
education. i
@ 2003
Microsoft releases the Hololens i e
. . . i The game second life is released
the first device running windows !
. . . ! and becomes the first popular
mixed reality allowing consumers |
o experience MR 1 precursor to what a future
: ' Metaverse could be.
@ 1982

The definition of Mixed Reality is
first proposed in a research paper

3 Neal Stephenson's 1992 Novel
by Paul Milgram and Fumio 3

coins the term Metaverse and
brings it into the general public's
view.

Kishino.

Metaverse

Figure 1: Milestones of technological development in metaverse evolution.

e Section [3] discusses potential vulnerabilities associated
with distributed and private machine learning for the meta-
verse.

e Section [f] describes applications and utilization of meta-
verse concepts concerning privacy preservation as well as
their implementations.

e Section [7] describes privacy challenges in the research
field, the future research trajectory, and potential limi-
tations around metaverse research studies.

e Finally, we concluded the paper with several key remarks
in Section [§]

To facilitate interested readers, key abbreviations used in
this paper are summarized in Table[2]

2. Metaverse Evolution

AR, MR, and VR are foundational technologies within the
broader metaverse ecosystem, each offering distinct levels of
immersion and interaction—from augmenting real-world envi-
ronments to fully immersive virtual experiences—thereby shap-
ing the evolution of digital connectivity and user engagement.

2.1. Virtual Reality

Originally emerging from science fiction media, virtual re-
ality (VR) captured imaginations as a futuristic concept. In the
1970s, researchers such as Myron Krueger even used the term
artificial reality” to describe early VR efforts [27]. Over time,
VR evolved into a major research field and laid the ground-
work for the metaverse. It offers immersive experiences and
alternative forms of human-computer interaction by integrat-
ing advances in simulation, interaction, multimedia, sensors,
and communications to create digital environments [28]]. More-
over, ongoing developments in tactile sensors and display tech-
nologies have significantly enhanced both realism and practical
applications [29]]. Furthermore, companies such as Facebook
and HTC have further boosted VR development by investing in
high-quality media content [30].

As human perception is largely visual, VR development has
prioritized enhancing headsets—particularly in terms of porta-
bility. With these headsets, users can interface with a work-
station or integrated computer to access virtual spaces either
locally or over the Internet [29]. This capability for shared vir-
tual spaces is key to the metaverse concept, though it brings
challenges regarding the data demands on traditional transfer
protocols. To overcome this, Brutzman et al. [31] introduced
the Virtual Reality Transfer Protocol (VRTP), designed to opti-
mize the sharing of 3D virtual worlds.

VRTP employs a combination of client, server, peer-to-peer,



and monitoring components. In this system, the client inte-
grates with a browser to support multi-user VR environments,
while the server ensures data persistence. Additionally, peer-to-
peer streaming improves scalability, and network monitoring is
used to optimize performance.

Recent advances in VR networking now incorporate cloud
computing, mobile infrastructures, and IoT [28]]. Next-generation
networks such as 5G and 6G support VR’s expansion into social
networking by offering higher bandwidth and enabling resource
virtualization [32]]. Furthermore, the IoT-based VR platform
(VRITIP) delivers low-latency VR services through the con-
nection of IoT devices via smart gateways [33]]. The use of light
fields—a technique for realistic 3D representation—further en-
hances VR environments by simulating stereo parallax and vol-
umetric effects [34].

VR has been applied extensively in healthcare, entertain-
ment, education, military training, architecture, and marketing
[35136]). For example, virtual meetings saw a surge in popular-
ity during the COVID-19 pandemic, and social VR spaces have
provided a safe alternative to face-to-face interactions. Never-
theless, security risks remain, including potential attacks on VR
tracking systems that can alter user perception [37].

2.2. Augmented Reality

Augmented reality (AR) differs from VR by overlaying dig-
ital elements onto the real environment instead of replacing it.
AR improves real-world analysis and boosts productivity, re-
mote assistance, and healthcare applications [4]. The concept
emerged in the 1960s, when Ian Sutherland’s experiments with
a see-through head-mounted display (HMD) first demonstrated
the overlay of 3D graphics [38]. By the 1990s, AR had devel-
oped into an established research field [39]].

AR devices range from smart glasses and projected displays
to smartphones, with Mobile AR (MAR) on smartphones be-
ing the most common. MAR leverages 5G’s low latency and
high data rates [4]. In addition, Web AR seeks to eliminate
the need for app downloads by integrating AR directly within
web browsers [40]. Furthermore, AR has been applied in civil
engineering to enhance visualization [41].

AR finds applications across diverse fields such as educa-
tion, healthcare, military, art, tourism, broadcasting, and retail
[42]. Consumer examples include devices like the Xbox Kinect
and Google Glass, although the latter struggled with public ac-
ceptance despite its technological promise [43]. Moreover, AR
has been increasingly integrated into mobile applications and
high-end vehicles, projecting essential information directly into
drivers’ fields of view.

Unlike VR, AR offers broader usability by integrating with
existing environments instead of creating entirely new ones. Al-
though AR shares many underlying technologies with VR, it
requires higher precision in tracking and calibration. Its core
components include input sensors, data processing, and output
stages. The processing stage involves tasks such as registration,
rendering, calibration, and tracking, which may utilize sensor-
based, vision-based, or hybrid tracking methods [4]].

2.3. Mixed Reality

A widely accepted definition of mixed reality (MR) was
provided by Milgram and Kishino in 1994. MR combines real
and virtual elements and differs from AR by enabling real-time
interaction between digital and physical objects [44]. Recent
studies have focused on leveraging cloud-edge computing to
address MR’s high processing and power demands. Offloading
these requirements to cloud infrastructures can improve porta-
bility, which is particularly beneficial for applications like nav-
igation assistance for the visually impaired [45]].

The essential components of MR include tracking and reg-
istration, virtual environment modeling, and interaction inter-
faces. Accurate tracking is vital to maintain a convincing sense
of presence. To achieve seamless registration of virtual and
real-world objects, a variety of methods—using sensors and
cameras—are employed. Moreover, environment modeling re-
mains a key focus of ongoing research [46], with experts em-
phasizing the importance of spatial audio and haptics for en-
hancing immersion [47].

Compared to VR and AR, MR simplifies design by directly
integrating real-world elements. Despite its significant poten-
tial, security and privacy issues remain a concern [48]. Pro-
tecting input data is necessary to prevent malicious alterations,
while robust data security measures help safeguard user pri-
vacy—issues that are especially critical in healthcare, where
MR devices might expose sensitive information. Additionally,
hardware protection is essential to ensure safe user interactions.
Recent developments in devices such as the Microsoft HoloLens
and Google Glass have further advanced MR, particularly in
healthcare and architecture [49].

2.4. Metaverse

The first mention of a metaverse concept comes from a novel
named Snow Crash by Neil Stevensons in 1992. The word meta
describes being beyond reality and verse refers to the universe.
Over time the term has carried multiple different definitions that
have been constantly adapted [S0]. Recently promoted by large
companies such as Facebook and Microsoft, the metaverse was
redefined as the next Internet revolution to describe a global vir-
tual social network platform. The metaverse offers the user the
ability to place themselves into an immersive experience with
comprehensive interactions [2]]. There should be no interrup-
tions when a user switches between the metaverse and the real
world. Recently promoted by major companies such as Face-
book and Microsoft, the metaverse has been redefined as the
next Internet revolution—a global virtual social network plat-
form. It enables users to immerse themselves in a fully inter-
active experience, with seamless transitions between the meta-
verse and the real world. [2]]. The expected features and char-
acteristics of a metaverse are very diverse and vary between
each company’s implementation. However, the general trend
that is accepted dictates, persistence regardless of user interac-
tion with the space, synchronization between users in real-time
in comparison to the real world, availability from wherever a
mobile network is able to reach and support players without
a cap or server segregation, a separate economy supported by



Table 3: Comparison of different generations in the metaverse evolution.

