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Abstract

The exponential growth of high-quality live streaming services over cellular networks, particularly in heterogeneous environments
facilitated by 6G, has underscored the need for novel wireless communication. To address this challenge, Rate Splitting Multiple
Access (RSMA) has emerged as a promising interference management scheme in advanced cellular networks. This paper con-
siders such a potential environment where the impacts of content popularity and audience retention are jointly investigated to
maximize the average video resolution of live streaming services over RSMA edge networks. The complex problem is modeled as
a Markov Decision Process and subsequently addressed using an appropriate reinforcement learning framework leveraging the
Deep Deterministic Policy Gradient (DDPG) technique, named DDPG-BARMAS. Simulation results demonstrate that the proposed
DDPG-BARMAS method significantly outperforms existing algorithms in terms of video resolution improvement, highlighting its
potential as a robust solution for future wireless live-streaming services.

Keywords: Live video streaming, Multiuser uplink RSMA, Video bitrate maximization, Quality of Experience.

1. Introduction

In recent years, live video streaming platforms have gar-
nered significant public attention and surged in popularity,
driven by the rapid proliferation of mobile Internet of Things
(IoT) devices equipped with 5G connectivity. The widespread
appeal of live video streaming services can be surpassed by
several factors, including the explosive growth of live broad-
cast platforms celebrated for their high entertainment value
and robust real-time social interaction capabilities [1]. In the
realm of live video streaming systems, the quality, popularity,
and stability of streamer videos are pivotal in optimizing aver-
age video bitrate and enhancing Quality of Experience (QoE).
High-quality streamer videos significantly impact follower en-
gagement metrics such as total playback time and live stream
views. In addition, the average bitrate plays a crucial role in de-
termining the quality and viewer satisfaction of live video con-
tent [2]. High video bitrate for live streaming services in multi-
user uplink networks is imperative for delivering superior live
video streaming experiences. These advancements are crucial
as the demand for seamless, high-quality streaming continues
to grow in an increasingly connected digital landscape [3, 4].

On the side of mobile communication evolution, Rate Split-
ting Multiple Access (RSMA) has emerged as a transformative

∗Corresponding authors
Email addresses: 23110143@sju.ac.kr (Fayshal Ahmed),

vinhnt@lginnotek.com (The-Vinh Nguyen), phuong.tran@oulu.fi
(Nam-Phuong Tran), nndao@sejong.ac.kr (Nhu-Ngoc Dao),
srcho@cau.ac.kr (Sungrae Cho)

technology, capable of delivering robust, high data rates, and
low latency essential for 6G networks and beyond [5, 6, 7]. Con-
sequently, RSMA has garnered substantial attention from both
academia and industry. Uplink RSMA operates on the princi-
ple of rate splitting, in which each message transmitted from
the transmitter to a user is divided into two distinct segments
[8]. By judiciously allocating disparate power levels, mobile gN-
odeBs employ a successive interference cancellation (SIC) tech-
nique to decode the incoming messages efficiently. In a mo-
bile live streaming system, a 3GPP-standardized 5GMSu edge
server, strategically positioned at the gNB, makes optimal deci-
sions to maximize the QoE of live streaming services based on
an analysis of streamer fame and watch time duration as well
as mobile environment conditions.

In this paper, we propose an advanced bitrate maximiza-
tion for average streamers approach that leverages the Deep
Deterministic Policy Gradient (DDPG) technique (i.e., DDPG-
BARMAS) in an uplink RSMA network. By jointly considering
content popularity and retention rates, we effectively designate
available streamers for video bitrate adjustments. Our primary
objective is to identify an optimal solution that maximizes the
overall video bitrate of the system. The key contributions of this
paper are summarized as follows:

• We investigated the combined impact of content popu-
larity and audience retention on the video resolution of
live streaming services over an uplink RSMA network.
Here, specific characteristics of uplink RSMA communi-
cation, i.e., the decoding order and transmit power, are
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optimized with content popularity and audience reten-
tion consideration to maximize average video bitrate to
improve the system QoE.

• To resolve the above objective, we proposed an intelli-
gent optimization framework, named DDPG-BARMAS,
inspired by the DDPG technique. Addressing the com-
plexity of non-convex optimization, we transformed it
into a Markov decision process (MDP), defining state, ac-
tion, and reward functions. By replacing discrete vari-
ables with normalized continuous ones, we navigate the
high-dimensional state-action space and dynamic net-
work channels. Our proposed DDPG-BARMAS frame-
work focuses on maximizing long-term expected rewards
and optimizing bitrate for average streamers.

• We conducted rigorous simulations to validate our ap-
proach. The simulation results demonstrate significant
improvements in average video resolution compared to
existing methodologies. This validation underscores the
algorithm’s effectiveness in enhancing video streaming
quality through advanced bitrate optimization.

The paper is structured as follows. Section 2 provides re-
lated work analysis. Section 3 elucidates the problem state-
ment, channel model, service model, and optimization prob-
lem. Section 4 delineates the DDPG-based BARMAS optimiza-
tion framework. In Section 5, we sequentially present perfor-
mance evaluation and convergence analysis comparisons. Fi-
nally, Section 6 concludes and describes prospective contribu-
tions for further enhancements.

2. RelatedWorks

The literature review is structured into two primary do-
mains. First, it investigates the consideration of RSMA tech-
niques in streaming systems. Second, it explores the utiliza-
tion of the DDPG technique to enhance video bitrates as well
as QoE.

