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ABSTRACT Web-based networking significantly influences daily interactions and user well-being. This
study analyzes social media addiction and depression models that incorporate distribution delays to enhance
control strategies. Unlike previous deterministic models, our approach integrates both discrete (Dirac-
delta) and distributed (gamma) delay distributions to assess the linear stability of disease-free and endemic
equilibria and the occurrence of Hopf bifurcation. We find that while both equilibria maintain stability
under short delays, increased mean delays lead to instability through Hopf bifurcation across both delay
types. Notably, the gamma distribution demonstrates a stability switch; the endemic equilibrium initially
remains stable, destabilizes as delays lengthen, and restabilizes with further delay increases. Analytical
results confirm the direction and stability of these bifurcations, supported by numerical validations. This
research fills a significant gap by combining discrete and distributed delays, providing insights crucial for
developing effective interventions and shaping public health policies to mitigate the adverse effects of social
media addiction on mental health.

INDEX TERMS Social media addiction, distributed delay, Hopf bifurcation, stability switches.

I. INTRODUCTION
Social media platforms have become an integral part of daily
life, serving as powerful tools for accessing information,
maintaining relationships, and fostering professional and
personal connections. Across the globe, individuals engage
with platforms such as Instagram, Facebook, YouTube, and
Twitter for diverse purposes, including reconnecting with
acquaintances, expanding professional networks, seeking
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employment, advertising products, and conducting financial
transactions [1], [2], [3], [4], [5], [6]. Additionally, many indi-
viduals rely on search engines like Google for information
retrieval and use banking applications to manage financial
activities.

A. STATE OF THE ART AND MOTIVATIONS
While these platforms offer numerous benefits, excessive
use can lead to social media addiction (SMA), a condi-
tion characterized by compulsive engagement and distress
when access is restricted [7], [8], [9], [10], [11]. The
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negative consequences of SMA are increasingly evident,
affecting individuals’ well-being, mental health, and social
relationships. Uncontrolled social media use can contribute
to stress, anxiety, depression, loneliness, low self-esteem,
and sleep disturbances. Furthermore, research indicates that
SMA negatively impacts students’ academic performance by
fostering distraction and diminishing their ability to focus on
educational tasks [6], [17]. According to internet addiction
theory, individuals who develop dependency on social media
gradually lose self-control, allocating excessive time to online
activities at the expense of more productive pursuits [18].
This can lead to a vicious cycle in which users underestimate
their addiction while overestimating their ability to regulate
usage [19], [20].
Mathematical models provide a structured framework for

analyzing complex behavioral dynamics such as social media
addiction and its associated mental health effects. These
models allow researchers to assess the contributing factors,
predict addiction trends, and evaluate the effectiveness
of interventions. Several researchers have explored addic-
tion dynamics through mathematical models. For example,
Huo et al. [21] introduced a compartmental model for
alcohol addiction that incorporated a Twitter effect, analyzing
stability and bifurcation behaviors. Similarly, Ishaku et al.
[22] developed a model examining the influence of social
media on students’ academic performance, while Alemneh
and Alemu [23] proposed a compartmental model to
study SMA transmission patterns using optimal control
methods.

Real world addiction processes often involve inherent time
delays, which can arise due to various factors, such as the
time it takes for individuals to transition from casual users
to addicts, the duration of addiction treatment and recovery,
the delay between interventions and observable behavioral
changes. These delays can be discrete (fixed intervals) or
distributed (varying across a population) [24], [25], [26].
Distributed delays provide a more realistic representation,
accounting for individual differences in response time and
treatment duration [27], [28], [29], [30], [31], [32], [33]. Pre-
vious research has investigated either discrete or distributed
delays, but a comprehensive framework integrating both
remains largely unexplored. This gap is significant because
distributed delays offer better real world applicability, captur-
ing variability in behavioral transitions and recovery periods.
Understanding how delays influence addiction and recovery
dynamics is critical for designing effective intervention
strategies. Table 1 provides a comparison of some related
works, highlighting the compartmental structure and type of
analysis employed in each.

To account for the variability among members of the
population, distributed delays are better than fixed delays
for describing time intervals to represent time that is not the
same for all individuals in the population. The population
varies in distribution [34], [35], [36]. Composite delay refers
to the length of time between when the population reaches
a certain level and when the level of effective treatment

TABLE 1. Related work comparison.

is renewed, such as family therapy, high-level motivation,
psychotherapy, cognitive behavioral therapy, and behavior
change theory. The effectiveness of cognitive behavioral
therapy in the treatment of diagnosed patients has been
analyzed and described in [37], [38], and [39]. Studies have
shown that when the delay time increases to a large value, the
population density in the Hopf bifurcation is stimulated [40],
[41].

Unfortunately, to the best of our knowledge, there
is a notable scarcity of research that investigates the
interplay between social media addiction and depression
while explicitly considering both discrete and distributed
delays in the transmission process. While previous stud-
ies have examined either discrete or distributed delays
in isolation, a comprehensive framework integrating both
remains underexplored. This is particularly significant as
distributed delays better represent real world scenarios,
capturing variability in response times, treatment durations,
and individual behavioral patterns. The lack of such an
integrated approach presents a critical gap in the literature.
Analyzing the dynamics of models with distributed delays is
a complex and challenging open problem, especially in the
context of capturing how time lags influence the transitions
between addiction, recovery, and depression states. The
insights derived from such an analysis can significantly
enhance our understanding of the propagation and control
of social media addiction and its associated psychological
impacts. For instance, distributed delays can provide a more
realistic perspective on treatment efficacy, where delays
are not uniform across individuals but vary depending on
personal, social, and systemic factors.

B. OUR CONTRIBUTIONS AND PAPER ORGANIZATION
Addressing the limitations of existing research, this study
introduces a novel, generalized model that incorporates both
discrete and distributed delays to comprehensively examine
their combined effects on stability, equilibrium transitions,
and bifurcation phenomena in social media addiction and
depression. By integrating real-world considerations, such
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as employing a gamma distribution to represent treatment
delays, this work bridges the gap between theoretical
modeling and practical applications. This refined approach
offers new insights into the stability dynamics of addiction
and depression, illuminating critical phenomena like stability
switches and delay-induced bifurcations, and identifying
conditions that promote more effective recovery. The novelty
of this model lies in its capacity to capture and analyze
these intricate dynamics, providing a more comprehensive
framework than previous models. Ultimately, this research
paves the way for more targeted and effective interventions,
as a deeper understanding of the role of delays can lead
to improved strategies for managing social media addiction
and mitigating its adverse mental health consequences. This
compelling motivation underscores the significance of the
present study in addressing a timely and pressing issue.

The rest of this paper is organized as follows. Section II
presents the model. Section III analyzes the impact of discrete
delays, showing that increasing delays can destabilize
and potentially restabilize the system. It then incorporates
distributed delays, demonstrating a stability switch from
stability to instability and back again. Section IV examines
periodic solutions using advanced mathematical techniques.
Sections V and VI outline numerical simulations to validate
our analytical findings, and concluding remarks, respectively.

II. SYSTEM MODEL
This study builds upon the social media addiction and
depression model developed by Ali et al. [24]. Their model
divides the population into six groups: susceptible individuals
S, exposed individuals E vulnerable to SMA but not yet
addicted, individuals with occasional social media use I1 who
are at risk of developing an addiction, addicted individuals
I2 who are heavily engrossed in social media, depressed
individuals R experiencing depression due to social media
addiction, recovered individuals R who have successfully
overcome addiction after treatment, and individuals who
permanently quit social media Q. The dynamics of their
model are governed by the following system of differential
equations

Ṡ = 3+ ζλR− φχ I1S − (β + τ )S,
Ė = φχ I1S − (ς + τ )E,
İ1 = 8ςE − (τ + ψ + α)I1,
İ2 = αI1 + ψ(1 − ω)I1 − (v+ ρ + τ )I2,
Ṙ = (1 −8)ςE + vI2 + ψωI1 − (τ + λ)R,
Q̇ = βS + (1 − ζ )λR− τQ,

(1)

where Ṡ, Ė, İ1, İ2, Ṙ, Q̇ represent the rate of change of
the respective population groups over time. The parameter
definitions are provided in Table 1, illustrating key transition
rates and their significance in addiction modeling.

To more accurately capture the dynamics of social media
addiction (SMA) and depression, we extend the previously
established system (1) by incorporating distributed delays.

TABLE 2. Parameters involved in system (1).