Characteristic VR AR MR Metaverse
Environment Virtual world Real world Real world Virtual world

User device Headsets Accessories Accessories Headsets

Objects Virtual Virtual Physical and virtual Virtual

Interactivity Low High High Very high

System model Local and centralised Local and centralised Local and centralised Centralised

Data rate High Low Medium Very high
Complexity Low Medium High Very high
Synchronisation Low Medium High Very high

Privacy concern Medium High High Very high

Military, Educational Instruc-
tion, Sciences, Tourism

Applications Collaboration in planning and | Industry 4.0, Civil Engineer- | Healthcare, Entertainment, Ed- | Finance, Agriculture, Human
design management, Project | ing, Military, Training, Au- | ucation, Engineering, Planning | involved simulation on a
Communication, Healthcare, | tomotive Design, and Devel- | and Design, Simulation of ad- | massive scale, Marketing,
Entertainment,  Automotive, | opment, planning and design | vanced infrastructure, proto- | Entertainment, Education

management, Healthcare

typing, automotive, Military,
Science, Automotive Design

Instruction, Military, Science,
Tourism, Healthcare, Design,
Simulation with humans in the
loop on a massive scale, Virtual
real estate, Civil Engineering,
prototyping, automotive indus-
try, planning

many aspects shared in the real world such as trade and interop-
erability to have users move their virtual assets between com-
peting metaverse. Expected features include virtual currency
trading, avatars, teleportation or varied movement mechanics,
social spaces, gaming, entertainment, and more. These features
take advantage of the previously mentioned characteristics to
allow for the creation of what can be imagined as an entire vir-
tual world separate from the physical. The goal of metaverse
development is to enable access to this virtual space in the most
immersive way possible [2]. Because the basics of a society are
often intended to be simulated in a metaverse means that the
concept is also vulnerable to similar issues plaguing our current
world. For example, If many users were to suddenly leave one
metaverse in favor of a competing product, it could potentially
crash its virtual economy and trigger an overall collapse [51].
The differences between AR, MR, and VR in the meta-
verse can be difficult to ascertain. It is important to remember
that VR, AR, and MR are simply technologies that offer digital
experiences; unlike the metaverse, they do not encompass all
components—such as social networking that form a compre-
hensive metaverse product. The metaverse is the most complex
virtual system, which contains the most privacy and security
concerns. These security and privacy concerns are a natural
development of the project that is so complex and are exacer-
bated by the large degree of Centralization making a single at-
tack point vector for potential bad actors. In addition to this, the
metaverse inherits the security concerns of all the devices being
used to access or interact with it. The vulnerabilities involved
can therefore range widely with the most apparent being the in-
herent network aspects of the projects. This will likely lead bad
actors to target not only the users’ digital assets but anything
from sensitive information to identity theft in virtual spaces.

3. Infrastructure-Enabled Technologies

In this section, we describe the utilization of potential tech-
nologies in the development of metaverse infrastructure with
specific attention paid to privacy and distributed deep learn-
ing. In combination with the continuous evolution of the meta-
verse, various technologies have grown alongside it, allowing
for the integration of many cutting-edge networking technolo-
gies. These transformative technologies, if implemented, often
need to account for potential privacy issues in their design. By
further explaining possible infrastructure-enabled technologies,
we hope to shed light on the potential issues that may arise from
their integration into the metaverse concept, particularly focus-
ing on how a complex combination of both physical and digital
infrastructure is essential for seamless operation of such a con-
cept.

3.1. Mobile Edge Computing for Metaverse Operations

Mobile Edge Computing (MEC), with regard to the meta-
verse, provides significant benefits over a simpler networking
infrastructure. By bringing computational power closer to the
network’s edge, latency can be reduced creating an enhanced
user experience. In an IoT scenario, MEC is the vital bridge
connecting [oT devices and cloud services. The ability to lo-
cally process data at the edge of the overall data transfer to
the cloud services can be reduced, lowering bandwidth require-
ments, improving real time analytics, and allowing for faster
responses in time-sensitive applications [52]. As the metaverse
envisions a space blending physical and virtual worlds into a
seamless reality, MEC can optimize the distribution of pro-
cessing resources for this application. Additionally, privacy-
enhancing techniques, including secure multi-party computa-
tion (SMPC) and trusted execution environments (TEE), have
been proposed as solutions to protect sensitive user data in edge



computing-based metaverse services [23]]. This integration of
MEC with IoT and the metaverse represents a dynamic evo-
lution of networking to support futuristic, data-driven experi-
ences [53]. Potential services to run on the network edge which
would benefit from reduced latency times are time-sensitive Al
applications. To address the security risks of deploying Al
models that process sensitive data at the edge in a metaverse,
mechanisms are being developed to protect against adversarial
attacks targeting these deployments [54]. Furthermore, tech-
niques for adaptive edge network resource allocation have been
proposed for use in a large user environment such as the meta-
verse. Specifically, a method based on Soft actor-critic convo-
lutional networks (SAC-GCN) has recently been shown to out-
perform multiple other methods based on ISAC (Independent
SAC), DOQN (Deep Q Networks), GCC-G (GCC With Greedy)
and BBR-G (BBR With Greedy) [153].

3.2. Network Slicing for Metaverse Services

Networking Slicing is a concept often discussed in tandem
with 5G networks. It involves partitioning physical network re-
sources to meet the demands of a network at any given time.
This adaptability allows for several benefits, such as adaptabil-
ity, improved performance, and cost-effectiveness [56]. With
the expectations of 6G becoming more defined, the proposed
networks are expected to incorporate many unique features. This
presents a challenge as the implementation of network slicing
will now need to account for space, air, and ground networks
amongst a variety of new services. To account for this, Al in-
tegrations into the network slicing architecture have been an-
nounced to reduce the overall network management complexity
[I57]]. Additionally, it has been demonstrated that Al could be a
key component in reducing the energy requirements of network
slicing in a 6G environment [58|]. In the metaverse, MetaSlic-
ing is proposed to perform the function of separating network
resources and allocating them effectively. To accomplish this,
the framework proposes Metainstances. These instances are
clusters of applications with common functions, which users of
the metaverse can tap into to reduce the overall demand. This
clustering and subsequent intelligent allocation of resources re-
duces resource demand enabling savings such as the rendering
of a digital map in a single instance instead of servicing ev-
ery user individually. The Metaverse Infrastructure Providers
(MISPs) can take advantage of these resource savings to create
richer and more diverse experiences than would otherwise be
possible [59].