2.1. Live Video Streaming in RSMA Communication Environments
RSMA method has received significant attention due to its

ability to achieve higher spectrum and energy efficiencies com-
pared to conventional multiple access techniques. For in-
stance, Dao et al. explored content quality in edge caching
systems for multi-user Adaptive Bitrate Streaming (ABS) and
additive bitrate streaming services under challenging trans-
mission conditions [9]-[10]. Their dynamic policy for cache
decision-making and quality-level selection during cache cy-
cles, along with a drift-plus-penalty balancing optimization,
demonstrated outstanding performance across various video
streaming popularity models. On the other hand, Ma et al.
proposed QAVA, a QoE-aware additive video bitrate aggrega-
tion scheme for HTTP live streaming using edge computing
[11]. QAVA adapts bitrate dynamically based on network con-
ditions, client states, and video characteristics using a DRL-
based algorithm deployed on intelligent proxy servers at the

edge. In [12], joint computational resource assignment and bi-
trate adaptation in edge caching systems were optimized using
the asynchronous advantage actor-critical algorithm, assum-
ing a discrete-time Markov chain (DTMC) for the channel with
variable time. Fu et al. introduced a soft actor-critic network
in [13] to maximize video bitrate while minimizing time de-
lays and bitrate variations, focusing on improving streaming
quality. In [14], a perceptual content-aware bitrate adaptation
algorithm for HTTP streaming services was proposed. This ap-
proach considers visual perception’s impact on user QoE, mod-
eling the bitrate adaptation problem as a MDP and developing
a segmented value iteration method to solve it.

2.2. DDPG Utilization for QoE Improvement
The DDPG algorithm has emerged as a compelling solu-

tion capable of developing optimal policies through interac-
tion with the environment, without requiring prior knowledge
of the network system model. For example, in [15], a robust
proposal was introduced for a high-altitude platform mounted
MEC (HAMEC) system within an RSMA environment. This
proposal focused on jointly configuring parameters such as of-
floading decisions, splitting ratios, transmit power, and decod-
ing to minimize processing costs in terms of response latency
and energy consumption, using the DDPG algorithm. Kim et
al. [16] formulated a problem to maximize sum rates by jointly
optimizing Intelligent Reflecting Surface (IRS) beamformers,
Base Station (BS) combiners, and User Equipment (UE) trans-
mit powers. They proposed a multi-agent deep reinforcement
learning algorithm to address this challenge. In [17], a multi-
agent deep reinforcement learning (MADRL) based algorithm
was introduced to jointly optimize resource block (RB) allo-
cation and power control, aiming to maximize average spec-
trum efficiency (SE) while meeting Quality of Service (QoS)
constraints. In [18], Liu et al. aimed to minimize the en-
ergy consumption of the base station during complete video
streaming sessions, with an additional constraint to prevent
interruptions in video playback. They used the DDPG algo-
rithm to manage the continuous state and action spaces inher-
ent in their formulated problem. Meanwhile, in [19], the focus
was on device-to-device communication to enable uplink cell-
free communication between external users and gNB base sta-
tions. An effective deep reinforcement learning (DRL) scheme
was introduced to optimize rates for worst-case users and dy-
namically allocate power for both external and cellular users.

While these studies primarily focused on enhancing QoE as
well as video bitrates, especially in the downlink channel, there
remains a significant gap in research concerning the optimiza-
tion of video resolution for live streaming services in multi-
user uplink RSMA networks.

3. ProblemStatement

We consider a system model consisting of an RSMA-enabled
gNB, which provides wireless access for K streamers to simul-
taneously distribute their content to followers via the mobile
network, as shown in Fig. 1. A list of key notations is described
in Table 1.
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Table 1: List of Notations

Notation Description
K The set of all streamers
K The total number of streamers
sk The transmitted message of streamer k
pki The transmit power of streamer k
Pmax

k The maximum transmit power of streamer k
ski The sub-messages received from streamer k
s0 The total received signal at the gNB
hk Channel gain between user k and the gNB
n The additive white Gaussian noise (AWGN)
π The decoding order at the gNB
Π Set of all possible decoding orders of k streams
πki The decoding order of sub-messages ski
rki The achievable throughput of ski
B The bandwidth of the gNB
σ2 Power spectral density of the Gaussian noise
rk The total uplink achievable rate of streamer k
V The available set of video bitrates
p̃k The content popularity of streamer k
pk The popularity of streamer k
fk The audience retention rate of stream k
Uk ,Uk Set of currently active followers of stream k
t Time active followers are viewing the stream k
j List of followers watching the stream k
dk j Watching time of follower j
τ Timeslot duration
tk j Time when follower j starts to view the stream k
V Average video bitrate of all streams k
vk Desired maximized video bitrate of stream k
St , st State space at time t
At , at Action at time t
P,R, γ Probability, reward, and discount factor at time t
Q Deep queue learning function

3.1. Channel Model
LetK = {1, 2, . . . ,K}defines the set of K streamers. Without

loss of generality, we assume that each message from streamer
k ∈ K is split into two sub-messages for transmission on RSMA
uplinks to the gNB [15]. Let denote I = {sk1, sk2} is the set of
sub-messages of sk. Consequently, the transmitted message sk

from the streamer k is given by

sk =

2∑
i=1

√
pkiski, ∀k ∈ K , (1)

where ski is the i sub-message with E
[
| ski |

2
]
= 1 and pki is the

transmit power of sub-message ski from streamer k. The total
transmission signal power pki of each streamer k is limited to
Pmax

k and is restricted by
∑2

i=1 pki ≤ Pmax
k . Thus, the power ma-

trix pki =
{
1, 2, . . . , pmax

k

}
,∀k ∈ K is the maximum transmit

power of streamer k.
Consequently, the total received signal s0 obtained at the

gNB is given by

sy =

K∑
k=1

√
hk sk + η =

K∑
k=1

2∑
i=1

√
hk pkiski + η, (2)

where hk ∈ CN×1 is the gain of the uplink channel be-
tween streamer k. Furthermore, gNB and η are additive white

5GMSu 
edge server

5GMSu 
clients

5GMSu 
app. server

hk

Streamer k

gNB
RSMA uplinks

Figure 1: Live streaming services over 3GPP standard 5G media stream uplink
(5GMSu) systems.

Gaussian noise modeled as complex Gaussian random vari-
ables with zero mean and uniform variance of σ2 such as η ∼
N

(
0, σ2

)
.