Unlike traditional models that assume instantaneous transi-
tions between states, this approach accounts for variability
in the time individuals take to transition between different
stages of addiction and recovery, thus offering amore realistic
representation of SMA progression. The revised system is
formulated as follows

Ṡ = 3+ ζλR− φχ I1S − (β + τ )S,
Ė = φχI1S − (ς + τ )E,
İ1 = 8ςE − (τ + ψ + α)I1,
İ2 = αI1 + ψ(1 − ω)I1 − (ρ + τ )I2

−v
∫ t

−∞

I2(r)g(t − r) dr,

Ṙ = (1 −8)ςE + v
∫ t

−∞

I2(r)g(t − r) dr

+ψωI1 − (τ + λ)R,
Q̇ = βS + (1 − ζ )λR− τQ.

(2)

Here, the function g(t) serves as a distributed delay kernel,
ensuring that the effects of past states are properly integrated
into the model. The function satisfies the conditions

g(t) ≥ 0,
∫

∞

0
g(t)dt = 1.

The inclusion of distributed delays transforms the system
into an integral-differential equation framework, which better
represents the inherent variability in addiction recovery,
treatment response times, and progression through different
states of SMA. To comprehensively analyze the role of time
delays in SMA and depression dynamics, we examine two
types of delays

• Discrete (fixed) delays, each individual experiences the
same time lag in addiction development and recovery.
For example, a uniform three-month delay might be
considered for an individual to transition from mild
SMA to severe SMA.
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• Distributed (variable) delays, different individuals expe-
rience different transition times. Some individuals
may take one month to develop SMA, while others
may take up to six months. This variability is cap-
tured by probability distributions rather than a fixed
delay.

Since the equilibrium points of (2) coincide with those of (1),
the system exhibits two primary equilibrium states [24]

1) disease-free equilibrium Eq0

Eq0 =

(
3

β + τ
, 0, 0, 0, 0,

β3

(β + τ) τ

)
,

2) endemic equilibrium Eq1

Eq1 =

(
S1,E1, I11 , I

1
2 ,R

1,Q1
)
.

III. LOCAL STABILITY AND HOPF BIFURCATION
ANALYSIS
Understanding the spread and impact of social media
addiction, and its relationship with depression, requires an
analysis of the system’s stability over time. In this context,
stability refers to the system’s ability to return to equilibrium
after a small disturbance. A stable system recovers from
minor fluctuations, while an unstable system may experience
escalating cycles of addiction and depression. One critical
factor affecting stability is the presence of delays, which
represent the time lags in addiction progression, treatment
onset, and recovery. Incorporating these delays into our
model provides a more realistic framework for analyzing
system dynamics and identifying the conditions under which
stability is lost. These insights are essential for policymakers
and healthcare providers who design interventions to mitigate
the effects of addiction and depression.

A. CASE: DISCRETE DELAY (FIXED TIME LAG)
A system where all individuals experience an identical time
delay leads to three distinct behavioral regimes. With a
short delay, the system remains stable, naturally returning
to equilibrium after a perturbation. As the delay increases
to a moderate level, the system loses stability and oscil-
lates rhythmically between addiction and recovery phases,
a transition marked by a Hopf bifurcation. Surprisingly,
a sufficiently long delay can restore stability through a
stability switch, settling the system into a potentially new
steady state. Therefore, the discrete time delay fundamentally
governs the system’s behavior. To explore this phenomenon
mathematically, consider the case where the delay function g
is modeled as a Dirac delta function,

g(t) = δ(t − T ).

Under this assumption, system (2) simplifies to

Ṡ = 3+ ζλR− φχ I1S − (β + τ )S,
Ė = φχ I1S − (ς + τ )E,
İ1 = 8ςE − (τ + ψ + α)I1,
İ2 = αI1 + ψ(1 − ω)I1 − (ρ + τ )I2 − vI2(t − T ),
Ṙ = (1 −8)ςE + vI2(t − T ) + ψωI1 − (τ + λ)R,
Q̇ = βS + (1 − ζ )λR− τQ,

(3)

which incorporates a discrete time delay T ≥ 0 to simulate
the time lag involved in the progression from mild to
severe addiction. This system, expressed as delay differential
equations, modifies the rate of progression to severe addiction
and recovery by introducing the term I2(t−T ), reflecting the
state of I2 at a previous time. Noticing that

8 = v = 2ζ, ς = χ, 3 = 2χ, ω = 2λ, ρ = β,

by using the parameter substitutions

a1 = φχ, a2 = β + τ, a3 = ζλ, a4 = ς + τ, (4)

a5 = 8ς, a6 = τ + ψ + α, a7 = α + ψ(1 − ω), (5)

a8 = ρ + τ, a9 = ζ, a10 = (1 −8)ς, (6)

a11 = ψω, a12 = τ + λ, (7)

the linearized system of (3) at the equilibrium

E∗ = (S∗,E∗, I∗1 , I
∗

2 ,R
∗,Q∗)

yields the characteristic equation

u0(ξ ) ·

∣∣∣∣∣∣∣∣∣∣
u1(ξ ) 0 −a1S∗ 0 a3
a1I∗1 u2(ξ ) a1S∗ 0 0
0 a5 u3(ξ ) 0 0
0 0 a7 u4(ξ ) 0
0 a10 a11 u5(ξ ) u6

∣∣∣∣∣∣∣∣∣∣
= 0 (8)

where the functiosn uj(ξ ) are defined as

u0(ξ ) = ξ + τ, u1(ξ ) = −a1I∗1 − a2 − ξ,

u2(ξ ) = −a4 − ξ, u3(ξ ) = −a6 − ξ,

u4(ξ ) = −a8 − ξ − 2a9e−ξT ,

u5(ξ ) = 2a9e−ξT , u6(ξ ) = −a12 − ξ.

Without delay, it has been shown [24] that the equilibrium
E∗ = Eq0 remains stable if the basic reproduction number
R0 < 1, whereas the equilibrium E∗ = Eq1 is stable if R0 >
1, where

R0 =
3ςφχ8

(τ + ψ + α)(β + τ )(ς + τ )
.

However, as the delay T increases, the stability of equilibrium
points may change, particularly when the characteristic
equation (8) admits either a zero eigenvalue or a pair of
purely imaginary eigenvalues. This shift marks the onset of
instability and the potential for a Hopf bifurcation.
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1) STABILITY AND HOPF BIFURCATION OF E∗ = EQ0
The characteristic equation (8) simplifies under the assump-
tion that I∗1 = 0, leading to

(ξ + τ) · (ξ + a2) · (ξ + a12) ·

(
ξ + a8 + 2a9e−ξT

)
·

[
ξ2 + (a4 + a6) ξ + a4a6 − a1a5S∗

]
= 0, (9)

where

S∗
=

β3

(β + τ )τ
.

Let ξ = 0. Substituting this into (9) yields

a4a6 − a1a5S∗
= 0.

Hence, the characteristic equation (9) does not have a zero
eigenvalue. In fact, by the Routh-Hurwitz criterion, local
stability of Eq0 in the absence of delay requires that a4a6 −

a1a5S∗ > 0. Now, assume ξ = iθ , with θ > 0, is a root of
(9). By separating the real and imaginary parts, we obtain

θ = 2a9 sin (θT ) , a8 = −2a9 cos (θT ) , (10)

which imply

θ2 = 4a29 − a28.

Thus, we define

θ =

√
4a29 − a28 ≡ θ∗ > 0.

Note that θ∗ > 0 since 0.05 ≤ τ ≤ 0.25 and the condition
4a29 − a28 > 0 holds if and only if τ 2 + 2ρτ + ρ2 − 4ζ 2 < 0,
or equivalently τ 2 + 0.02τ − 0.4899 < 0, which is satisfied
when −0.71 < τ < 0.69. From (10), as sin (θT ) > 0, we
derive that the positive value θ∗ is acquired at the critical value

T =
1
θ∗

cos−1
(

−
a8
2a9

)
≡ T∗. (11)

Next, we analyze the direction of the stability switches.
By choosing T as the bifurcation parameter, we investigate
how variations in the delay length impact the real parts of the
roots of the characteristic equation. Differentiating both sides
of (9) with respect to T , and using

2a9e−ξT = −(ξ + a8),

we obtain
dξ
dT

= −
(ξ + a8)ξ

1 + (ξ + a8)T
.

This leads to the transversality condition

sign

{
d (Reξ)
dT

∣∣∣∣
T=T∗

}
= sign

{
θ2∗

(θ∗T∗)
2
+ (1 + a8T∗)

2

}
.

Since the fraction on the right-hand side is positive, it follows
that, as T increases through T∗, all roots cross the imaginary
axis from left to right, indicating that the equilibrium loses
stability. According to the Hopf bifurcation theorem, we can
state the following result.