3.3. Blockchain Integration for Secure Transactions
Integrating blockchain into the metaverse creates the op-
portunity for a more complex virtual economy and supports
the development of a decentralized system that enables users
to shape the virtual economy according to their preferences.
Furthermore, blockchain integration could be used to create
individual user identities, provide additional security, and en-
sure the integrity of data [60]. The adoption of blockchain-
based privacy-preserving authentication mechanisms can en-
hance security in decentralized metaverse applications. A hy-
brid blockchain model integrating consortium and private chains

has been proposed to maintain decentralization while improv-

ing efficiency and privacy in transactions [61]]. Before the blockchain

can be used to process transactions through the metaverse net-
work, it is important to take several other factors into account.
While resource constraints on wearable IoT devices such as
those in a metaverse may prevent them from utilizing a blockchain
service efficiently, a solution to this has been developed in the
form of a Multi-WSN network. This architecture allows for a
hierarchy of devices to be created based on their power. The
most powerful device available, which ideally is not a wear-
able, will then connect to the blockchain and distribute this to
the wearable devices in the network [62]. Furthermore, when
it comes to security the large number of devices utilizing the
metaverse for activities that may have tangible economic bene-
fits in the future requires that security is at the forefront of its de-
sign. To account for the vulnerabilities in the semantic commu-
nications taking place between edge devices and virtual service
providers, a proposal for the inclusion of a blockchain-aided se-
mantic communication framework has been created [[63]]. More-
over, to address the difficulty of implementing and taking ad-
vantage of a blockchain in a massively resource demanding ser-
vice such as the metaverse, a proposal for a novel blockchain
based framework was created. Known as MetaChain, the frame-
work utilizes smart contracts to handle the complex interac-
tions between MSPs and metaverse users, as well as improving
upon potential future scalability issues in order by increasing
resource management efficiency [64]. Lastly, to better under-
stand the complex structure of a blockchain transaction network
that would take place in a metaverse concept, a novel repre-
sentation learning method known as structure-to-vector (SVRP)
was proposed. The method allows for a deeper and more accu-
rate insight into the latent representation and structural identity
of blockchain transaction networks. Thus allowing for potential
fraud detection, increased network security, and possible regu-
latory compliance [65]].

3.4. 5G Access and Beyond for Communications

The integration of 5G and 6G technologies into the meta-
verse allows for far more potential in the concept. Ultra-reliable
and low latency interactions from 5G and even more so 6G
allow the metaverse to utilize technologies and frameworks,
which in many cases would have been entirely impossible be-
fore. Creating the environment where the massive virtual uni-
verse can be fully realized [66]]. A demonstrable application of
5G proposed for the metaverse is Remote collaboration. To help
break geographic restrictions involved in collaboration, evalu-
ations have been made on the characteristics of Remote Col-
laboration employing 5G, to gain a wider understanding of its
limitations and potential optimizations. The possibilities of col-
laboration in this way on a global scale create a new paradigm
for people to work, share, and communicate [67]. Furthermore,
the advancements proposed in 6G could enable enhanced in-
teractivity and integration between physical and virtual worlds,
specifically in the form of digital twin (DT) technologies. This
is enabled via large amounts of data transfer between the phys-
ical and virtual plane, making 6G the ideal candidate to sup-
port these interactions [68]]. 6G additionally offers a promising



paradigm in the form of Space-Air-Ground Integrated Network
(SAGIN), which when combined with metaverse to enhance
network performance is known as (ME-SAGIN) the Metaverse-
Inspired cybertwin-based SAGIN architecture. This paradigm
aims to increase the functionality of SAGIN through the cre-
ation of a parallel cyberspace to the physical SAGIN [69]. To
deal with the massive amounts of data without sacrificing com-
munication efficiency while utilizing 6G in the metaverse, the
application of deep learning techniques for service scheduling
and network resource allocation has been proposed. These in-
clude: An ML-based framework for threat detection and pre-

vention, A DL-based method to improve energy efficiency through

the optimization of wireless resource allocation in RIS-assisted
6G systems, Deep reinforcement Learning (DRL) for non-convex
problem optimization, and the integration of federated learning
to improve security of mobile communication systems [8]. The
amalgamation of these current and future technologies into the
metaverse promises to elevate the overall experience of human
interaction with virtual worlds far greater than what has been
previously seen.

3.5. Digital Twins for Real World Synchronization

DT technology is described as a duplication of a physical
entity to a virtual entity and the bi-directional data connections
between these. The virtual spaces hosting the virtual represen-
tations can consist of sub-spaces, allowing for operations such
as testing, optimizations, and modeling [70]. A conceptualized
framework of DT integration into a metaverse environment has
been proposed to create the expected immersive experiences
possible. To achieve this, it is proposed that DTs of all oper-
ations, concepts, and entities work together to create a compre-
hensive and accurate representation for analysis of the provided
services. This could take the form of a connection between a
wireless network DT and the metaverse service DT [71]. DTs
of physical entities can be represented in different scales de-
pending on the requirements of the application and sensor data
available. Substances large enough to be seen by the naked
eye are known as macroscopic, while substances that cannot be
seen are known as microscopic. Research into and utilization of
microscopic DTs can be more difficult than macroscopic owing
to the increased costs of a nanoscale sensor and the number of
them required [72]]. Furthermore, it has been proposed to com-
bine DTs with advanced Al algorithms. This combined archi-
tecture could then be used for tasks such as performing predic-
tive maintenance. This is accomplished by employing the Al to
analyze data related to a DT for prediction of maintenance be-
fore signs occur in the physical object, decreasing operational
costs and promoting sustainability [73]]. Likewise, when com-
bined with MEC and Ultra-Reliable and low latency communi-
cations (URLLC) a new digital twin architecture is proposed.
This architecture is proposed to combine the benefits of task of-
floading at the edge, in synergy with task caching techniques,
and could guarantee stronger reliability [[74]. Another method
of improving the reliability of DTs that has been proposed is
blockchain integration. The method, named BlockNet, uses the
immutable characteristics of Blockchains to ensure the security
of the digital mapping process of the IoTs. These improvements

are accomplished through the increased confidence achieved
by the blockchain’s fundamental traceability, compliance, au-
thenticity, and security qualities [75]. Lastly, an obvious use
case of DTs can be seen in industrial metaverses. The indus-
trial metaverse refers to the industrial applications of metaverse
technologies. These applications include city management, in-
dustrial management, and traffic and energy modeling. DTs in
this sector play a crucial role in the advancement of intelligent
manufacturing [76].

4. Distributed Machine Learning Architectures

Distributed deep learning refers to a potential improvement
over regular deep learning via the distribution of training tasks
over multiple client devices. A central server is used for ad-
ministration and possibly to combine these individual models
into a single larger model using the clients’ training data. The
advantages of this are that a much larger model can be created
with significantly fewer resources per agent while increasing
user privacy by only sending data such as weighted parameters
to the server. However, it is important to take into account client
device resource restrictions such as processing power which
could pose negative effects, especially in terms of latency. The
advantage of increasing user privacy by preventing the transfer
of sensitive data to a single server, allows deep learning train-
ing to comply with ever-increasing user privacy laws. Various
distributed deep learning algorithms and frameworks have been
proposed with the most popular currently being federated learn-
ing, split learning, and early exiting.

In the metaverse evolution, distributed deep learning can
leverage the thousands of dedicated devices required to access
the metaverse while gaining unique new insights through train-
ing data. This presents some significant privacy implications as
users will potentially be exposing more data than ever before.
To address these privacy implications, a lot of research has been
conducted in this area. In this section, we have described var-
ious distributed deep learning frameworks and algorithms cur-
rently being developed.

4.1. Federated Learning

Federated learning is a method of distributed machine learn-
ing where clients collaborate by each training a model on their
individual devices before sending this trained model to a cen-
tral server. In turn, the central server aggregates client models
to improve an overall shared model. For instance, it currently
has widespread usage with Google using the method with its
keyboard application to improve predictive text. Its benefits in-
clude smarter models, lower latency and less power consump-
tion than traditional machine learning methods. The fact that
the client trains its own model additionally allows for a more
user-tailored experience for each client. To create a distributed
machine learning model, an algorithm computes high-quality
updates before transmitting the user-trained model to the cen-
tral server. Additional methods and algorithms can be used to
achieve better results such as reducing bandwidth transmission
for client uploads. Security on the server can be maintained



with the implementation of a secure aggregation protocol which
prevents decryption with a low number of client updates [77].