Adopting RSMA technology, the gNB utilizes the Successive
Interference Cancellation (SIC) technique to decode all sub-
messages ski of the streamer k from the received signal sy.
There exists a total M = K × I sub-messages form K stream-
ers. Assuming that the decoding order of sub-messages at the
gNB is denoted as the set π = {ski : k ∈ K , i ∈ I } in which first
element is decoded first and second is decoded second, respec-
tively. The decoding order vector at the gNB is denoted by a per-
mutation π belonging to the setΠ, which is the set of all possi-
ble decoding orders of all sub-messages from K streamers. Let
πki ∈ M whereM = {1, . . . ,M} denotes the decoding order
of the submessages ski. In particular, for the sub-message ski,
the gNB successfully decodes and eliminates all sub-messages
that have a lower decoding order than ski and treats the remain-
ing sub-messages as interference except the sub-message ski.
Therefore, the signal-to-noise ratio (SINR) in the uplink RSMA
system for sub-message ski can be demonstrated as

γki =
hk pki∑

{(l,m)∈Qki |πlm>πki}
hl plm + σ2 (3)

Where∀k ∈ K , and∀i ∈ I andQki it is worth noting that it is
the set of all sub-messages that have a greater decoding order
than ski such asQki = {(l,m) : πlm > πki}.

Therefore, the achievable throughput rki of decoding sub-
message ski can be calculated using the equation (3) as

rki = B log2 (1 + γki)

rki = B log2

(
1 +

hk pki∑
{((l,m)∈Qki)|πlm>πki}

hl plm + σ2

)
,

(4)

where B is the uplink bandwidth, σ2 is the power spectral
density of the Gaussian noise.

Finally, the uplink throughput of streamer k is given by

rk =

2∑
i=1

rki, ∀k ∈ K . (5)

3.2. Service Model
As specified in the 3GPP TS 26.501 standard [20], 5G net-

works natively enable edge computing capability to support
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mobile media streaming services, as depicted in Fig. 1. In
this architecture, the 5G media stream uplink (5GMSu) edge
server located at the gNB manages media sessions established
on streamers in terms of content quality (i.e., video bitrate)
configuration depending on environmental changes and fol-
lower engagement. Let V = {v1, v2, . . . , vmax} denote the set
of available video bitrates in the streaming system. Typically,
follower engagement can be measured as a combination of two
popular metrics, such as content popularity and audience re-
tention rate.

Let p̃k denote the content popularity of streamer k in the
whole system at the considered timeslot t. In addition, p̃k is
measured by the central 5GMSu application server as a ratio of
the number of followers watching streamer k over the total ac-
tive followers in the system. In a large-scale system measure-
ment, p̃k has been proved following the Zipf distribution [21].
In a small-scale observation at the 5GMSu edge server, the con-
tent popularity pk of streamer k can be normalized as

pk =
p̃k∑K

i=1 p̃i
, ∀k ∈ K . (6)

The popularity of the content is greatly affected by the fame of
the streamer and the streaming event. On the other hand, au-
diovisual quality and content attractiveness are dominant fac-
tors in retaining followers to watch the stream continuously. To
quantify this observation, the audience retention rate is con-
sidered. The audience retention rate fk of the stream k can be
determined by the percentage representing the amount of time
followers consume to watch the stream during the current time
slot. LetUk and Uk denote the set of current active followers of
stream k during timeslot t and its cardinality, respectively. In
addition, dk j denotes the watching time of follower j, j ∈ Uk.
Furthermore, the view window wk j of follower j is determined
as wk j = τ if tk j ≤ τt,

wk j = τ(t + 1) − tk j otherwise,
(7)

where τ is the timeslot duration and tk j, 0 ≤ tk j < t + 1, is the
time point when follower j starts to watch the stream k. Then,
fk is given by

fk =
1

Uk

Uk∑
j=1

dk j

wk j
, ∀k ∈ K . (8)

It is worth noting that fk is monitored at the central
5GMSu application server during the previous adjacent times-
lot. Without loss of generality, the follower engagement of the
stream k can be represented by the production of pk and fk [22].

3.3. Optimization Problem

Given the current uplink throughput rk of streamer k, the
5GMSu edge server decides the video bitrate vk of stream k clos-
est to its upper bound rk as

vk = v|0≤min(rk−v),∀v∈V. (9)

Accordingly, the average video bitrate V of all streams managed
by the 5GMSu edge server at the gNB is given by

V =
1
K

K∑
k=1

(vk pk fk). (10)

Therefore, the optimization problem (P1) to maximize V can
be represented as

(P1) : max
π,{pki}

V (11)

subject to (4), (5), (9),
2∑

i=1

pki ≤ Pmax
k , ∀k ∈ K , (12)

vk ≤ rk, ∀k ∈ K , (13)
vk ∈ V, π ∈ Π. (14)

Derived from (11), the optimization problem can be reformu-
lated as

(P1) ≡ max
π,{pki}

K∑
k=1

2∑
i=1

(pk fk log2(hki)), (15)

subject to (4), (5), (9), (12), (13), and (14). Consequently, the ob-
jective function (P1) exhibits a linear proportionality with re-
spect to variations in pk and fk, while demonstrating a log-
arithmic proportionality with respect to variations in hki. In
other words, the parameters pk and fk predominantly influ-
ence the model’s decision-making process for optimizing the
system performance. The developed optimization problem is
completely consistent with our core idea of exploiting the joint
impact of content popularity and audience retention to max-
imize the average video resolution in live streaming services
over RSMA edge networks.

4. Proposed Solution

4.1. Markov Decision Processes Transformation
As the decoding order π is a discrete variable, it is challeng-

ing to reach an optimal solution due to the discrete value space.
To address this problem, we first reform the decoding order π
to continuous variable processes so that we obtain continuous
action values. We denote Πn = {ϕki ∈ (1, . . . ,M), ∀k ∈ K} is
the set of decoding priority of all sub-signals, where ϕ ∈ Πn is
the decoding priority of sub-signal ski of streamer k.