Theorem 1: Let R0 < 1 and T∗ be defined as in (11). Then,
the equilibrium point Eq0 of system (3) loses stability at T =

T∗ and bifurcates to chaos as T increases.
Theorem 1 is crucial because it provides a clear and

rigorous condition under which the disease-free equilibrium
Eq0 of the system loses stability due to delays. Specifically,
it states that when the basic reproduction number R0 is
less than one, the equilibrium remains stable for small
delays. However, as the delay T increases and reaches a
critical threshold T∗, the equilibrium loses stability, and the
system undergoes a Hopf bifurcation transitioning to periodic
oscillations or even chaotic behavior. This result is significant
because it connects the abstract mathematical concept of
delay induced bifurcation to the real world dynamics of
social media addiction and depression. By identifying T∗,
this Theorem provides a key predictive tool that helps us
understand when even minor delays in behavior, treatment
response, or recovery can trigger substantial qualitative
changes in the system’s dynamics. This insight is essential
for designing timely interventions and control strategies to
prevent undesirable outcomes in the modeled population.

2) STABILITY AND HOPF BIFURCATION OF E∗ = EQ1
The characteristic equation (8) becomes more complex,
taking the form the form

ξ5 + m1ξ
4
+ m2ξ

3
+ m3ξ

2
+ m4ξ + m5

+ e−ξT
(
n1ξ4 + n2ξ3 + n3ξ2 + n4ξ + n5

)
= 0, (12)

where

m1 = a1I∗1 + a2 + a4 + a6 + a8 + a12,

m2 = a2a4 + a2a6 + a2a8 + a4a6
+ a4a8 + a6a8 + a2a12 + a4a12 + a6a12 + a8a12
+ a1a4I∗1 + a1a6I∗1 + a1a8I∗1 + a1a12I∗1 ,

m3 = a2a4a6 + a2a4a8 + a2a6a8
+ a4a6a8 + a2a4a12 + a2a6a12
+ a2a8a12 + a4a6a12

+ a4a8a12 + a6a8a12 − a1a2a5S∗

− a1a5a8S∗
− a1a5a12S∗

+ a1a4a6I∗1 + a1a4a8I∗1
+ a1a6a8I∗1 − a1a3a10I∗1
+ a1a4a12I∗1 + a1a6a12I∗1 + a1a8a12I∗1 ,

m4 = a2a4a6a8 + a2a4a6a12 + a2a4a8a12 + a2a6a8a12
+ a4a6a8a12 − a1a2a5a8S∗

−a1a2a5a12S∗
− a1a5a8a12S∗

+ a1a4a6a8I∗1 − a1a3a5a11I∗1
−a1a3a6a10I∗1 − a1a3a8a10I∗1
+ a1a4a6a12I∗1 + a1a4a8a12I∗1 + a1a6a8a12I∗1 ,

m5 = a2a4a6a8a12
− a1a3a5a8a11I∗1 − a1a3a6a8a10I∗1

+ a1a4a6a8a12I∗1 − a1a2a5a8a12S∗,
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and

n1 = 2a9, n2 = 2a9
(
a1I∗1 + a2 + a4 + a6 + a12

)
,

n3 = 2a2a4a9 + 2a2a6a9 + 2a4a6a9 + 2a2a9a12
+ 2a4a9a12 + 2a6a9a12 − 2a1a5a9S∗

+ 2a1a4a9I∗1
+ 2a1a6a9I∗1 + 2a1a9a12I∗1 ,

n4 = 2a2a4a6a9 + 2a2a4a9a12 + 2a2a6a9a12
+ 2a4a6a9a12 − 2a1a2a5a9S∗

− 2a1a5a9a12S∗
+ 2a1a4a6a9I∗1

− 2a1a3a9a10I∗1 + 2a1a4a9a12I∗1 + 2a1a6a9a12I∗1 ,

n5 = 2a2a4a6a9a12 − 2a1a3a5a7a9I∗1
− 2a1a3a5a9a11I∗1 − 2a1a3a6a9a10I∗1
+ 2a1a4a6a9a12I∗1 − 2a1a2a5a9a12S∗.

If we set ξ = 0 in (12), we obtain m5 + n5 = 0, which is a
contradiction. In fact, when T = 0, (12) simplifies to

ξ5 + (m1 + n1) ξ4 + (m2 + n2) ξ3 + (m3 + n3) ξ2

+ (m4 + n4) ξ + m5 + n5 = 0.

Since Eq1 is locally stable, the Routh-Hurwitz criterion
implies that the coefficient m5 + n5 must be positive. Next,
suppose that ξ = iθ , with θ > 0, is an eigenvalue of (12).
Then, θ must satisfy

θ5 − m2θ
3
+ m4θ =

(
n1θ4 − n3θ2 + n5

)
sin (θT )

+

(
n2θ3 − n4θ

)
cos (θT ) , (13)

m1θ
4
− m3θ

2
+ m5 = −

(
n1θ4 − n3θ2 + n5

)
cos (θT )

+

(
n2θ3 − n4θ

)
sin (θT ) . (14)

Squaring and adding (13) and (14), we obtain

θ10 + p1θ8 + p2θ6 + p3θ4 + p4θ2 + p5 = 0, (15)

where

p1 = m2
1 − 2m2 − n21,

p2 = m2
2 + 2m4 − 2m1m3 + 2n1n3 − n22,

p3 = m2
3 − 2m2m4 − n23 + 2n2n4 + 2m1m5 − 2n1n5,

p4 = m2
4 − n24 − 2m3m5 + 2n3n5,

p5 = m2
5 − n25.

Let u = θ2. Then, the tenth degree equation in θ can be
reduced to a quintic equation in u

h(u) = u5 + p1u4 + p2u3 + p3u2 + p4u+ p5 = 0. (16)

The subsequent steps will provide some theorems to deter-
mine the distribution of positive real roots of (16).
Theorem 2: If p5 < 0, then (16) has at least one positive

root.

Proof: Since h(0) = p5 < 0 and h(+∞) = +∞, there
exists a value u0 such that h(u0) = 0.
On the other hand, when p5 ≥ 0, we consider

h′(u) = 5u4 + 4p1u3 + 3p2u2 + 2p3u+ p4 = 0. (17)

Letting u = y− P1/5, then (17) is transformed into

y4 + P1y2 + Q1y+ R1 = 0,

where

P1 = −
6
25
p21 +

3
5
p2,

Q1 =
8
125

p31 −
6
25
p1p2 +

2
5
p3,

R1 = −
3
625

p41 +
3
125

p21p2 −
2
25
p1p3 +

1
5
p4.

For convenience, we set

10 = P21 − 4R1,

P2 = −
1
3
P21 − 4R1,

Q2 = −
2
27
P31 +

8
3
P1R1 − Q2

1,

11 =
1
27
P32 +

1
4
Q2
2,

S∗ =
3

√
−
Q2

2
+

√
11 +

3

√
−
Q2

2
−

√
11 +

1
3
P1,

12 = −S∗ − P1 +
2Q1

√
S∗ − P1

,

13 = −S∗ − P1 −
2Q1

√
S∗ − P1

.

Using similar reasoning as in [43], we reach the following
findings.
Theorem 3: 1) Equation (17) has at least one positive

root if one of the following conditions i) − iv) holds.
i) p5 < 0.
ii) p5 ≥ 0, Q1 = 0, 10 ≥ 0, and P1 < 0 or R1 ≤ 0

and there exists u∗
∈ {u1, u2, u3, u4} such that u∗ >

0 and h (u∗) ≤ 0, where ui = yi−P1/5 (i = 1, 2, 3, 4),
and

y1 =

√
−P1 +

√
10

2
, y2 = −

√
−P1 +

√
10

2
,

y3 =

√
−P1 −

√
10

2
, y4 = −

√
−P1 −

√
10

2
.

iii) p5 ≥ 0, Q1 ̸= 0, S∗ > P1, 12 ≥ 0, or 13 ≥ 0 and
there exists u∗

∈
{
u∗

1, u
∗

2, u
∗

3, u
∗

4

}
such that u∗ > 0 and

h (u∗) ≤ 0, where ui = yi − P1/5 (i = 1, 2, 3, 4), and

y1 =
−

√
S∗ − P1 +

√
12

2
,
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y2 =
−

√
S∗ − P1 −

√
12

2
,

y3 =

√
S∗ − P1 +

√
13

2
,

y4 =

√
S∗ − P1 −

√
13

2
.

iv) p5 ≥ 0, Q1 ̸= 0, S∗ < P1, Q2
1/4 (P1 − S∗)

2
+ S∗/2 =

0, ū > 0, and h(ū) ≤ 0, where

ū =
Q1

2 (P1 − S∗)
−
P1
5
.