4.1.1. One-Shot Federated Learning

This method of federated learning allows each client to im-
prove its trained model to completion. In a single round of com-
munication, the server will then collect these models from every
device and produce a shared model. The difference from stan-
dard federated learning is that it does not perform continuous
updates. This method could allow for separate models to be
created with specific specialties in a federated network of de-
vices by picking specific devices to create a global mode. For
example, all devices in a specific region and using accounts of
a specified age [[78].

4.1.2. Vertical and Horizontal Federated Learning

Also known as Heterogeneous Federated Learning, verti-
cal federated learning (VFL) differs from Horizontal Federated
Learning (HFL), also known as Homogenous Federated Learn-
ing, in that it is applicable to situations where two data sets
have a shared sample ID but different feature spaces [77]. HFL
would be applicable in situations where data sets share feature
space but possess different sample IDs. This makes it good for
situations using large collections of mobile devices to create a
single model. VFL is more useful when multiple different busi-
nesses with close data relationships want to collaborate, in this
method they are able to combine their data despite the differ-
ences in feature space. HFL is far more common due to the
lower amount of implementation challenges when compared to
VFL, despite this VFL does have real world implementations
[79,180].

4.2. Split Learning

Split learning is a technique developed by MIT Media labs
Camera Culture Group. Similar to federated learning, it allows
a machine Learning model to be trained without clients sharing
raw data, reducing the burden of training [81]]. The advantages
compared to federated learning include stronger privacy, higher
accuracy, computational resources efficiency, reduced commu-
nication cost, and seamless integration for edge devices with
compression. However, its disadvantage is the speed due to
relay-based training across clients. Recently, various solutions
such as Split-Federated learning have been proposed to poten-
tially solve this.

4.2.1. Two-Party Split Learning

The two parties in a basic or vanilla split learning configu-
ration are the non-label part and the label party. During training
the non-label part sends an intermediate layer known as the cut
layer to the label party. This naturally creates some semblance
of privacy preservation, although gradient-sharing schemes pre-
viously used in federated learning methods have shown possible
vulnerabilities that may be applicable to split learning as well
[82183]].

One of the current focus areas of research in split learning
is communication reduction. This often gets discussed in pa-
pers focusing on parallel split learning algorithms which have

varying degrees of impact. Additionally, a method called AdaS-
plit, which adapts to varying resource constraints, has been pro-
posed to reduce bandwidth consumption and improve the per-
formance of clients. The goal of reducing the communication
costs in split learning is to make it more comparable to the costs
associated with federated learning, making split learning a vi-
able alternative in resource-limited scenarios. It works by em-
ploying multiple different techniques such as eliminating client
dependence on server gradients, intermittent server training, re-
ducing payload size, reducing communication frequency, and
constraining client updates [84].

4.2.2. Parallel Split Learning

Parallel Split Learning is the term used to describe the adap-
tation of split learning allowing the local data to be trained par-
allel. This can solve the issue of overfitting and high latency
which could occur with sequential split learning [85]. Several
variations of solutions to parallel split learning have been pro-
posed in research, each with its advantages and disadvantages.
The overall goal of its implementation is most often to take as
many advantages as possible from split learning while over-
coming its shortcomings. These shortcomings could be scal-
ability issues or those previously mentioned such as overfitting
[86].

SplitFed - Split Federated Learning. Split-Fed learning com-
bines the Split learning technique with Federated learning to
overcome the disadvantages of implementing Split Learning on
its own while creating additional advantages. The additional
advantages include privacy elements such as differential privacy
and PixelDP. Although the method is not immune to privacy-
related vulnerabilities, which have already been proposed in
various papers. The combination of split and federated learn-
ing does now have much effect on communication efficiency or
test accuracy. However, it shows a significant decrease in the
computation time when compared to Split learning with mul-
tiple clients and does not affect the benefits of communication
efficiency over federated learning [87].

LocFedMix-SL - Local Federated Mixed Split Learning. This
method of localized, federated, and mixup augmentation tech-
niques for split learning was developed to further address the
problem of parallelism in split learning models. Methods for
addressing this in an alternative way were proposed in the past.
However, they came at the cost of speed and scalability. The
LocFedMix-SL method solves these issues by the techniques
that make up its name. When compared to previous methods.
Simulations conducted with this parallel framework showed a
greater improvement in speed, latency, and scalability in com-
parison to previously proposed algorithms, such as Split-Fed,
and additionally improvements over the standard sequential split
learning. The mixup augmentation technique, which differen-
tiates it from previously proposed techniques, uses local reg-
ularization of lower model segments on clients and augment-
ing smashed data on the server. In combination this smashed
data, mixup allows for improved convergence speed and accu-
racy without sacrificing split learning advantages [86].



4.3. Early Exiting

Early Exiting is a concept in deep learning neural networks
that allows you to obtain predictions at intermediate points of
the stack in a neural network by embedding exits earlier in the
training architecture. This means that as soon as the desired
confidence is achieved on an inputted sample, the execution
will be terminated saving time. Whether or not an EE is rel-
ative, depends on the type of ML model used for training. To
implement EE strategies, early classifiers are trained to provide
a point of comparison. Methods for generating the early clas-
sifiers are split into Joint training and Separate Training. As
the name suggests, joint training is the method of training all
early classifiers at the same time and is the more popular op-
tion. Separate training, training the classifiers separately relies
on two stages. The first stage trains a model, and the second
stage then trains the classifiers after they have been introduced
to a per-trained model, which then fixes the parameters [88].

5. Vulnerabilities

Regarding distributed and private machine learning, the pri-
vacy and vulnerability problems surrounding a metaverse are
quite extensive in comparison to previous ventures, such as
those faced in traditional social networking deployments. In
this section, we have outlined some of the possible privacy is-
sues, possible vulnerabilities that could be exploited to cope
with those issues, and an adversary model to present a logical
view of how those vulnerabilities could be exploited. It is worth
noting that the specific vulnerabilities and privacy issues do not
cover every event in any manner. They were chosen in the order
of possible impact while taking into account the latest discov-
ered attack vectors and vulnerabilities currently being explored.

5.1. Data Eavesdropping

Data eavesdropping, also known as a sniffing or snooping
attack, is the act of intercepting, modifying, or deleting data
traffic to create a beneficial outcome for the attacker. The net-
work infrastructure required to operate a distributed deep learn-
ing network creates a large amount of possible attack vectors,
due the complexity and sensitivity of the data involved. This
means that security in all areas will be of paramount impor-
tance. Several attack vectors relating to these areas are de-
scribed below along with examples of how to possibly mitigate
them [89].

5.1.1. Preference Profiling Attacks

Objective. The objective of this attack is to profile user data
by exploiting vulnerabilities in the federated learning model,
which happens to be one of the most popular machine learning
models currently in use. Very recently as of this paper’s release
date, it has been demonstrated that it is possible to achieve this,
in a social media model, similar to how a metaverse may be
deployed. Profiling user data with this model through machine
learning on a massive scale could therefore lead to data leakage
and present attackers with unauthorized access to it.
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Initial Capabilities. For this attack to be carried out certain
conditions must be met. For these conditions to be met, we have
written assumptions outlined in the research paper recently writ-
ten on this topic. Firstly, it is assumed that the server is aware
of the type of training data set for the users. The server is also
assumed to be able to collect small samples from each user’s
training data set in addition to collecting samples covering all
possible categories from auxiliary data sets. It is then assumed
that the server has a chosen subset of local models with the pur-
pose of updating the global model by leveraging aggregation.