We consider a standard reinforcement learning setup
where an agent interacts with an environment in continuous
timesteps. Initially, we translate the problem into a Markov
Decision Process (MDP), where the 5GMSu application server
serves as the agent. At each timestep t, the agent observes
the environment state st, decides on an action at, and receives
a cumulative reward rt. The agent’s objective is to maximize
the bitrate for the average streamer, with the remainder of
the system comprising the network environment. A conven-
tional Deep Reinforcement Learning (DRL) architecture typi-
cally involves five main components: (S,A,P,R, γ). Here, S
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represents the state space, A denotes the action space, P :
S × A × S → [0, 1] defines the transition probability func-
tion specifying the likelihood of transitioning from one state
to another given an action R : S × A × S → R represents
the continuous reward function where rewards range within
Rmax ∈ R+ (e.g., [0,Rmax]), and γ ∈ [0, 1), used to discount
future rewards.

This setup enables the agent, represented by the 5GMSu ap-
plication server, to autonomously learn an optimal policy to
maximize the average streamer’s bitrate within the network
environment.

State Space. In our environment, the state space st comprises
all streamers k authorized for wireless access through the
RSMA uplink enabled gNB, initiating their live streams at time
t. However, network conditions are subject to fluctuation and
can vary significantly between environments over time. On the
other hand, the 5GMSu edge server evaluates the popularity
pk of each streamer and their retention rate fk, respectively.
Hence, the state environment of our RL model is characterized
as:

st = (hk, pk, fk) (16)

Action Space. In our system environment, the action involves
decisions aimed at optimizing the average video bitrate V for
all streamers and ensuring adequate power allocation for video
QoE and seamless uplink live stream transmission. This can be
formulated as follows:

at = {ϕ, pki} . (17)

Transition Probability. A thorough analysis reveals that content
popularity pk and retention rate fk are critical determinants
for the 5GMSu edge server when selecting the action at within
the state environment st. We assume that the channel gain
probability of streamer k at each time t is independent. Con-
sequently, the probability of maximizing the average video bi-
trate and transitioning to the subsequent state st+1 can be ex-
pressed by the following state transition function:

P (st+1|st, at) = P
(
hk(t+1), pk(t+1), fk(t+1) | hk, pk, fk, ϕ, pki

)
(18)

Here, the state information st+1 for the next iteration t + 1
depends only on the current state st and the action chosen at at
time t.

Reword Function. Our optimization objective is to maximize
the bitrate of video streaming for average streamers. In other
words, our goal is to maximize the long-term cumulative dis-
counted reward rt after selecting the action at in the state envi-
ronment st that can be expressed as

rt =rt + γrt+1 + γ
2rt+2 + · · ·

=

∞∑
i=0

γirt+i

=

∞∑
i=0

γi
K∑

k=1

V (t + i) ,

(19)

The discount factor, γ ∈ [0, 1], signifies the balance between
present and future rewards. As lower γ = 0, the agent priori-
tizes immediate rewards. Asγ increases, the agent emphasizes
future rewards, facilitating more strategic decision-making.

To achieve our goal, we require a policy πwhich maps states
to actions (π : S → A). The policy π guides the agent by spec-
ifying the action at to be taken in state st to maximize the ex-
pected reward rt. Maximizing the objective function is there-
fore equivalent to identifying the optimal policy, denoted π∗.

In conventional RL problems, the Q-value function, often
denoted as Q (stt, at), plays a crucial role [23]. This function rep-
resents the expected accumulated reward starting from state
st, taking action at, and then following the policy π, is instru-
mental in solving RL problems and can be expressed as follows:

Qπ(st, at | θ
Q) = E[Rt |st, at] = E

 ∞∑
i=0

γirt+i|st, at


= E[rt + γQπ(st+1, at+1)|st, at].

(20)

The corresponding optimal Q value function Qπ∗
(
st, at | θ

Q
)

is the function that has the highest Q value and it follows the
optimal policyπ∗. Therefore, this recursive relationship, known
as the Bellman equation, can be expressed mathematically as
follows:

Qπ∗
(
st, at | θ

Q
)
=max

π
Qπ (st, at)

=max
π

E [Rt |st, at]

=max
π

E
[
rt + γRt+1|st, at

]
=max

π
E

[
rt + γQπ (st+1, at+1) |st, at

]
=E

[
rt + γmax

at+1
Qπ∗ (st+1, at+1) |st, at

]
(21)

By formulating such a reward function, the RL agent is in-
centivized to maximize the bitrate for average streamers, lead-
ing to higher rewards. In contrast, it faces penalties, possibly
receiving zero rewards, for policies that fail to meet system re-
quirements. This mechanism encourages the RL agent to select
policies that achieve the highest bitrate vk while avoiding those
that do not satisfy minimum bitrate requirements. Therefore,
the reward function rt, as described in 19, can be summarized
as follows:

rt (st, at) =
K∑

k=1

(
V − ω

)
. (22)

5



We introduce ω as the penalty incurred for actions that vi-
olate the optimization constraints. This constraint ensures
that the maximum bitrate vk ∈ V never exceeds the available
throughput rk.

A deep neural network (DNN) is well-suited to address our
optimization problem because it efficiently approximates com-
plex mapping functions using a fixed number of parameters.
This stability in parameter count is advantageous regardless of
the state and action space size, making it particularly effective
for solving continuous problems like the DDPG.

4.2. Our Proposed DDPG-BARMAS Solution
To address the defined MDP model, we propose the struc-

ture of our proposed DDPG-BARMAS algorithmic framework.
The BARMAS algorithm tailored for an RSMA-enabled uplink
live streaming service, adeptly manages large continuous state
and action spaces that are time-varying. Moreover, our pro-
posed DDPG-based BARMAS algorithm is a model-free, off-
policy DRL method, originally detailed in [24]. It utilizes two
principal sets of Deep Neural Networks (DNNs): an actor net-
work and a critic network.