2) If conditions i)-iv) are all not satisfied, then (17) has no
positive real root.

Suppose that (16) has positive roots. Without loss of
generality, assume that it has five positive roots, denoted by
u1, u2, u3, u4, u5, respectively. Then, equation (15) has five
positive roots given by

θk =
√
uk , k = 1, 2, 3, 4, 5.

From (13) and (14), we get the corresponding T jk > 0 such
that the characteristic equation (12) has purely imaginary
roots. Specifically,

T jk =
1
θk

[
cos−1

(
z1 − z2
z3

)
+ 2π j

]
,

for j = 0, 1, 2, . . ., where

z1 =

(
θ5k − m2θ

3
k + m4θk

) (
n2θ3k − n4θk

)
,

z2 =

(
m1θ

4
k − m3θ

2
k + m5

) (
n1θ4k − n3θ2k + n5

)
,

z3 =

(
n2θ3k − n4θk

)2
+

(
n1θ4k − n3θ2k + n5

)2
.

Thus, ±iθk forms a pair of purely imaginary roots of (12)
when T = T jk . Define

T∗ = T 0
k0 = min

k∈{1,2,3,4,5}

{
T 0
k

}
, θ∗ = θk0 . (18)

Let ξ (T ) = α(T ) + iθ (T ) be the root of (12) satisfying
ξ (T∗) = 0 and θ (T∗) = θ∗. Differentiating (12) with respect
to T yields(

dξ
dT

)−1

= −
5ξ4 + 4m1ξ

3
+ 3m2ξ

2
+ 2m3ξ + m4

ξ6 + m1ξ5 + m2ξ4 + m3ξ3 + m4ξ2 + m5ξ

+
4n1ξ3 + 3n2ξ2 + 2n3ξ + n4

n1ξ5 + n2ξ4 + n3ξ3 + n4ξ2 + n5ξ
−
T
ξ
.

A direct calculation shows that[
d(Reξ )
dT

]−1

T=T∗

= −

(
5θ4∗ − 3m2θ

2
∗ + m4

) (
−θ6∗ + m2θ

4
∗ − m4θ

2
∗

)(
−θ6∗ + m2θ4∗ − m4θ2∗

)2
+

(
m1θ5∗ − m3θ3∗ + m5θ∗

)2

+

(
4m1θ

3
∗ − 2m3θ∗

) (
m1θ

5
∗ − m3θ

3
∗ + m5θ∗

)(
−θ6∗ + m2θ4∗ − m4θ2∗

)2
+

(
m1θ5∗ − m3θ3∗ + m5θ∗

)2
+

(
−3n2θ2∗ + n4

) (
n2θ4∗ − n4θ2∗

)(
n2θ4∗ − n4θ2∗

)2
+

(
n1θ5∗ − n3θ3∗ + n5θ∗

)2
+

(
−4n1θ3∗ + 2n3θ∗

) (
n1θ5∗ − n3θ3∗ + n5θ∗

)(
n2θ4∗ − n4θ2∗

)2
+

(
n1θ5∗ − n3θ3∗ + n5θ∗

)2 .
From (12), we find(

θ5 − m2θ
3
+ m4θ

)2
+

(
m1θ

4
− m3θ

2
+ m5

)2
=

(
n2θ3 − n4θ

)2
+

(
n1θ4 − n3θ2 + n5

)2
.

Consequently,[
d(Reξ )
dT

]−1

T=T∗

=
5u4∗ + 4p1u3∗ + 3p2u2∗ + 2p3u∗ + p4(
n1θ4∗ − n3θ2∗ + n5

)2
+

(
n2θ2∗ − n4

)2
θ2∗

=
h′ (u∗)(

n1θ4∗ − n3θ2∗ + n5
)2

+
(
n2θ2∗ − n4

)2
θ2∗

,

which implies

sign
[
d(Reξ )
dT

]
T=T∗

= sign
[
d(Reξ )
dT

]−1

T=T∗

= sign
[
h′ (u∗)

]
.

Based on this analysis, the following results are obtained.
Theorem 4: Let R0 > 1 and T∗, θ∗ defined as in (18).
1) If the conditions i)-iv) of the previous Theorem are not

satisfied, then the equilibrium point Eq1 of system (3) is
locally asymptotically stable for all time delay T ≥ 0.

2) If one of the conditions i)-iv) is satisfied, then
the equilibrium point Eq1 of system (3) is locally
asymptotically stable for T ∈ [0,T∗), and unstable for
T > T∗.

3) If all conditions i)-iv) hold and h′
(
θ2∗

)
̸= 0, then

system (3) undergoes a Hopf bifurcation at Eq1 when
T = T∗.

Theorem 4 is of critical importance because it rigorously
characterizes the behavior of the endemic equilibrium in
the presence of delays. Specifically, the theorem establishes
conditions under which the equilibrium remains stable or
becomes unstable as the delay increases, ultimately leading
to a Hopf bifurcation. In essence, when the delay is below a
critical threshold T∗, the system maintains a stable endemic
state. However, once the delay exceeds T∗, the equilibrium
loses stability, giving rise to periodic oscillations. These
oscillations may manifest as relapses or fluctuations in the
levels of addiction and depression, which are of significant
practical concern. Moreover, by pinpointing the critical
delay threshold, Theorem 4 offers valuable insights for
designing intervention strategies, as it identifies a crucial
time window during which timely actions can help prevent
or mitigate destabilizing dynamics. Overall, this theorem
not only deepens our theoretical understanding of how

55688 VOLUME 13, 2025



V. Madhusudanan et al.: Exploring the Dynamics of SMA and Depression Models

delays affect complex systems but also bridges mathematical
modelingwith practical approaches tomanaging social media
addiction and depression.

B. CASE: DISTRIBUTED DELAY (VARIABLE TIME LAG)
In reality, individuals experience delays that vary from person
to person. This variability can be modeled using delay
distributions like the gamma distribution obtained for

g(t) =
cptp−1e−ct

(p− 1)!
,

where the parameters p and c determine the shape of the
distribution. Notably, when both p and c approach infinity,
this distribution converges to the Dirac delta distribution,
representing a fixed delay. Including gamma distributed
delays in the model results in a more complex characteristic
equation, for which deriving general stability conditions
becomes challenging. To simplify the analysis, researchers
use a technique known as the linear chain trick to convert the
distributed delay differential equations into a set of ordinary
differential equations. In our study, following Cushing’s
approach [42], we focus on the weak kernel case, where
p = 1, a scenario commonly referenced in the literature.
By introducing a new variable

X (t) =

∫ t

−∞

I2(r)ce−c(t−r)dr,

we transform system (2) into an equivalent augmented system
that is more amenable to analysis. Specifically, we have that
the original distributed-delay system can now be expressed as
a set of ordinary differential equations, with X (t) capturing
the history of the I2 compartment in a weighted manner. This
reformulated system allows us to apply standard techniques
in stability and bifurcation analysis, thereby simplifying the
investigation of the system’s dynamics. Specifically, we have

Ṡ = 3+ ζλR− φχ I1S − (β + τ )S,
Ė = φχ I1S − (ς + τ )E,
İ1 = 8ςE − (τ + ψ + α)I1,
İ2 = αI1 + ψ(1 − ω)I1 − (ρ + τ )I2 − vX ,
Ṙ = (1 −8)ςE + vX + ψωI1 − (τ + λ)R,
Q̇ = βS + (1 − ζ )λR− τQ,
Ẋ = c(I2 − X ).