Attack Process. The attack process has 4 steps. These are lo-
cal model training, Extracting the model’s sensitivity, Profil-
ing user preferences, and selective aggregation. The user lo-
cal model training. The user local model training step con-
sists of users creating diverse data sets, locally training them on
their devices, and then uploading this information to the servers.
Once uploaded, the attack process moves on to the next step of
extracting the models’ sensitivity. In this step, the server will
use the sampled aggregated public data that was previously col-
lected and use it to retrain the users uploaded and trained data
set. This allows for the extraction of the model sensitivity on a
per-class basis. Once this has been achieved the attack moves
on to the next step of profiling user preferences. This step uti-
lizes a meta-classifier to predict a user’s preferred class. Lastly,
the attack moves onto its final stage of selective aggregation.
The goal of this step is to improve the attack accuracy for fu-
ture use. This is performed by manipulating the global model
and sending the aggregated model to the targeted users. For
this step to be performed, however, the attacker must first train
a meta-classifier offline.

Feasible Defense Strategy. Current defenses against these at-
tacks on a federated learning model come with significant down-
sides. These range from negatively affecting model accuracy
to increased computational costs. So far, two methods of de-
fense against this type of attack have been proposed. The first
is through the employment of Dropout and differential privacy
techniques [90]. These reduce attack accuracy, although not
always by a significant amount, and introduce a decrease in
model utility and accuracy. The second method is leveraging
cryptographic-based federated learning. This avoids the degra-
dation of model utility and accuracy, but introduces higher com-
putational requirements and increased communication overhead
[O1]].

5.1.2. Membership Inference Attacks

Objective. An inference attack focuses on revealing secrets by
supplying varying input data and monitoring the results. There
are multiple types of inference attacks, each with fundamen-
tal differences. Unlike the attribute inference attack, which as-
sumes the attacker already has some knowledge of a training
record before trying to guess the missing attribute, member-
ship inferences rebuild the records by running possible options
through a machine learning model and monitoring the output to
understand if it was present in the original model.



Table 4: Summary of vulnerabilities, their features, and countermeasures.

Vulnerability

Victim

Influence

Countermeasure

Preference profiling attacks

The local users’ preferences
obtained through profiling.

Through the obtaining of a local client’s
preferences, an attacker can go on to
use the information for malicious pur-
poses, such as social engineering attacks
or supporting targeted identity theft.

A defense for this, which is cur-
rently available, is through leveraging
cryptographic-based federated learning
techniques.

Membership inference attacks

The victim of this attack is
the local user client who could
have their participation in the
data set exposed.

The negative consequences of this are
the potential release of private informa-
tion. For example, a user’s participation
in a medical study or investment scheme
is marketed towards highly vulnerable
individuals.

A current defense for these attacks was
traditionally differential privacy. How-
ever, an alternative approach would be
the implementation of a digestive neural
network independent from the network
it is protecting.

Fault attacks

The victim in this attack is the
deep learning model and by
extension the model’s creator,
with the potential to also im-
pact the model’s clients.

The negative effects from this type of at-
tack could be far-reaching as once mis-
classification is achieved, depending on
the security methods being employed,
the attacker could alter a significant
classification. For example, a model
created to scan medical images for can-
cerous cells could miss those cells when
attached to a specific organ.

A defense against these attacks is to em-
ploy a collection of onsite security, hard-
ware access protections, and hardware
design protection, such as em shielding
on chips and overcurrent protection cir-
cuits.

Model replacement attacks

Federated Learning Training
Model data on a central server

If an attacker is able to create a subtask
in the network, generating a model for
their own use, it could constitute a se-
rious privacy threat. Additionally, the
attacker would be taking advantage of
the free computing power required to
train the model, causing the owner of the
original model to pay higher costs.

Several strategies can be chosen to mit-
igate these potential attacks. Including
FederatedReverse, a 4-stage system in-
cluding detection and repair from an at-
tack. As well as a framework for a ro-
bust federated learning model.

Model inversion attacks

Local users who generated
model Inputs

The goal of the attack is to predict the
inputs used to generate the model. This
can also be applied to federated learn-
ing.

The attack can be mitigated by ensuring
that the split neural network protocol is
only used in secure environments.

Feature space hijacking attacks

User client’s individual private
data are used to train the model
in a split learning network

In this attack the goal is to obtain a
client’s data by reconstructing the model
inputs.

The countermeasures for this are po-
tentially differential privacy, prevention
through detection, and keeping informa-
tion of related public data sets private.

Model data poisoning attacks

A trained federated learning
model that is currently on a
central server

The negative effects of model poisoning
can cause an entire model to have sig-
nificantly lower usability than expected.
Additionally, an attacker may choose to
poison specific parts of the model for
their own gain.

A proposed defense is through the de-
tection of malicious participants in the
network by identifying unique charac-
teristics in their submissions.

Initial Capabilities. To carry out this attack on a federated learn-
ing neural network, the attacker needs a reference of the records

that could be contained in the model. If the attacker does not

have access to the target’s training data, entropy can be em-

ployed to variably shorten the total time for the attack to take

place. For the attack to take place, the adversary must be either

the centralized parameter server or a participant in the model

[92].

Attack Process. To achieve its goal and obtain private records
through the restoration of training data, the attack will vary
based on the position of the adversary in the network. If the ad-
versary is a participant or not. If the adversary is the centralized
parameter server, it can be used to infer training data when re-
ceiving updates from each participant over time. Alternatively,
if the adversary is a participant in the network, they can only ob-
serve the parameters over time in comparison to updates to gain
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information. Both of these methods have a downside that de-
pendencies between parameters may not be captured over time,
a solution for this was recently proposed [93]].

Feasible Defense Strategy. Traditionally, differential privacy has
been the potential defense against inference attacks on machine
learning models. Unfortunately, this comes at a significant cost
in model accuracy. A technique called adversarial training can
improve these results slightly but is still not a perfect solution.
Additionally, inference attacks can come in several different
forms, such as input inference, attribute inference, parameter
inference. Each of these has varying degrees of results when it
comes to defense implementations. However, novel approaches
to defense against these types of attacks are being proposed. For
example, the approach of attaching an independent neural net-
work to the federated learning model is called a digestive neu-
ral network [94]. The goal of this approach is to modify input



data, distort updates, and maximize the accuracy of the feder-
ated learning model while minimizing the accuracy of inference
attacks [95]].

5.2. Data Reconstruction

Data reconstruction attacks are used to reconstruct private
information using private or public datasets that have been ob-
tained by an attacker. In distributed deep learning networks
these datasets could contain potentially sensitive data which
could cause damage in many ways, for example, if an attacker
was able to link the data to an individual who contributed it to
the model. Despite the potential for attack, large data sets can
be extremely valuable to companies and many have been fac-
ing the challenge of securing them for many years. The meta-
verse will face many of the same challenges that were previ-
ously tackled by businesses to prevent these types of attacks
from occurring. It is also apparent that the large swaths of data
involved and large complexity will make it a prime choice for
attackers. In this section we have outlined some possible attacks
that could be used and possible defenses [96].

5.2.1. Model Inversion Attacks

Objective. The objective of this attack is to determine the miss-
ing pieces of split learning training data by attacking the inter-
mediate layers in a deep learning model that has already been
trained. Feature maps are then used to recover the original data.
This is done through the recovery of any input given to the net-
work and the acquisition of a functionally similar clone of the
network. This attack has been demonstrated against IoMT (In-
ternet of Medical Things) deep learning models in the past and
could be a common attack point for metaverse data in the future
[97].

Initial Capabilities. For this attack to take place, it is assumed
that the attacker knows the architecture of the model but does
not have knowledge of the parameters. It is not required for
the attacker to have knowledge or access to specific data and
they do not need to query the client network. The attacker is at-
tempting to search all possible input values and client network
parameters. This becomes an optimization issue that has vari-
ous solutions available for the attacker to take advantage of.