The actor network selects actions based on the existing state
st, while the critic network evaluates the actions at, generated
by the actor network. Specifically, we initialize a critic network
Q

(
s, a; θQ

)
with parameter θQ and an actor network µ

(
st; θ µ

)
with parameter θ µ. The actor network is tasked with select-
ing deterministic actions for each input state st. In contrast,
the critic network assesses these actions and provides feedback
to the actor network in the form of a gradient signal, which
guides the actor’s learning process. Furthermore, the DDPG
framework employs an experienced replay buffer and target
networks. These include a target actor network µ′

(
st; θ µ′

)
with

parameter θQ′ and a target critic network Q′
(
s, a; θQ′

)
with pa-

rameter θµ′ . The experience replay buffer stores transition for
use during training, while the target networks help reduce the
correlation of the training data and enhance training stability.
The algorithm framework is illustrated in Fig. 2.

To regulate the exploration procedure, the actor network
µ
(
s | θ µ

)
is augmented with noise to generate action at as fol-

lows:

at = µ
(
st; θ µ

)
+Nt (0, σ) , (23)

where Nt represents the Gaussian noise (GN) added to the
action to encourage exploration.

Moreover, at each time step t, the agent observes the state
of the environment st and executes the action at according to
the policy π∗. The environment then provides an immediate re-
ward rt and the next state st+1 following the action at. As the
actor network processes the state st and the action at to obtain
the rewords rt, a new state st+1 is immediately generated post
action execution. According to the exploration policy, the tran-
sition tuple (st, at, rt, st+1) is stored in the central experience re-
lay buffer B, which is used to update the network parameters.
A randomly sampled mini-batch of D transition tuples is ex-
tracted from B to update the actor and critic networks. Once

the replay buffer reaches its capacity, older samples are dis-
carded, and the actor and critic networks begin their gradual
learning process.

During the training process, the parameters of the critic net-
work are adjusted by minimizing the loss function between the
action value function Q

(
si, ai; θQ

)
and the target value yi. This

loss function is expressed as:

L
(
θQ

)
=

1
N

N∑
i

(
yi − Q

(
si, ai; θQ

))2 , (24)

where yi = ri + γQ′
(
si+1, µ

′
(
si+1; θ µ′

)
; θQ′

)
. Here, N

represents the number of samples in the mini-batchD which
is randomly selected from the experience replay bufferB. Each
sample (si, ai, ri, si+1) represents a sample i, that includes the
state st, action at, reward rt, and the next state st+1.

The actor network is updated using the deterministic pol-
icy gradient method, using the gradient information from the
critic network. This is expressed as follows:

∇θ µ J ≈
1
N

N∑
i

∇aQ
(
s, a

∣∣∣θQ )∣∣∣∣
s=si,a=µ(si)

∇θ µµ
(
s
∣∣∣θ µ )∣∣∣∣

si
. (25)

To improve training stability, a soft update method is em-
ployed to update the parameters of the target networks using a
small constant ϵ ≪ 1. This process is formulated as follows:

θ µ′ ← ϵθ µ + (1 − ϵ) θ µ′

θQ′ ← ϵθQ + (1 − ϵ) θQ′
(26)

During the execution phase, the critic networks are inactive
and only the actor network is utilized. The trained actor net-
work generates actions based on the current state st observed
by the agent in the 5GMSu RSMA-assisted uplink live stream-
ing system, as illustrated in Fig. 2 and Algorithm 1.

In Algorithm 1, the steps begin at a specific time t. Each time,
an agent conducts an observational investigation into the state
environment st. Based on the agent’s observation, the action
at is determined using the policy π. The actor network µ

(
s; θµ

)
with parameter θµ determines the action at, subsequently cre-
ating a list of tuples as (hk, pk, fk, ϕ, pki). The power allocation
pki and total achievable uplink throughput rk of streamer k are
calculated. In addition, the popularity of streamer content pk

and the audience retention rate fk are evaluated by the 5GMSu
edge server.

Furthermore, the critic network Q
(
s, a; θQ

)
is initialized

with random weights θQ. We establish a target actor net-
work µ′

(
s; θ µ′

)
with parameter θ µ′ and a target critic network

Q′
(
s, a; θQ′

)
with parameter θQ′ . An experience replay buffer

B is then created to store the transitions during the training
phase when necessary. In the aforementioned second step, the
agent (5GMSu edge server) interacts with the state environ-
ment st to collect training data, which are stored in the replay
buffer of the experienceB.
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Figure 2: DDPG-BARMAS Algorithm Framework.

Algorithm 1The proposed DDPG-BRMAS

1: Initialize actor network µ
(
st; θµ

)
and critic network Q

(
s, a; θQ

)
with

weight parameters θµ and θQ.
2: Initialize target networks µ′ and Q′ with weight parameters θµ′ ←
θµ, θQ′ ← θQ.

3: Establish experience replay bufferB.
4: for episode ∈ {1, . . . ,M} do
5: Obtain initial observation state s1.
6: for t ∈ {1, . . . ,T } do
7: Select action with exploration noise:

at = µ
(
st; θµ

)
+Nt (0, σ) .

8: Execute action at, receive a reward rt, and move to the new state
st+1.

9: Store transition (st , at , rt , st+1) in the replay bufferB.
10: Update state: st ← st+1.
11: Arbitrarily sample a mini-batch of D transitions (si, ai, ri, si+1)

fromB.
12: Compute the critic loss function:

L
(
θQ

)
=

1
N

∑
i

(
yi − Q

(
si, ai; θQ

))2
,

where yi = ri + γQ′
(
si+1, µ

′
(
si+1 | θ

µ′
)
| θQ

′
)
.

13: Update the parameters of the critic network θQ using backpropa-
gation.

14: Compute the actor policy gradient:

∇θµ J ≈
1
N

∑
i

∇aQ
(
s, a; θQ

)∣∣∣∣
s=si ,a=µ(si;θµ)

∇θµµ
(
s; θµ

)∣∣∣
s=si
.

15: Update the actor network parameters θµ using the computed gra-
dient.

16: Perform soft updates to the target networks:

θµ
′

← ϵθµ + (1 − ϵ)θµ
′

, θQ
′

← ϵθQ + (1 − ϵ)θQ
′

.

17: end for
18: end for
19: return the trained actor network µ

(
s; θµ

)
.