(19)

The equilibrium of system (19) is (E∗,X∗), where

E∗ = (S∗,E∗, I∗1 , I
∗

2 ,R
∗,Q∗),

with E∗ = Eq0 or E∗ = Eq1 defined earlier, and X∗ = I∗2 .
The characteristic equation corresponding to the linearized
system oaround the equilibrium (E∗,X∗) is

v0(ξ ) · C(ξ ) = 0, (20)

where

C(ξ ) =

∣∣∣∣∣∣∣∣∣∣∣∣

v1(ξ ) 0 −a1S∗ 0 a3 0
a1I∗1 v2(ξ ) a1S∗ 0 0 0
0 a5 v3(ξ ) 0 0 0
0 0 a7 v4(ξ ) 0 −2a9
0 a10 a11 0 v5(ξ ) 2a9
0 0 0 c 0 v6(ξ )

∣∣∣∣∣∣∣∣∣∣∣∣
,

with

v0(ξ ) = ξ + τ, v1(ξ ) = −a1I∗1 − a2 − ξ,

v2(ξ ) = −a4 − ξ, v3(ξ ) = −a6 − ξ,

v4(ξ ) = −a8 − ξ, v5(ξ ) = −a12 − ξ, v6(ξ ) = −c− ξ,

and a1, a2, . . . , a12 as in (4)-(7). Expanding equation (20),
we get

(ξ + τ) ·�(ξ, c) = 0, (21)

where

�(ξ, c) = ξ6 + b1ξ5 + b2ξ4 + b3ξ3 + b4ξ2 + b5ξ + b6,

and

b1 = b1(c) = c+ a2 + a4 + a6 + a8 + a12 + a1I∗1 ,

b2 = b2(c) = ca2 + ca4 + ca6 + ca8 + 2ca9
+ ca12 + a2a4 + a2a6 + a2a8
+ a4a6 + a4a8 + a6a8 + a2a12 + a4a12
+ a6a12 + a8a12 + a1a4I∗1 + a1a6I∗1 + a1a8I∗1
+ a1a12I∗1 + ca1I∗1 − a1a5S∗,

b3 = b3(c) = a2a4 + a2a6 + a2a8
+ a4a6 + 2a2a9 + a4a8 + 2a4a9 + a6a8 + 2a6a9
+ a2a12 + a4a12 + a6a12 + a8a12 + 2a9a12
+ a1a4I∗1 + a1a6I∗1 + a1a8I∗1 + 2a1a9I∗1
+ a1a12I∗1 + a2a4a6 + a2a4a8
+ a2a6a8 + a4a6a8 + a2a4a12
+ a2a6a12 + a2a8a12
+ a4a6a12 + a4a8a12 + a6a8a12 − a1a2a5S∗

−a1a5a8S∗
− a1a5a12S∗

+ a1a4a6I∗1
+ a1a4a8I∗1 + a1a6a8I∗1

− a1a3a10I∗1 + a1a4a12I∗1 + a1a6a12I∗1
+ a1a8a12I∗1 − ca1a5S∗,

b4 = b4(c) = 2a2a4a6 − a1a2a5 − a21a5I
∗

1

+ 2a2a4a8 + 4a2a4a9 + 2a2a6a8
+ 4a2a6a9 + a4a6a8 + 2a4a6a9 + 2a2a4a12
+ 2a2a6a12 + 2a2a8a12 + a4a6a12
+ 4a2a9a12 + a4a8a12
+ 2a4a9a12 + a6a8a12 + 2a6a9a12
− a1a5a8S∗

− 2a1a5a9S∗
− a1a5a12S∗

+ 2a1a4a6I∗1 + 2a1a4a8I∗1 + 4a1a4a9I∗1 + 2a1a6a8I∗1
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+ 4a1a6a9I∗1 − a1a3a10I∗1 + 2a1a4a12I∗1 + 2a1a6a12I∗1
+ 2a1a8a12I∗1 + 4a1a9a12I∗1 + ca21a5I

∗

1 S
∗,

b5 = b5(c) = 2a4a6a9 + a4a6a12 + a4a8a12
+ 2a4a9a12 + a6a8a12 + 2a6a9a12 + a2a4a6a8
+ a4a6a8a12 + 2a4a6a9a12 − a1a5a8S∗

− 2a1a5a9S∗
− a1a5a12S∗

+ a21a5a8I
∗

1 S
∗

+ 2a21a5a9I
∗

1 S
∗

+ a21a5a12I
∗

1 S
∗

+ a2a4a6a8a12 − a1a5a8a12S∗

− 2a1a5a9a12S∗
− a1a3a6a8a10I∗1

+ a1a4a6a8I∗1 − ca1a3a6a10I∗1
− 2ca1a3a9a10I∗1 − a1a2a5a8a12S∗

− ca1a3a5a11I∗1 − ca1a3a8a10I∗1
− a1a3a5a8a11I∗1 + a1a4a6a8a12I∗1 ,

b6 = b6(c) = a2a4a6a8a12 + 2a2a4a6a9a12
− 2a1a3a5a7a9I∗1 − a1a3a5a8a11I∗1
− a1a3a6a8a10I∗1 − 2a1a3a5a9a11I∗1
− 2a1a3a6a9a10I∗1 + a1a4a6a8a12I∗1
+2a1a4a6a9a12I∗1 − a21a5a8a12I

∗

1 S
∗

− 2a21a5a9a12I
∗

1 S
∗

− a1a2a5a8a12S∗
− 2a1a2a5a9a12S∗

+ ca21a5a8a12I
∗

1 S
∗

+ 2ca21a5a9a12I
∗

1 S
∗.

The local asymptotic stability of (19) is established when
all characteristic roots of equation (21) have negative real
parts. The Routh-Hurwitz criteria provide the necessary and
sufficient condtions for this, which are

D1(c) = b1 > 0,

D2(c) = b1b2 − b3 > 0,

D3(c) = −b4b21 + b2b1b3 + b5b1 − b23 > 0,

D4(c) = b6b21b2 − b21b
2
4 − b1b22b5 + b1b2b3b4 − b6b1b3

− b6b1b3 + 2b1b4b5 + b2b3b5 − b23b4 − b25 > 0,

D5(c) = −b31b
2
6 + 2b21b2b5b6 + b21b3b4b6 − b21b

2
4b5

− b1b22b
2
5 − b1b2b23b6 + b1b2b3b4b5 − 3b1b3b5b6

+ 2b1b4b25 + b2b3b25 + b33b6 − b23b4b5 − b35 > 0,

D6(c) = b6 > 0.

Theorem 5: If c > 0 takes value such that Dj(c) > 0 (j =

1, . . . , 6), then system (19) is locally asymptotically stable.
By setting ξ = iθ , θ > 0, we derive two key equations

b1θ4 − b3θ2 + b5 = 0, (22)

− θ6 + b2θ4 − b4θ2 + b6 = 0. (23)

Equation (22) is a biquadratic equation whose positive
solution is

θ2 =

b3 +

√
b23 − 4b1b5

2b1
≡ θ2∗ .

Plugging this value in (23), we have

−

b3 +

√
b23 − 4b1b5

2b1

3

+ b2

b3 +

√
b23 − 4b1b5

2b1

2

−b4

b3 +

√
b23 − 4b1b5

2b1

 + b6 = 0.

After some calculations, we obtain the condition

D5(c) = 0.

Accordingly, we have the following conclusion.
Theorem 6: If there exists c = c∗ > 0 satisfying D5(c) =

0, then the characteristic equation (21) has a pair of purely
imaginary roots ξ = ±iθ∗.
Next, we select c as the bifurcation parameter and examine
the sign of the derivative ofReξ at the points where ξ is purely
imaginary. Noting that

d�
dc

=
d�
dξ

·
dξ
dc
,

we derive[
d(Reξ )
dc

]
ξ=iθ∗

= Re
(
dξ
dc

)
ξ=iθ∗

= Re
(
d�
dξ

)−1

ξ=iθ∗

·

[
d(Re�)
dc

]
ξ=iθ∗

(24)

From(
d�
dξ

)
ξ=iθ∗

=6θ5∗ i+ 5b∗

1θ
4
∗ − 4b∗

2θ
3
∗ i− 3b∗

3θ
2
∗ + 2b∗

4θ∗i+ b∗

5,

where b∗
j = bj(c∗), j = 1, . . . , 5, one has

Re
(
d�
dξ

)−1

ξ=iθ∗

= Re

[
1

5b∗

1θ
4
∗ − 3b∗

3θ
2
∗ + b∗

5 +
(
6θ5∗ − 4b∗

2θ
3
∗ + 2b∗

4θ∗
)
i

]

=
5b∗

1θ
4
∗ − 3b∗

3θ
2
∗ + b∗

5(
5b∗

1θ
4
∗ − 3b∗

3θ
2
∗ + b∗

5

)2
+

(
6θ5∗ − 4b∗

2θ
3
∗ + 2b∗

4θ∗
)2

=

b∗

3

(
b∗

3 +

√
b∗2
3 − 4b∗

1b
∗

5

)
− 4b∗

1b
∗

5

b∗

1M (θ∗)
,
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with

M (θ∗)=
(
5b∗

1θ
4
∗ − 3b∗

3θ
2
∗ + b∗

5

)2
+

(
6θ5∗ − 4b∗

2θ
3
∗ + 2b∗

4θ∗

)2
.