Attack Process. The process begins with the sever randomly

initializing a deep learning model with an architecture that matches

the client’s model. Next two objective functions are defined,
these are not related to the loss function used for training the
model. Depending on the domain being worked on, variations
measures can be implemented to improve the output data from
the task at this point. Using the assumptions made from the
model inversion attack and a possible stealing attack together
can then lead to a possible label inference attack [98]].

Feasible Defense Strategy. Multiple studies have tested possi-
ble defenses against model inversion attacks on split learning.
However, it has been demonstrated that some traditional de-
fense methods do not show a strong result when attackers are
utilizing model inversion attacks. For example, the distance
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correlation defense using (DCOR) showed that recovered im-
ages were still of high quality despite the defense having some
impact on the attack. Additionally, it showed zero impact on the
potential of a model to be stolen. Although, the effectiveness of
the model inversion attacks on split learning will decrease with
the depth of the split layers, creating a performance-to-security
trade-off for clients in the network [99].

Additionally, other methods such as proximal gradient split
learning (PGSL) have shown effectiveness in defending against
model inversion compared to techniques such as the addition of
label perturbations and adding noise to data input levels. The
PGSL technique works by reconstructing data into its original
form once it has been transmitted to the server side of the split
network.

5.2.2. Feature Space Hijacking Attacks

Objective. The goal of this attack is to re-construct a client’s
data used for training with the lowest error rate possible, even
when the data was protected with DP. To do this the attacker
will employ a Feature Space Hijacking Attack (FSHA). Once
the attack has been completed. The reconstructed data should
allow an attacker to view specific data or images inputted into a
split learning model with minimal distortion or blurring.

Initial Capabilities. For an attack to take place using the FSHA
method, the client part of the model must be able to successfully
be trained. With the client model, the attacker can the private
data that was entered into it can then be re-constructed. This
will not work if the attacker does not have access to the server
or another component of the network where the data is passing
through, such as the client’s own device. Additionally, an attack
would not be able to obtain the data required to perform the
attack if the server was enforcing a secure compute environment
[100].

Attack Process. The attack process begins with the attacker
targeting the client’s trained data through a server or network
component. If the attacker has chosen to target the server in-
stead of the client’s device, the attack would begin by the at-
tacker deploying code to the server. This code will learn how
to reconstruct the original data and then allow the attacker to
re-construct the client’s model [101]]. Additionally, alternate
attack methods to traditional approached that achieve similar
results, such as Unsplit, have been proposed and are potentially
even more harmful [98]].

Feasible Defense Strategy. To mitigate the potential damage
caused by this attack and improve the safety of the model, it is
possible to implement differential privacy with dimensionality
reduction techniques. However, this can have several down-
sides. Differential privacy on its own is not able to protect
against this type of attack. The addition of dimensionality re-
duction can cause the produced model to be of low usability
while potentially still giving the attacker sensitive data. De-
tection methods have also been proposed as a defense, such as
SplitGuard but this is not bulletproof [[102]. This means that
the preferred defense was to simply ensure that the model is



running in a secure computing environment, checking for cer-
tified versions of models on the client and denying attackers
any access to the model where possible. Though a new method
of combining SL with Function Secret Sharing (FFS) shows
promising results, through adding a random mask to the acti-
vation map before providing it to the central server. The server
works with the FFS generated shares instead of accessing the
original function data, effectively improving privacy without
the downsides previously mentioned [103].

5.3. Model Modification

Model modification attacks are focused on modifying the
resulting classifications achieved from a trained deep learning
model or corrupting the final results. This can be a simple or
small change such as modifying an image recognition model
to misclassify an animal species or creating new classifications
unintended by the creator in order for an attacker to use the
model for their own personal gain. While most attacks of this
nature are software-based, revolving around the server or dis-
tributed deep learning frameworks and architecture, alternative
attacks such as those that are hardware-based have begun to be
explored. In this section, we have outlined some of these ex-
ploits with a connection to how models could be manipulated
or mishandled by an attacker.

5.3.1. Model Data Poisoning Attacks

Objective. Through this vulnerability, the attacker aims to poi-
son the globally trained federated learning model, which was
created from participating clients using their own per-trained
data models. This is done through manipulating the data used to
create a client’s model on their own device, either through com-
promised devices or through the attacker’s own clients. An at-
tacker using this method will target specific classes in the model
so that they can remain undetected for as long as possible. The
outcome of this attack could potentially be that a model trained
to recognize a car may misclassify it as a truck.

Initial Capabilities. For this attack to take place, the attacker
must have access to clients that are being used to contribute
towards to federated learning model. It is not required for the
server combining the clients’ models to be compromised. This
makes the attack quite approachable for bad actors.

Attack Process. The attack makes use of label flipping in the
client’s data set. For the attack to be most effective the attacker
must ensure that they begin the attack towards the relative be-
ginning of the training. Once the attacker has gained enough
compromised clients they can begin to perform the label-flipping
attack by manipulating the raw data before it is trained on the
users’ devices. To increase the effectiveness of the attack, the
attacker can increase the number of compromised clients they
are using to attack the model in the late stages of the training
[104].
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Feasible Defense Strategy. This attack can be defended against
using various techniques. One method is centered around the
identification and reversal of damages by blocking future up-
dates from bad actors. This method uses an automated strategy
to identify “relevant parameter subsets” in a DNN and “study
participant updates using dimensionality reduction” techniques.
Additionally, a framework known as Sparsefed has been pro-
posed which mitigates possible attacks through gradient speci-
fication. This is achieved through the monitoring of “the upper
bound on the distance between poisoned and benign models”
[LO5].

5.3.2. Model Replacement Attacks

Objective. The objective of this attack is to install a backdoor
and run an additional subtask chosen by the attacker in addition
to the model that was intended while maintaining a high ac-
curacy, in a federated learning model utilizing a method called
model replacement. This differs from the more well-known poi-
soning attack, as it will not recognizably change performance.
A secondary objective of this attack is to maintain the backdoor
for as many rounds as possible to allow the adversary to create
more corruption in the network.

Initial Capabilities. To perform the attack, the attacker must
first be a participant in a federated learning model. With this
access, the attacker is able to begin the model flip by poison-
ing the data that is distributed into the network. For this to be
successful on a federated learning model within a reasonable
amount of time, the adversaries must take advantage of methods
cited in the proposed paper, such as the employment of secure
aggregation. This will attempt to prevent the malicious model
detection.

Attack Process. The attack begins with the adversary choosing
a malicious model that they wish to implement in the victim’s
network. Once determined, the attacker will become a partici-
pant in the network and begin poisoning the training data sup-
plied to the server. The backdoor malicious model will only be
trained when the attacker is selected, making it in the adver-
sary’s best interest to be selected as much as possible. This lim-
itation is what ensures that the original model’s training results
will not be negatively affected to a significant degree [106].

Feasible Defense Strategy. Several papers have demonstrated
the possibility of model replacement attacks in federated learn-
ing to gain backdoor access. Multiple defense strategies against
this have been proposed in the form of protocols and algo-
rithms utilizing residual-based reweighting. A framework for
a certifiably robust federated learning model has also been pro-
posed. This general framework works by exploiting clipping
and smoothing model parameters. During training, the local
agent updates their model parameters with the central server.
The central server then “aggregates the data”, “clips the norm
of the aggregated model parameters”, “add a random noise to
the clipped model” and “send the new model parameters back
to the agents”. Using this technique the server can make a final
prediction for the output by “smoothing the final global model



with randomized parameters”. An alternative defense proposal
is called FederatedReverse. This method can detect and defend
against backdoor attacks with little impact on overall model ac-
curacy. The implementation consists of 4 stages: reverse en-
gineering, global reserve trigger generation, outlier detection,
and finally model repairing. By carrying out these stages in
sequence the proposal is able to obtain high rates of detection
among backdoor attacks [107].