Finally, in the third step, a mini-batchD of samples is ran-
domly selected from the replay buffer of the experience B to

train the network. The algorithm then uses the loss function
L(θQ) and the policy gradient ascent method to update the pa-
rameters of the critic and actor networks, respectively. To en-
sure training stability and prevent divergence, the target net-
work’s parameters are softly updated using a constant value ϵ.
However, the overall training process concludes once the de-
sired number of episodes has been reached. This results in a
well-trained actor network that can be effectively utilized dur-
ing the online execution phase.

4.3. Computational Complexity Analysis

In this section, we analyze the complexity of optimizing the
RSMA-aided uplink live streaming bitrate maximization prob-
lem using the proposed DDPG-BARMAS algorithm. Specifi-
cally, the complexity of the algorithm is determined based on
the training of neural networks within a framework that em-
ploys fully connected deep neural networks (DNNs) compris-
ing an input layer, two hidden layers, and an output layer. The
computational complexity of each training step is influenced by
several factors, including the size of the input state and action,
the number of layers, and the number of neurons in each layer
of the DNNs [25]. During training, the BARMAS algorithm uti-
lizes a finite number of DNNs and requires M× I×T iterations
to complete the training phase. Here, M denotes the mini-
batch size used for each update, I represents the total number
of training episodes, and T indicates the number of steps taken
in each episode.

Additionally, we define N to be the size of the mini-batch
used for each update, Xµ, and YQ as the number of layers in the
critic network. Let nµlµ and nQ

lQ
denote the number of neurons

in the lµ-th layer of the actor network and the lQ-th layer of the
critic network, respectively. Consequently, the overall compu-
tational complexity during the training phase can be expressed
as:
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Complexity = O

M × I × T

Xµ−1∑
lµ=0

nµlµ nµlµ+1 +

YQ−1∑
lQ=0

nQ
lQ

nQ
lQ+1


 .
(27)

In the execution phase, the agent’s operations are stream-
lined by relying solely on the policy function derived from the
trained model. Consequently, the computational complexity
for each time interval is given byO

(∑Xµ−1
lµ=0 nµlµ nµlµ+1

)
.

The proposed framework leverages the DDPG algorithm,
which is known as notably computationally intensive however,
once the model has been effectively trained, it facilitates real-
time inference. Consequently, DDPG-BARMAS represents an
off-policy actor-critic approach that operates with a determin-
istic policy. This means that upon receiving a state st, the
framework directly computes and outputs the corresponding
action at. Such a mechanism is particularly well-suited for
time-sensitive applications where swift action computation is
crucial.

5. Performance Evaluation

In this section, we present a detailed examination of our op-
timization framework’s efficacy through a multi-faceted sim-
ulation study. First, we outline the simulation parameters
and the experimental setup. Next, we perform a rigorous
convergence analysis to assess the stability and efficiency of
the framework. Finally, we conclude with a comparative per-
formance evaluation, contrasting our framework with several
baseline methods to underscore its advantages and effective-
ness.

5.1. Simulation Configuration and Environment Setup

We configured the simulation within the Anaconda envi-
ronment, utilizing PyTorch to visually illustrate our proposed
DDPG-BARMAS algorithm, designed to optimize bitrate for
average streamers in live video streaming services [26]. The
simulation was executed on a GPU-equipped server featuring
an NVIDIA GeForce RTX 3090 Ti, paired with an Intel Core i9-
12900K CPU running at 3.20 GHz and 64 GB of RAM.

In the live video streaming environment, we have config-
ured a single gNB serving k ∈ K streamers who transmit up-
link signals for live video streaming on an RSMA-enabled gNB.
The gNB is equipped with 4 antennas, providing simultane-
ous live streaming services to 10 users. We assigned a band-
width of B = 1 MHz to assess the algorithm’s performance un-
der constrained bandwidth conditions, thereby avoiding any
bias towards consistently high available rates, which could oth-
erwise lead to uniformly maximum bitrate for every streamer.
The noise variance σ2 at the transmitter is selected to be -170
dBm/Hz, while the total power Pki allocated by the gNB for
each streamer is 23 dBm. Furthermore, we modeled the buffer
size β as t = 0 at the start, indicating an empty buffer due to

Table 2: Simulation Configuration Parameters

Parameters Value
The number of antennas on gNB 4
The total number of streamers 10
The bandwidth B of the base station gNB 1 MHz
Uplink power pki 23 dBm
Gaussian Noise Varianceσ2 -170 dBm/Hz
SIC error rates 0.1
Timeslot duration τ 3 Seconds
Number of training episodes E 2000
Number of steps per episode S 700
Actor hidden layer nodes n1& n2 1024 and 512
Critic hidden layer nodes n1& n2 512 and 256

the absence of live video uploads on the uplink network chan-
nel. Before proceeding with the analysis of streamer popular-
ity pk and retention rates fk, it was assumed that all stream-
ers start with equal bitrates. The maximum supported video
bitrate codec was assumed to be 22 Mbps while the minimum
was set at 100 Kbps. Based on the guidelines of the YouTube Live
Streaming Bitrate Selection Procedure [27], we categorized live
video streaming bitrates into 10 distinct video quality levels, in-
cluding 360p, 480p, 720p, 720p @ 60fps, 1080p, 1080p @ 60fps,
1440p @ 30fps, 1440p @ 60fps, 4K @ 30fps, and 4K @ 60fps. For
instance, the bitrate requirements for 720p @ 60fps and 1080p
fall below 2.25 and 3 Mbps, respectively. Simulation parame-
ters are described in Table 2.

In our experiment, we anonymized user behaviors by mim-
icking traffic patterns of popular YouTube channels as in-
troduced in the description of YouTube Analytics through
YouTube Studio of Google Developer [28] for privacy protec-
tion. As a result, the considered dataset of live video stream
traffic over mobile networks exhibits significant heterogeneity
due to unpredictable user engagement and departures, which
contribute substantially to network traffic. A sample capture of
the popularity and retention rate of 4 streamers is illustrated in
Fig. 3.