On the other hand, from

�(iθ, c)=−θ6 + b1θ5i+ b2θ4 − b3θ3i− b4θ2 + b5θ i5 + b6,

we get

Re [�(ξ, c)] = −θ6 + b2θ4 − b4θ2 + b6

=
1

2b31

[
2b31b6 + 3b1b3b5 − 2b21b2b5 − b33 + b1b2b23

−b21b3b4 −

(
b23 − b1b2b3 + b21b4 − b1b5

) √
b23 − 4b1b5]

=
1

2b31

−4b31D5(c)

N (θ )
= −

2D5(c)
N (θ )

,

with

N (θ )=2b31b6 + 3b1b3b5 − 2b21b2b5 − b33 + b1b2b23 − b21b3b4

+

(
b23 − b1b2b3 + b21b4 − b1b5

) √
b23 − 4b1b5.

Then,[
d(Re�)
dc

]
ξ=iθ∗

= −2 ·

dD5(c∗)
dc

N (θ∗) − D5(c∗)
dN (θ∗)
dc

[N (θ∗)]2

= −
2

N (θ∗)
·
dD5(c∗)
dc

.

Hence, (24) becomes

[
d(Reξ )
dc

]
ξ=iθ∗

= −

[
2b∗

3

(
b∗

3 +

√
b∗2
3 − 4b∗

1b
∗

5

)
− 8b∗

1b
∗

5

]
b∗

1M (θ∗)N (θ∗)

·
dD5(c∗)
dc

.

The previous analysis leads to the following conclusions.
Theorem 7: If there exists c = c∗ > 0 such that D5(c) =

0, and dD5(c∗)/dc ̸= 0, then a Hopf bifurcation occurs at the
steady state of system (19) as c passes through c∗.
The importance of this theorem lies in its ability to

precisely determine when a Hopf bifurcation occurs in the
system with distributed delays. This is significant because
a Hopf bifurcation indicates a transition from a stable
equilibrium to periodic oscillations, which in the context
of our model may correspond to recurring cycles of social
media addiction and depression. By providing a clear,
rigorous condition for this transition, the theorem not only
deepens our theoretical understanding of how delays affect
system dynamics but also offers practical insights. For
instance, identifying the critical parameter c∗ can help inform
intervention strategies by pinpointing when the system
is likely to experience destabilizing oscillations, thereby
allowing for timely and targeted actions to mitigate adverse
outcomes.

IV. DIRECTION OF HOPF BIFURCATION AND STABILITY
OF PERIODIC SOLUTIONS
When delays cause the system to lose stability, it often
begins to oscillate, resulting in cyclical fluctuations in
the number of addicted and depressed individuals. This
behavior is characteristic of a Hopf bifurcation, a critical
point where a stable equilibrium loses stability and periodic
oscillations emerge, much like calm water forming waves
once a threshold is surpassed. At this bifurcation, the system’s
equilibrium is disrupted, and the resulting cycles may either
grow or eventually settle into regular, predictable patterns.
To analyze these dynamics, we employ advanced techniques
such as center manifold theory and normal form theory,
as proposed by Hassard et al. [30]. These methods enable
us to determine the stability of the oscillations and the
evolution of their amplitudes over time. Such analysis is
crucial for public health strategies. If the system settles
into stable oscillations, interventions can be optimally timed,
whereas unstable oscillations necessitate immediate action.
We now present a comprehensive mathematical analysis that
elucidates the conditions under which the system (3) with
delay undergoes Hopf bifurcation, and we detail the behavior
of the system post-bifurcation. Let

ϒ = ϒ0 + ξ (ξ ∈ R), �1(t) = S(t) − S∗,

�2(t) = E(t) − E∗, �3(t) = I1(t) − I∗1 ,

�4(t) = I2(t) − I∗2 , �5(t) = R(t) − R∗,

�6(t) = Q(t) − Q∗, �i(t) = �i(tT ),

for i = 1, 2, 3, 4, 5, 6. Then, system (3) can be rewritten as
a functional differential equation in the Banach space C =

C([−1, 0],R6)

�′(t) = Dξ�t +M (ξ,�t) . (25)

where

�(t) = (�1(t), �2(t), �3(t), �4(t), �5(t), �6(t))T ∈ R6,

�t (θ ) = �(t + θ ), θ ∈ [−1, 0],

Dξ : C → R, F : R × C → R

are defined by

Dξ (γ ) = (T∗ + ξ) [M1γ (0) + N1γ (−1)] (26)

and

M (ξ, γ ) = (T∗ + ξ) (51,52, 0, 0, 0, 0)T ,

with

M1 =


m11 0 m13 0 m15 0
m21 m22 m23 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 0 0
0 m52 m53 0 m55 0
m61 0 0 0 m65 m66

 ,
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N1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 n44 0 0
0 0 0 n54 0 0
0 0 0 0 0 0

 ,
where

m11 = −φχI∗1 − (β + τ ), m13 = −φχS∗, m15 = ςλ,

m21 = φχ I∗1 , m22 = −(ς + λ), m23 = φχS∗, m32 = φς,

m33 = −(τ + ϕ + α), m43 = α + ψ(1 − ω),

m44 = −(ρ + τ ), m52 = (1 − φ)ς, m53 = ϕω,

m55 = −(τ + λ), m61 = β, m65 = (1 − ς )λ,

m66 = τ, n44 = −ϑ, n55 = ϑ,

51 = −φχγ1(0)γ3(0), 52 = φχγ1(0)γ3(0).

By the Riesz representation theorem, there exists a function
of bounded variation components L(θ, ξ ) such that

Dξ (γ ) =

∫ 0

−1
γ (θ )dL(θ, ξ ), for γ ∈ C .

Based on (26), we set

L(θ, ξ ) = (T∗ + ξ) [M1γ (θ ) + N1γ (θ + 1)] .

Define P(ξ ) and a(ξ ) by

P(ξ )γ =


dγ (θ )
dθ

, −1 ≤ θ < 0,∫ 0

−1
dL(t,W )γ (θ ), θ = 0,

(27)

and

a(ξ )η =

{
0, −1 ≤ θ < 0,
K (θ, ξ ), θ = 0.

Then, system (25) can be further represented as the following
ordinary differential equation

�′(t) = P(ξ )�t + α(ξ )�t .

For 0 ∈ C1
(
[0, 1],R5

)
, the adjoint operator P∗ of P(0) is

expressed as

P∗(0) =


−
d0(κ)
dκ

, 0 < κ ≤ 1,∫ 0

−1
dLT (κ, 0)λ(−κ), κ = 0.

(28)

Next, we define the following bilinear inner product of P and
P∗

< 0(κ), γ (θ ) >= 0̄(0)γ (0)

−

∫ 0

θ=−1

∫ θ

ω=0
0̄(ω̄ − θ)dL(θ )γ (ω)dω

(29)

with θ (t) = θ (t, 0). Let

y(t) = (1, y2, y3, y4, y5, y6)T e−iω0T∗θ

be the eigenvector of P(θ ) associated with the eigenvalue
iω0I4, and

y∗(v) = Z
(
1, y∗2, y

∗

3, y
∗

4, y
∗

5, y
∗

6
)T eiω0T∗v

the eigenvector of P∗(0) associated with the eigenvalue
−iω0T∗. According to (27) and (28), a direct calculation
yields

y2 =
m21 (iω0ξ0 − m33)

m22m33 − m32m23 − ω2
0ξ

2
0 − iω0ξ0 (m22 + m33)

,

y3 =
m32y2

iω0ξ0 − m33
, y4 =

m43y3
iω0ξ0 − m44 − n44e−iω0ξ0T∗

,

y5 =
iω0ξ0 − m11 − m13y3

m15
, y6 =

m61 + m65y4
iω0ξ0 − m66

,

y∗2 = −
m21

m11 + iω0ξ0
, y∗3 =

m22 + iω0ξ0

m32 (m11 + iω0ξ0)
,

y∗4 = −
n54eiω0ξ0T∗y∗5

m44 + n44eiω0ξ0T∗ + iω0ξ0
, y∗5 = −

m15 + m65y∗6
m55 + iω0ξ0

,

y∗6 = −
m11 + iω0ξ0 + m21y∗2

m61
.