5.3.3. Fault Attacks

Objective. The objective of this attack is to create a fault in an
integrated circuit running a distributed machine learning model
to provoke it into an unintended state. In the notion of machine
learning, this can allow the attacker to manipulate the model
causing a misclassification in the neural network.

Initial Capabilities. This attack’s initial requirements can vary.
Typically, the requirements rely on four common activation func-
tions that are ReLu, softmax, sigmoid, and tanh. To accomplish
the task in the most precise manner, a diode pulse laser capable
of fault injection must be available to the adversary as it can
reliably flip single bits.

Attack Process. This attack begins by surrounding the activa-
tion functions with a separate layer and using a trigger signal
in combination with a microcontroller, such as an Arduino, to
measure the correct laser timing. Using the laser, the attacker
can then target the skip/change instruction and inspect the out-
puts until producing the desired result.

Feasible Defense Strategy. As a hardware-focused attack, fault
injection can be difficult to defend against. However, by em-
ploying a comprehensive collection of defense measures, the
difficulty of the attack can be increased dramatically. The most
obvious defense strategy is to make the hardware as difficult
to access as possible for the attacker. However, if the attacker
has gained access to the hardware and in the case of a chip,
decapped and removed the passivation layer, other countermea-
sures must be employed. These include the implementation of
EM shielding, implementing fault detection mechanisms such
as an error detection circuit or code, and implementing redun-
dancy. Unfortunately in the case of a laser-based attack, coun-
termeasures such as EM shielding would not have a significant
impact and many other methods can be overcome by a deter-
mined attacker [108]].

5.4. Discussion Summary and Lessons Learned

Throughout the study of vulnerabilities related to distributed
deep learning networks, we have been evaluating the potential
impact and difficulties that may be faced through potential at-
tacks in a metaverse. The recent development of federated and
split learning networks has led to increased research focus in the
area and presented several interesting challenges when it comes
to protecting clients’ data in the network. Several papers that
have recently been released outlined the potential for data such
as user preferences to be determined without consent. The main
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lessons learned from this are that the overall privacy implica-
tions derived from the implementation of a distributed learning
networks application in the metaverse are wide-ranging. But
despite the inherent risks the potential uses could greatly ex-
pand the overall user experience and give invaluable data to
companies. The vulnerabilities can be classified in many dif-
ferent ways and these classifications should focus on different
impacts to the contributors to the models. In this regard, we
classify them as User profiling and pervasive data collection -
Impersonation, miss-classification, and identity theft - Manip-
ulation and mishandling of user data and storage. To ensure
that users are not impacted by potential vulnerabilities in these
areas, significant attention should be paid to ongoing research
in the area to ensure that implementations of the model remain
secure. Table [4| provides a summary of the mentioned attacks
and corresponding countermeasures.

6. Metaverse Developments

6.1. Metaverse Applications

The applications of distributed and private machine learning
when applied to the metaverse concept are wide-ranging. Re-
search has identified the possibility for it to facilitate metaverse
services through its applications in healthcare, manufacturing,
and finance to name just a few. Furthermore, the scalability
requirements of the metaverse make it an ideal candidate for
distributed machine learning, as it is able to exploit the large
amount of computing resources and data available [109]. In
what can be described as a healthcare metaverse, the application
of FL opens up massive opportunities to overcome challenges
that usually come from working with health-related data. This
is achieved due to the inherent benefits of FL integration such as
security, data management, better interoperability, automation,
scalability, and low latency support. When applied in the meta-
verse this could allow for medical diagnoses, in what could be
considered the successor to telemedicine, patient monitoring,
collaboration of research, effective pandemic management, and
drug discovery [L10]. It has also been suggested that the com-
bination of FL with MAR capable devices in a metaverse could
be used for object detection tasks. The implementation of FL
into this scenario would create a more private a secure manner
of conducting these tasks, with the overall goal being to allow
object detection without revealing the users’ data. For example,
the user may look towards a building and see a description of it,
without revealing to the metaverse provider their current loca-
tion [L11]. Another application of FL in the metaverse can be
seen in a proposal for a novel wireless VR content delivery net-
work. The proposal aimed to create a multi-view synthesizing
framework that transmitted images to users of the metaverse
with overlapping fields of view, reducing the massive content
transmission requirements that would usually take place. FL
was effectively used to train the multi-view synthesizing model
applied in this framework [112].

6.2. Implementations



Table 5: Metaverse applications and their features.

Applications

Description

Network Requirements

User Interaction

Education
and Training

Education and training can take place in the
form of virtual classes and engaging envi-
ronments, where hands-on learning can be
conducted in a safe, efficient, and repeatable
manner.

Although it does require a high-speed con-
nection and large amounts of bandwidth, the
requirements for virtual classes and train-
ing environments are not particularly large in
comparison to other applications in the meta-
verse

In the education and training concept, user
interaction can be complex, virtual reality,
mixed reality, augmented reality and features
such as haptic feedback.

Healthcare Various types of healthcare settings can be | Large amounts of bandwidth and high-speed | Interaction in healthcare environments could
created and utilized in a metaverse environ- | connections in healthcare environments, for | take place in several forms, for example:
ment. This can take many different forms, | applications such as socializing and engage- | among virtual and physical objects, between
such as helping patients with mental health | ment with doctors while in remote areas, | users, or through direct streaming of live
issues, encouraging physical fitness, or al- | demand the implementation of several net- | video feeds.
lowing for virtual consultations with a medi- | working concepts. These include network
cal professional. slicing, 5G and 6G networking integration,

and digital twin networking.

Entertainment | movies, games, experiences, and social in- | Depending on the application and platform, | An integral part of entertainment activities in
teraction create the building blocks of en- | networking considerations which may need | the metaverse is the interaction between the
tertainment settings in the metaverse. It of- | to be made when creating an entertainment | user and the virtual environment. This inter-
fers a large and dynamic platform for par- | environment could include scalability, edge | action could be in relative terms simplistic,
ticipation and utilization within these virtual | computing utilization, load balancing, low | such as selecting an item on a user interface
spaces catering to a wide audience of poten- | latency, and high bandwidth requirements. to watch a movie. Alternatively, in entertain-
tial users. ment settings such as a video game, complex

interactions could take place utilizing mixed
reality, haptic feedback, and virtual interac-
tions with items and other users.

Architecture The virtual environment offered in a meta- | In a metaverse environment, networking re- | In a metaverse environment, user inter-

and Design verse allows for architectural and design de- | quirements are paramount for seamless user | action centers on immersive experiences.

cisions to be tested and observed extensively
before transitioning them into a real-world
space, saving costs and creating a unique
opportunity for developments that otherwise
may be considered outlandish.

experiences. High-speed, low-latency con-
nections are essential to support real-time in-
teractions and data exchange between users
and the virtual world. Scalable infrastruc-
ture, robust security measures, and global
reach are crucial to accommodate the vast
user base and ensure data privacy and in-
tegrity in this interconnected digital realm.

Users navigate through virtual spaces using
avatars, engaging in real-time communica-
tion, exploration, and collaboration with oth-
ers. They can customize their surroundings,
create content, and participate in dynamic,
user-generated content, blurring the line be-
tween virtual and physical reality.

Tourism and
Travel

Tourism and travel applications in the meta-
verse enable users to explore virtual repli-
cas of real-world destinations. Travelers
can virtually visit places, interact with his-
torical or cultural simulations, and experi-
ence adventures without leaving their homes.
These metaverse experiences offer accessi-
bility, safety, and novel opportunities for
tourism promotion and education.