5.2. Analysis of Convergence Dynamics

We assessed and compared the efficacy of different bitrate
allocation schemes through Bellman simulations over 2000
episodes. Consequently, we investigated the influence of hy-
perparameter iterations on our proposed algorithm through
statistical analysis of training reward variations. The training
regimen began with different mini-batch sizes, denoted asD.
Specifically, we experimented with three batch sizes: D = 32,
D = 64, and D = 128. The training with a batch size of D =
32, achieved convergence around 800 episodes. For more rapid
convergence, a larger batch size of approximately D = 128
was used, resulting in convergence after approximately 300
episodes. However, during training, the reward forD = 128
exhibited notable fluctuations, a consequence of the stochas-
tic nature of the process and the lack of exploration inherent to
a larger batch size. In episodes 2000 with D = 128 was ap-
proximately 11500, which was no more than 45.7% worse com-
pared to D = 32 and 46.87% worse compared toD = 64. Fur-
thermore, the iterative convergence forD = 64 was relatively
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Figure 3: A capture of live stream popularity and retention rate.

faster, with convergence occurring in around 400 episodes. De-
spite this,D = 64 achieved the highest final training reward
among the three batch sizes tested.

As illustrated in Fig. 4A, the learning rates for the actor
network (ANc) and the critic network (CNc) are segmented
into three distinct sectors within our system, specifically de-
fined as (ANc,CNc) = 0.9; 0.95; 0.99, respectively. The learn-
ing rate reward demonstrates optimal performance after sev-
eral hundred episodes. Although initial convergence across
all scenarios exhibits similar performance, the case where
ANc,CNc) = (1e−4, 5e−4) ensures stable simulation results
relative to the others, achieving a steady range after approx-
imately 400 episodes and obtaining the highest reward value
among these observations.

The impact of the discount factor γ on the system as de-
picted in Fig. 4B, achieves the highest performance when γ
is set to 0.9, 95, or 0.99. In contrast, when γ is excessively
large or diminutive, overall performance deteriorates. This
phenomenon can be attributed to the formulation of the Bell-
man equation, where the precise expression for the long-term
average is γ = 1. As γ approaches 1, the live streaming network
model for uplink prioritizes future rewards, thus accelerating
their accumulation rather than focusing solely on short-term
gains. Consequently, if γ is too small, the training policy pri-
oritizes immediate rewards over long-term maximization of
bitrates for average streamers. However, the performance can
also degrade ifγ = 1−1e−1.5. This degradation occurs because
a single uplink streaming channel struggles to accurately rep-
resent long-term behavior. When γ is extremely close to 1, the
Q-table interprets the data from a single bitrate streaming ses-
sion as long-term data, leading to poor generalization across
different streamer’s bitrates. Therefore, we trained our algo-
rithm over numerous episodes with a suitable range of γ val-
ues to sustainably enhance the long-term performance of our
policy. In our live streaming scenario, the discount factor γ re-
mained largely stable and consistent throughout the training

period, achieving convergence at approximately γ = 0.95. This
discount factor, evaluated over roughly 400 episodes, displayed
fewer oscillations in subsequent episodes compared to the ini-
tial penalty rate, ensuring robust and stable performance.

The simulation output in Fig. 4C, elucidates the evaluation
of the actor-network learning rate, the critic-network learning
rate, and the soft target update rates, respectively. It demon-
strates the DDPG-BARMAS algorithm while considering vari-
ous mini-batch sizesD and the learning rate of actor and critic
network, θu and θQ, respectively. According to Fig. 4, we used
a small mini-batch size, as our proposed algorithm does not
require extended periods to reach the optimal trained policy.
However, learning progress can be impeded, and local optima
might be encountered if the batch size is excessively large. Al-
though gradient evaluation with a larger batch size is more
precise, it may result in slower convergence. Furthermore, the
learning rate significantly influences the update of neural net-
work parameters, determining the convergence speed and sta-
bility of our proposed algorithm. To illustrate the impact of
the learning rates of the actor θu and the critic θQ, as well as
the soft target update rate on our network system architecture,
we combined these factors in various ratios: (Tau,ALR,CRL) =(
5e−3, 1e−3, 2e−3

)
;
(
1e−2, 2e−3, 7e−3

)
; and

(
1e−3, 5e−3, 1e−3

)
, re-

spectively. Initial observations reveal that higher learning rates
accelerate the convergence of the network module. For exam-
ple, with a soft target update rate Tau = 1e−2 the model con-
verges after approximately 250 episodes, although the train-
ing rewards at convergence are at the lower bound. In con-
trast, with Tau = 1e−3 the model converges after roughly 450
episodes, achieving the highest training rewards. However, the
cumulative reward decreases as training progresses. Conver-
gence after 350 episodes, observed with Tau = 5e−3, exhibits
satisfactory results with minor fluctuations, indicating the ef-
fectiveness of this rate.

The variation in the rewards observed at different rates led
us to select the moderate learning rate set

(
5e−3, 1e−3, 2e−3

)
as
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Figure 4: Convergence analyses of the proposed algorithm.

the optimal choice for our proposed algorithm. The buffer re-
play size was configured to 400 tuples with a batch size of 32.
Throughout the training episodes, the rate of the replay buffer
B varied periodically. As shown in Fig. 4D, the system mod-
ule used buffer sizes of B = B =

{
5e5; 1e6; 5e6

}
to evaluate

three different training rewards. The Simulation results indi-
cate that a buffer size ofB = 5e5most frequently led to conver-
gence, while training rewards generally declined as iterations
progressed. Furthermore, buffer sizes ofB = 1e6 andB = 5e6

showed similar performance around 320 episodes. Despite the
larger buffer sizes, 5e6 exhibited an upward trend in achieving
rewards, but was the least stable, similar toB = 1e6.

To summarize, the optimal hyperparameters determined
for our DDPG-BARMAS algorithm are as follows: convergence
batch size D = 64, cumulative discounted value γ = 0.95,
learning rates Tau = 5e−3, LRA = 1e3,CRL = 2e−3, and replay
buffer size isB = 5e6.