From (29), it follows

Ā =
[
1 + y2ȳ∗2 + y3ȳ∗3 + y4ȳ∗4 + y5ȳ∗5 + y6ȳ∗6

+T∗e−iω0T∗y4
(
1 − ȳ∗5

)]−1
,

so that < y∗, y >= 1 and < y∗, ȳ >= 0. Now, using
the algorithms [31], [32] and a similar computation process
to that in [30] and [33], we can obtain the expressions of
y20, y11, y02 and y21 and get

y20 = 2T∗Āφχy3
(
ȳ∗3 − 1

)
,

y11 = 2T∗Āφχ
(
y3 + ȳ∗3

) (
ȳ∗3 − 1

)
,

y02 = 2φχT∗Āȳ3
(
ȳ∗3 − 1

)
,

y21 = 2T∗Ā
(
ȳ∗3 − 1

) [
φχ

(
8

(1)
11 (0)y2 +

1
2
8

(1)
20 (0)ȳ2

+8
(2)
11 (0) +

1
2
8

(1)
20 (0)

)]
where

820(θ ) = −
iy20y(0)
T∗ω0

+
iȳ02ȳ(0)
3T∗ω0

+ H1e2iT∗ω0θ ,

811(θ ) = −
iy11
T∗ω0

y(0) +
iȳ11
T∗ω0

ȳ(0) + H2,

and

H1 =

(
H (1)
1 ,H (2)

1 ,H (3)
1 ,H (4)

1 ,H (5)
1 ,H (6)

1

)
∈ R6,
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H2 =

(
H (1)
2 ,H (2)

2 ,H (3)
2 ,H (4)

2 ,H (5)
2 ,H (6)

2

)
∈ R6

given by

H (1)
1 = l1


r8 0 −m13 0 −m15 0

−r8 r2 −m23 0 0 0
0 −m32 r3 0 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (2)
1 = l1


r1 r8 −m13 0 −m15 0

−m21 −r8 −m23 0 0 0
0 −m32 r3 0 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (3)
1 = l1


r1 0 r8 0 −m15 0

−m21 r2 −r8 0 0 0
0 −m32 r3 0 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (4)
1 = l1


r1 0 −m13 r8 −m15 0

−m21 r2 m23 −r8 0 0
0 −m32 r3 −m34 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (5)
1 = l1


r1 0 −m13 0 r8 0

−m21 r2 −m23 0 −r8 0
0 −m32 r3 −m34 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (6)
1 = l1


r1 0 −m13 0 0 r8

−m21 r2 −m23 0 0 −r8
0 −m32 r3 −m34 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



having set

l1 =
2
820

, r1 = 2iω0 − m11, r2 = 2iω0 − m22,

r3 = 2iω0 − m33, r4 = 2iω0 − m44 − n44e−2iω0I4 ,

r5 = 2iω0 − m55, r6 = 2iω0 − m66,

r7 = −n54e−2iω0T4 , r8 = −φχy3

and

H (1)
2 = l2


h 0 m13 0 m15 0

−h m22 m23 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 + n44 0 0
0 0 m53 n54 m55 0
m61 0 0 0 m65 m66



H (2)
2 = l2


m11 h m13 0 m15 0
m21 −h m23 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66



H (3)
2 = l2


m11 0 h 0 m15 0
m21 m22 −h 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66



H (4)
2 = l2


m11 0 m13 h m15 0
m21 m22 m23 −h 0 0
0 m32 m33 m34 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66



H (5)
2 = l2


m11 0 m13 0 h 0
m21 m22 m23 0 −h 0
0 m32 m33 m34 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66



H (6)
2 = l2


m11 0 m13 0 0 h
m21 m22 m23 0 0 −h
0 m32 m33 m34 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66


with

l2 = −
2
811

, h = −φχ (y3 + ȳ3) ,

and

820 =

∣∣∣∣∣∣∣∣∣∣∣∣

r1 0 −m13 0 −m15 0
m21 r2 −m23 0 0 0
0 −m32 r3 0 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6

∣∣∣∣∣∣∣∣∣∣∣∣
,

811 =

∣∣∣∣∣∣∣∣∣∣∣∣

m11 0 m13 0 m15 0
m21 m22 m23 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66

∣∣∣∣∣∣∣∣∣∣∣∣
.
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FIGURE 1. Time series of system (3) with various delays.

In conclusion, we can calculate all of the following
quantities which are required for the analysis of Hopf
bifurcation

$1(0) =
i

2T∗ω0

[
y11y20 − 2 |y11|2 −

|y02|2

3

]
+
y21
2
,

ℑ = −
Re [$1(0)]
Re [λ′ (T∗)]

, ℵ = 2Re [$1(0)] ,

℘ =
−Im [$1(0)] + ℑIm

[
λ′ (T∗)

]
T∗ω0

.

Theorem 8: i) If ℑ > 0, the Hopf bifurcation is
supercritical. Conversely, if ℑ < 0, the bifurcation is
subcritical.

ii) If ℵ < 0, the bifurcation periodic solutions are stable.
If ℵ > 0, they are unstable.

iii) If ℘ > 0, the amplitude of the bifurcating periodic
solutions increases as the bifurcation parameter moves
away from the critical value. If ℘ < 0, the amplitude
decreases.

Theorem 8 establishes conditions under which the system,
despite undergoing a Hopf bifurcation, will ultimately return
to a stable state after its initial transition to oscillations.
It demonstrates that, beyond the onset of periodic oscillations,
the system can recover stability under specific parameter
adjustments. This insight is crucial for understanding not
only the dynamics during periods of instability but also
the potential for eventual stabilization, especially in systems
where addiction and depression cycles may persist over
time. The result underscores the practical relevance of
the model, as it provides a clearer understanding of how
delayed treatment responses and recovery periods might
affect the long-term dynamics of social media addiction and
depression. Consequently, the findings of Theorem 8 guide
the development of intervention strategies aimed atmitigating
not only the immediate oscillations but also ensuring the
long-term stability of the system.

V. NUMERICAL SIMULATIONS
To validate our analytical results, we conduct numerical
simulations using MATLAB, investigating how different
delay types influence system stability and the transition to
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oscillatory behavior. Our primary focus is on the effects
of discrete and distributed delays in the social media
addiction and depression model. The selected parameters
were obtained from [24] and chosen to satisfy the neces-
sary conditions for the occurrence of a Hopf bifurcation.
We begin with a baseline model that excludes time
delays

Ṡ = 0.5 + (0.35)(0.4)R− (0.7)(0.0027)I1S
−(0.01 + 0.15)S,

Ė = (0.7)(0.0027)I1S − (0.35 + 0.15)E,
İ1 = (0.3)(0.35)E − (0.2 + 0.25 + 0.4)I1,
İ2 = (0.41)I1 + 0.25(1 − 0.8)I1

−(0.7 + 0.25 + 0.4)I2,
Ṙ = (1 − 0.3)(0.35)E + 0.7I2 + (0.8)(0.25)I1

−(0.2 + 0.4)R,
Q̇ = (0.01)S + (1 − 0.35)(0.4)R− (0.2)Q.

(30)

The parameters within these equations represent various
rates of movement between these compartments. Utilizing
initial conditions of S(0) = 2.0, E(0) = 1.5, I1(0) =

1, I2(0) = 1.5, R(0) = 1.5, Q(0) = 0.75, and
a calculated basic reproduction number R0 = 0.4761,
we explore the stability of the disease free Eq0 and endemic
Eq1 equilibria. Subsequently, we introduce a discrete time
delay T

Ṡ = 0.5 + (0.35)(0.4)R− (0.7)(0.0027)I1S
−(0.01 + 0.15)S,

Ė = (0.7)(0.0027)I1S − (0.35 + 0.15)E,
İ1 = 0.3)(0.35)E − (0.2 + 0.25 + 0.4)I1,
İ2 = (0.41)I1 + 0.25(1 − 0.8)I1

−(0.7)I2(t − T ) − (0.25 + 0.4)I2,
Ṙ = ((1 − 0.3)(0.35)E + 0.7I2(t − T )

+(0.8)(0.25)I1 − (0.2 + 0.4)R,
Q̇ = (0.01)S + (1 − 0.35)(0.4)R− (0.2)Q.

(31)

Using the same initial conditions as (30) and maintaining
R0 = 0.4761, we investigate the impact of this fixed time
delay. Finally, we consider a distributed time delay, where
the transition from mild to severe addiction and recovery is
influenced by a weighted average of past states.

Ṡ = 0.5 + (0.35)(0.4)R− (0.7)(0.0027)I1S
−(0.01 + 0.15)S,

Ė = (0.7)(0.0027)I1S − (0.35 + 0.15)E,
İ1 = (0.3)(0.35)E − (0.2 + 0.25 + 0.4)I1,
İ2 = (0.41)I1 + 0.25(1 − 0.8)I1

−(0.7)
∫ t

−∞

I2(t)g(t − r)dr − (0.25 + 0.4)I2,

Ṙ = (1 − 0.3)(0.35)E + (0.7)
∫ t

−∞

I2(t)g(t − r)dr

+(0.8)(0.25)I1 − (0.2 + 0.4)R,
Q̇ = (0.01)S + (1 − 0.35)(0.4)R− (0.2)Q,

(32)

TABLE 3. Convergence time and final I2 values when R0 < 1.