Tourism and Travel networking require-
ments in the metaverse demand high band-
width to support rich multimedia content and
real-time interactions. Low latency is cru-
cial for seamless exploration and communi-
cation. Scalable infrastructure is needed to
accommodate a potentially large user base,
while data security measures are essential to
protect personal information and ensure safe
online experiences for travelers.

In a metaverse environment, Tourism and
Travel user interaction involves immersive
exploration and engagement. Travelers use
avatars to navigate virtual destinations, in-
teract with simulations of real-world attrac-
tions, and communicate with fellow explor-
ers. They can customize their experiences,
share travel memories, and participate in
collaborative virtual adventures, enhancing
their travel experiences in novel and interac-
tive ways.

Social  En-

gagement

Social engagement in the metaverse involves
creating virtual communities and connec-
tions. Users interact through avatars, engag-
ing in real-time conversations, events, and
shared activities. These applications facil-
itate social networking, virtual gatherings,
and collaborative experiences, allowing indi-
viduals to connect, communicate, and social-
ize with others globally, transcending physi-
cal limitations.

Social engagement networking in the meta-
verse demands robust infrastructure with
high bandwidth and low latency to support
real-time interactions. Scalable servers are
necessary to accommodate a vast user base.
Strong security measures are crucial to pro-
tect user data and ensure safe social expe-
riences, while seamless cross-platform com-
patibility enhances accessibility and user en-
gagement.

Social engagement in the metaverse en-
hances user interaction by enabling immer-
sive, virtual experiences. It’s used for vir-
tual meetings, conferences, social gather-
ings, and entertainment. Users can com-
municate through avatars, share content, at-
tend events, and build communities, foster-
ing connection and collaboration in this dig-
ital, interconnected world.

Virtual Com-
merce

Virtual commerce in the metaverse allows
users to buy and sell virtual goods, services,
and experiences. It’s utilized for virtual real
estate, digital fashion, NFT marketplaces,
and virtual events. Brands can establish vir-
tual storefronts, enhancing e-commerce and
enabling new revenue streams in the immer-
sive, digital realm.

Virtual commerce in the metaverse demands
robust networking infrastructure.  High-
speed, low-latency connections are crucial
for seamless transactions, secure payments,
and real-time interactions. Scalable servers
and decentralized blockchain networks sup-
port NFTs and virtual asset trading. Reli-
able networking is the backbone of a thriving
metaverse economy.

Virtual commerce in the metaverse enhances
user interaction through immersive shop-
ping experiences. Users can explore virtual
stores, interact with products, and engage
with sellers via avatars or chatbots. Social
elements like virtual showrooms and shared
shopping with friends enrich the buying pro-
cess, fostering a sense of community and
connection.
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6.2.1. Practical Implementations

Recent advances in mobile edge computing and digital twins
highlight how metaverse platforms can and are being used stream-
lines industrial tasks, such as predictive maintenance and real-
time monitoring of factory floors [[74]. By incorporating virtual
replicas of physical systems, operators can proactively prepare
for potential future issues or detect anomalies without halting
on-site operations, in turn reducing costs and downtime.

6.2.2. Theoretical Implementation Advancements

From a theoretical implementation standpoint, the inter con-
nectivity between digital twins and deep learning model train-
ing suggests the need for sustainable design protocols that min-
imize energy consumption while maintaining accurate simula-
tions [73]. Furthermore, emerging frameworks such as Block-
Net [75] illustrate how blockchain-enabled architectures can
ensure authenticated data exchanges across metaverse services,
reinforcing trust and transparency at scale.

Table [5] continues by summarizing metaverse applications
and their features.

7. Future Research Directions and Challenges

The potential privacy challenges of implementing distributed
deep learning into a metaverse concept are wide-ranging. A
specific example of one of these challenges can be seen in the
implementation of a metaverse healthcare service, where a pre-
vious research paper has assumed that virtual clinics are trust-
worthy. When considering that these virtual clinics could po-
tentially be less reliable for storing data than their physical coun-
terparts, the difficulty in safeguarding the privacy of distributed
deep learning algorithm applications becomes apparent. If an
attacker were able to leverage the fact that these clinics are not
trustworthy, they could possibly retrieve the private attributes
from the medical dataset being used to train the distributed deep
learning model. Which they could then use to target the initial
contributor [[113]. Furthermore, the large number of contribu-
tors to a distributed deep learning deployment, such as in the
federated learning framework, increases the potential for a ma-
licious attacker to be included in the model [[114]]. The conse-
quence of this is that a privacy challenge is created for those
who wish to employ FL and other distributed deep-learning
frameworks in the metaverse. Another potential privacy-related
challenge of FL integration in a metaverse healthcare service is
meeting the laws or regulations related to sharing health data.
Depending on the jurisdiction, there may also be no require-
ment for a company to delete information it has gathered from
distributed deep learning, increasing the chance of potential fu-
ture exposure if not well-managed [[115]]. Lastly, to ensure that
privacy is respected in a distributed deep learning environment,
the creator of the model must generate the dataset in an in-
formed manner. The data collection for dataset generation in-
volves several sources, such as sensors, databases, and the web.
This data is then pre-processed for use in the final model [[116].
It is important that the privacy of users generating the data is
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not impacted by the collection of irrelevant sensitive data in a
metaverse environment.

The combination and integration of distributed deep learn-
ing with the metaverse create promising future opportunities
with several unresolved challenges. Though federated and split
learning have been used to enhance privacy. Issues related to
data leakage, computational efficiency and data leakage remain
largely unresolved [90, 92, [102]. Additionally, further study
is needed when it comes to ensuring privacy in digital twin
implementations [71]] and decentralized identity authentication
[60]. Another critical challenge to be addressed as the meta-
verse develops is the scalability of its underlying infrastructure,
as metaverse applications collect diverse data from different de-
vices with varying processing power [8|[15]. A portion of these
scalability issues could potentially be addressed with advances
in adaptive federated learning and hierarchical model aggrega-
tion. These techniques could potentially enhance performance
while maintaining the positive aspects of model training [5} [18]].
Moreover, ensuring that resource allocation in MEC is opti-
mized will be essential for reducing latency within real time
metaverse environments [S3]]. The security consequences of
potential adversarial attacks, model inversion and backdoors
also pose significant risks. Particularly, as blockchain based
transactions grow in size and become more integrated into a
digital economy [63} 65]. To mitigate these potential threats,
lightweight cryptographic methods and privacy aware Al frame-
works should be further explored [57]. Moving beyond the
technical aspect, ethical and regulatory considerations when it
comes to user data, Al biases and algorithmic accountability
will also need to be addressed as the technology develops [12}
24]). Through the establishment of standardized privacy regula-
tions and explainable Al models, crucial trust can be built in the
metaverse ecosystems [94,95]]. Future research should therefor
focus on enhancing security, improving efficiency, and ensuring
ethical Al governance to support the sustainable growth of the
metaverse as a scalable, privacy-preserving digital environment
[64].

8. Concluding Remarks

This paper has reviewed metaverse developments with strict
consideration of distributed machine learning association from
a privacy preservation perspective. Our investigation of con-
temporary work reveals a high potential of distributed learning
architectures to assist the metaverse system and operations even
though several challenging privacy vulnerabilities exist. Obvi-
ously, privacy preservation is a critical concern and it deserves
thorough studies to ensure the success of distributed learning
utilization in the metaverse evolution. This paper wishes to
provide a state-of-the-art reference and direction for interested
researchers and engineers in the fields.
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