5.3. Comprehensive Performance Analysis
In this section, we assess the efficacy of our proposed DDPG-

BARMAS algorithm. The simulated scenarios assume an arbi-
trary number of streamers connected to the 5GMSu edge server
at the gNB. To demonstrate the effectiveness of our proposed
algorithm, we conducted a performance evaluation with the
following components:

• DDPG on RSMA-Based Video Streaming System (DDPG-
RMAVS): This actor-critic algorithm is engineered for
managing QoE in Internet of Multimedia Things (IoMT)
traffic management [29]. It boasts advantages such as
improved video quality, reduced latency, and enhanced
buffer capacity through its continuous learning action
space and reward maximization.

• Soft Actor-Critic (SAC) Constrained DRL for Energy Effi-
ciency Optimization in RSMA-Based Integrated Satellite
Communication: This optimization technique addresses
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Figure 5: Comparative Performance Analysis of Reward, Bitrate, and Q-Loss metrics.

QoS requirements within a continuous action space, uti-
lizing the SAC algorithm [30].

• Distributed DDPG for Power Allocation Control in-vehicle
communication (DPGAC) [31]: This technique leverages
distributed DDPG and shared DDPG approaches to ad-
dress power allocation issues in in-vehicle infotainment
communication within a multi-agent environment. The
approach utilizes a continuous action space with actor-
critic methods.

• DRL-Based Communication Transformer for Adaptive
Live Streaming in Wireless Edge Networks (SACCT) [32]:
This algorithm optimizes video follower engagement and
QoE while reducing energy consumption through uplink
transmission and edge transcoding.

To keep the fairness at most, all used DDPG models have a
similar configuration. Meanwhile, the DPGAC algorithm fea-

tures actor and critic networks with one input layer, one out-
put layer, and a single hidden layer of 100 units, trained using
Adam optimization, with parameters initialized from a zero-
mean Gaussian distribution. In contrast, the SAC algorithm
employs three fully connected hidden layers with ReLU activa-
tion and Adam optimization. The soft value network includes
two hidden layers of 64 neurons each and a final layer with up
to one neuron. The policy network and soft Q network in SAC
also consist of hidden layers with 64 neurons.

Fig. 5A, illustrates the cumulative training rewards over
2000 episodes for various algorithms. Among the algorithms
evaluated, DDPG-BARMAS exhibited superior and consistent
performance, achieving an average reward of approximately
308000 per training episode. As depicted in Fig. 5, DDPG-
BARMAS achieved approximately 97%, significantly outper-
forming DDPG-RMVAS and SAC, which achieved overall per-
formance levels of approximately 80% and 63%, respectively. In
contrast, the performance of the DPGAC initially dropped to
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less than 45%, while SACCT showed notable variability, with
performance oscillating dramatically to a trough of approxi-
mately 29% during episodic learning.

Fig. 5B illustrates the video bitrate maximization perfor-
mance of five algorithms DDPG-BARMAS, RMAVS, DPGAC,
SAC, and SACCT over 200 episodes, with bitrates ranging from
0 to 5 Mbps. DDPG-BARMAS maintains the highest bitrate
at approximately 4.7 Mbps, which is nearly 97% with moder-
ate fluctuations, indicating strong video quality and stability.
On the other hand, RMAVS achieves a slightly lower bitrate of
about 4.5 Mbps with a comparable about 80% bitrate on a slight
oscillation. Whereas DPGAC operates at a midrange bitrate of
3.3 Mbps 63% but exhibits moderate fluctuations, suggesting a
balance between performance and resource efficiency, SAC de-
livers a bitrate around 2.6 Mbps 45% with significant fluctua-
tions, reflecting instability in maintaining quality. Lastly, the
SACCT has the lowest bitrate just near 1.9 Mbps 29% but with
relatively contained fluctuations, indicating optimization for
constrained bandwidth environments. This comparison un-
derscores the trade-offs between bitrate performance and sta-
bility, highlighting that higher bitrates correlate with better
video quality but increased fluctuations, while lower bitrates
show more significant fluctuations, impacting user experience
in bandwidth-limited contexts.

In our comprehensive analysis of various Q-loss functions,
depicted in Fig. 5C, our DDPG-BARMAS algorithm demon-
strates significantly outstanding performance. This algorithm
impressively exhibits approximately 17% lower Q loss com-
pared to DDPG-RMAVAS, with a nearly 20% reduction rela-
tive to SAC, and an astonishing less 37% reduction when jux-
taposed with both DDDPG and SACCT. The Q-loss reduction
rate for DDPG-BARMAS hovers around 3%, and is close to 17%
less compared to DDPG-RMAVAS. In stark contrast, SAC’s Q-
loss is nearly threefold higher, culminating in an overall Q-loss
exceeding 45%. Moreover, both DDPG and SACCT experienced
a markedly upward trajectory in Q-loss, stabilizing at a high of
29% throughout the training session. This comparative analy-
sis underscores the remarkable efficacy of the DDPG-BARMAS
algorithm. It consistently achieves a Q-loss reduction of ap-
proximately just 30% relative to any other algorithm evaluated.
Hence, we can conclusively determine that DDPG-BARMAS is
the most advantageous algorithm due to its consistent and sub-
stantial minimization of Q-loss values.

6. Concluding Remarks

In this study, we tackled the bitrate maximization chal-
lenge for average streamers in an RSMA-enhanced uplink live
streaming system by reformulating the problem as an MDP
and designing a DDPG-based BARMAS optimization frame-
work to maximize streamer bitrates as well as improve QoE.
To protect user privacy, the framework considered anonymized
traffic patterns of the live stream popularities and their re-
tention rates while user behaviors are unrevealed. While the
framework exhibited superior performance in both training
and evaluation across various scenarios, future research could
explore the integration of heterogeneous uplink networks with

multiple streamers and platforms to create a more realis-
tic simulation environment, which should be validated by a
testbed for enhanced real-world uplink live streaming support.
Additionally, a thorough investigation into extending the pro-
posed solution to existing wireless networks, such as NOMA
and OFDMA, should be undertaken.
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