Applying the same initial conditions as in the previous
systems, and same R0 value, we examine how averaging
delays over a time interval affects the system’s dynamics.
We begin by examining the influence of discrete delay T
on the temporal evolution of the infected individuals I2 in
system (31).

Figure 1 presents the time series of I2 for different delay
values (the corresponding figures are presented at the end of
the section). Specifically, it compares the undelayed system
(30)) with scenarios where T is below (T = 2.285 < T∗),
at (T = T∗ = 2.385), and above T = 2.485 > T∗ the critical
delay threshold T∗ = 2.385, highlighting the transition from
stability to potential instability.

• Figure 1a: No delay (T = 0) In the absence of delay,
the rapid convergence of I2 to zero indicates a stable
disease free equilibriumEq0 whenR0 < 1. This suggests
that without delays, the system effectively controls the
spread of social media induced depression, given the
parameters set.

• Figure 1b: Delay below the critical threshold (T < T∗)
I2 still converges to zero, but the extended convergence
time implies that the delay slows down the system’s
ability to return to the disease free state. This suggests
that even small delays can temporarily hinder the
recovery process.

• Figure 1c: At the critical delay (T∗ = 2.385) A signif-
icant slowing of convergence is observed. This pivotal
point signifies a transition where the system’s stability
is critically challenged. Biologically, this suggests that
at this specific delay, the time lag in the system’s
response is enough to substantially impede its ability to
stabilize.

• Figure 1d: Delay exceeding the threshold (T >

T∗) The system exhibits oscillatory behavior before
settling, indicating a potential shift towards instability.
This suggests that excessive delays can destabilize the
system, leading to fluctuations in the number of infected
individuals. This oscillation can be interpreted as a
repeating cycle of over and under correction within the
system.

These time series results underscore the system’s sensitivity
to discrete delays, particularly around the critical delay T∗,
highlighting how delays can alter the system’s stability and
convergence dynamics. Table 3 summarizes the convergence
time and final density of I2 for systems (30), (31), and (32)
when R0 < 1.

From Table 3, we observe that system (30) exhibits the
slowest convergence time, indicating that without delays, the
return to equilibrium is gradual. In system (31), the presence
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TABLE 4. Congregate time and final I2 values when R0 > 1.

FIGURE 2. Phase portrait for the I1 − I2 − R system (3) with
T = 2.285 < T∗.

of discrete delay reduces convergence time, suggesting that
a fixed time lag accelerates stabilization. In system (32), the
distributed delay leads to the fastest convergence, implying
that averaging delays over a time interval enhances the
system’s ability to stabilize quickly. This can be interpreted
as the system being more robust when it accounts for
a range of past influences rather than a single delayed
influence. These results suggest that incorporating delay,
especially in a distributed manner, significantly enhances
the system’s ability to return to the disease-free equilibrium
when R0 < 1.

As illustrated in Figures 2-13 at the end of this section,
the impact of varying time delays on system dynamics
is evident. When the delay T < T∗ (Figures 2, 5, 8,
and 11), trajectories converge smoothly to stable equilibria,
demonstrating system robustness. At the critical delay T =

T∗ (Figures 3, 6, 9, and 12), convergence slows, revealing a
critical transition and a bottleneck in return to equilibrium.
Beyond the critical delay, T > T∗ (Figures 4, 7, 10,
and 13), oscillatory behavior emerges, indicating increased
complexity and potential instability. These phase portraits
complement the time series analysis, providing a visual
confirmation of the system’s behavior under varying delay
conditions and highlighting the transition from stability to
potential instability. Table 4 presents the convergence time
and final density of I2 for systems (30), (31), and (32) when
R0 > 1.
From Table 4, system (30) converges to a stable endemic

equilibrium Eq1 with a specific I2 density, indicating a
persistent level of infection. In system (31), the discrete
delay reduces the convergence time while maintaining the

FIGURE 3. Phase portrait for the I1 − I2 − R system (3) with
T = 2.385 = T∗.

FIGURE 4. Phase portrait for the I1 − I2 − R system (3) with
T = 2.485 > T∗.

FIGURE 5. Phase portrait for the I2 − Q − R system (3) with
T = 2.285 < T∗.

same I2 density, suggesting that the delay accelerates the
system’s approach to the endemic state. In system (32), the
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FIGURE 6. Phase portrait for the I2 − Q − R system (3) with
T = 2.385 = T∗.

FIGURE 7. Phase portrait for the I2 − Q − R system (3) with
T = 2.485 > T∗.

FIGURE 8. Phase portrait for the I1 − I2 − Q system (3) with
T = 2.285 < T∗.

distributed delay further reduces the convergence time and
results in a higher final density of I2. This implies that a
distributed delay not only speeds up convergence but also
sustains a higher level of persistent infection. Biologically,

FIGURE 9. Phase portrait for the I1 − I2 − Q system (3) with
T = 2.385 = T∗.

FIGURE 10. Phase portrait for the I1 − I2 − Q system (3) with
T = 2.485 > T∗.

FIGURE 11. Phase portrait for the S − I1 − E system (3) with
T = 2.285 < T∗.

this could be interpreted as the system more efficiently
maintaining a higher infection level when accounting for a
range of past influences. These results highlight that even
when R0 > 1, the type of delay significantly influences
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FIGURE 12. Phase portrait for the S − I1 − E system (3) with
T = 2.385 = T∗.

FIGURE 13. Phase portrait for the S − I1 − E system (3) with
T = 2.485 > T∗.

the system’s convergence dynamics and the final endemic
equilibrium.

Comparing the results from Tables 3 and 4, we can draw
the following conclusions.

• When R0 < 1, all systems converge to the dis-
ease free equilibrium, with distributed delay lead-
ing to the fastest convergence, indicating enhanced
stability.

• When R0 > 1, all systems converge to the endemic
equilibrium, with distributed delay again resulting in
faster convergence but also a higher final infected
density, showing that distributed delay can increase the
overall infection level.

Discrete delays consistently reduce the convergence time
compared to the no delay scenario, highlighting the influence
of time lags on system dynamics. These findings underscore
the significant impact of delays on the stability and conver-
gence dynamics of the social media addiction and depression
models. They suggest that incorporating appropriate delay
mechanisms, particularly distributed delays, can significantly
alter the system’s behavior, affecting both the rate of

convergence and the final equilibrium state. The type of
delay, therefore, plays a crucial role in understanding and
potentially mitigating the spread of social media-induced
depression.

VI. CONCLUSION
This study has explored the complex dynamics of social
media addiction and depression through a mathematical
model incorporating both discrete and distributed delays.
By moving beyond the limitations of purely deterministic
models and considering themore realistic scenario of variable
delays, this research provides a deeper understanding of
the interplay between these factors. Our analysis yielded
several key findings: the significant impact of both discrete
and distributed delays on the stability of equilibrium points,
the identification of Hopf bifurcations and stability switches
(particularly with the gamma distribution), and the crucial
role of delay distribution in shaping system dynamics. These
theoretical findings were rigorously validated through numer-
ical simulations, reinforcing the reliability of our conclusions.
The insights gained from this study have important impli-
cations for addressing the growing public health concern of
social media addiction and its associated mental health chal-
lenges. By identifying critical delay thresholds and observing
stability switches, this research informs the development of
targeted interventions and treatment strategies. Understand-
ing how delays in treatment response or recovery influence
the overall dynamics of addiction and depression can lead
to more effective public health campaigns and personalized
interventions. This work establishes a strong foundation for
future research. Exploring different distributed delay kernels,
incorporating additional factors such as social influence and
environmental context, and extending the model to include
control mechanisms are promising directions. Additionally,
investigating time varying delays could further enhance
the realism of the model. Beyond mathematical modeling,
future studies should consider behavioral, psychological, and
socio-economic factors that influence addiction dynamics.
Incorporating stochastic elements, validating results with real
world data, and refining delay distributions could further
improve predictive accuracy. Furthermore, analyzing the role
of external influences, such as social media algorithms,
peer pressure, and digital detox programs, could provide
deeper insights into addiction prevention and management.
By continuously advancing our understanding of social
media addiction and its connection to mental health,
we can develop more effective, evidence-based strategies
to promote digital well-being in an increasingly connected
world.
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