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ABSTRACT Web-based networking significantly influences daily interactions and user well-being. This
study analyzes social media addiction and depression models that incorporate distribution delays to enhance
control strategies. Unlike previous deterministic models, our approach integrates both discrete (Dirac-
delta) and distributed (gamma) delay distributions to assess the linear stability of disease-free and endemic
equilibria and the occurrence of Hopf bifurcation. We find that while both equilibria maintain stability
under short delays, increased mean delays lead to instability through Hopf bifurcation across both delay
types. Notably, the gamma distribution demonstrates a stability switch; the endemic equilibrium initially
remains stable, destabilizes as delays lengthen, and restabilizes with further delay increases. Analytical
results confirm the direction and stability of these bifurcations, supported by numerical validations. This
research fills a significant gap by combining discrete and distributed delays, providing insights crucial for
developing effective interventions and shaping public health policies to mitigate the adverse effects of social
media addiction on mental health.

INDEX TERMS Social media addiction, distributed delay, Hopf bifurcation, stability switches.

I. INTRODUCTION
Social media platforms have become an integral part of daily
life, serving as powerful tools for accessing information,
maintaining relationships, and fostering professional and per-
sonal connections. Across the globe, individuals engage with
platforms such as Instagram, Facebook, YouTube, and Twitter
for diverse purposes, including reconnecting with acquain-
tances, expanding professional networks, seeking employ-
ment, advertising products, and conducting financial transac-
tions [1]–[6]. Additionally, many individuals rely on search
engines like Google for information retrieval and use banking
applications to manage financial activities.

A. STATE OF THE ART AND MOTIVATIONS

While these platforms offer numerous benefits, excessive
use can lead to social media addiction (SMA), a condition
characterized by compulsive engagement and distress when
access is restricted [7]–[11]. The negative consequences of
SMA are increasingly evident, affecting individuals’ well-

being, mental health, and social relationships. Uncontrolled
social media use can contribute to stress, anxiety, depres-
sion, loneliness, low self-esteem, and sleep disturbances. Fur-
thermore, research indicates that SMA negatively impacts
students’ academic performance by fostering distraction and
diminishing their ability to focus on educational tasks [18],
[19]. According to internet addiction theory, individuals who
develop dependency on social media gradually lose self-
control, allocating excessive time to online activities at the
expense of more productive pursuits [20]. This can lead to
a vicious cycle in which users underestimate their addiction
while overestimating their ability to regulate usage [21], [22].

Mathematical models provide a structured framework for
analyzing complex behavioral dynamics such as social me-
dia addiction and its associated mental health effects. These
models allow researchers to assess the contributing factors,
predict addiction trends, and evaluate the effectiveness of
interventions. Several researchers have explored addiction
dynamics through mathematical models. For example, Huo et
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TABLE 1: Related work comparison

Reference Compartments Count Type of analysis
Huo et al. [23] 5 (Susceptible - Light -

Heavy - Quitter - Recov-
ered)

Deterministic

Ishaku et al. [24] 5 (Susceptible - Low ac-
tive - Active - High active
- Performance)

Deterministic

Alemneh andAlemu [25] 5 (Susceptible - Exposed
- Addicted - Recovered -
Quitter)

Deterministic

Ali et al. [26] 6 (Susceptible - Exposed
- Addiction - Depression
- Recovered - Quitter)

Deterministic

The proposed model 6 (Susceptible - Exposed
- Addiction - Depression
- Recovered - Quitter)

Discrete and dis-
tributed delays

al. [23] introduced a compartmental model for alcohol addic-
tion that incorporated a Twitter effect, analyzing stability and
bifurcation behaviors. Similarly, Ishaku et al. [24] developed
a model examining the influence of social media on students’
academic performance, while Alemneh and Alemu [25] pro-
posed a compartmental model to study SMA transmission
patterns using optimal control methods.

Real world addiction processes often involve inherent time
delays, which can arise due to various factors, such as the
time it takes for individuals to transition from casual users
to addicts, the duration of addiction treatment and recovery,
the delay between interventions and observable behavioral
changes. These delays can be discrete (fixed intervals) or dis-
tributed (varying across a population) [26]–[28]. Distributed
delays provide a more realistic representation, accounting
for individual differences in response time and treatment
duration [29]–[35]. Previous research has investigated either
discrete or distributed delays, but a comprehensive frame-
work integrating both remains largely unexplored. This gap is
significant because distributed delays offer better real world
applicability, capturing variability in behavioral transitions
and recovery periods. Understanding how delays influence
addiction and recovery dynamics is critical for designing
effective intervention strategies. Table 1 provides a compar-
ison of some related works, highlighting the compartmental
structure and type of analysis employed in each.

To account for the variability among members of the pop-
ulation, distributed delays are better than fixed delays for
describing time intervals to represent time that is not the
same for all individuals in the population. The population
varies in distribution [36]–[39]. Composite delay refers to the
length of time between when the population reaches a certain
level and when the level of effective treatment is renewed,
such as family therapy, high-level motivation, psychotherapy,
cognitive behavioral therapy, and behavior change theory.
The effectiveness of cognitive behavioral therapy in the treat-
ment of diagnosed patients has been analyzed and described
in [40]–[42]. Studies have shown that when the delay time
increases to a large value, the population density in the Hopf
bifurcation is stimulated [43], [44].

Unfortunately, to the best of our knowledge, there is a
notable scarcity of research that investigates the interplay
between social media addiction and depression while explic-
itly considering both discrete and distributed delays in the
transmission process. While previous studies have examined
either discrete or distributed delays in isolation, a compre-
hensive framework integrating both remains underexplored.
This is particularly significant as distributed delays better
represent real world scenarios, capturing variability in re-
sponse times, treatment durations, and individual behavioral
patterns. The lack of such an integrated approach presents
a critical gap in the literature. Analyzing the dynamics of
models with distributed delays is a complex and challenging
open problem, especially in the context of capturing how time
lags influence the transitions between addiction, recovery,
and depression states. The insights derived from such an
analysis can significantly enhance our understanding of the
propagation and control of social media addiction and its
associated psychological impacts. For instance, distributed
delays can provide a more realistic perspective on treatment
efficacy, where delays are not uniform across individuals but
vary depending on personal, social, and systemic factors.

B. OUR CONTRIBUTIONS AND PAPER ORGANIZATION
Addressing the limitations of existing research, this study
introduces a novel, generalized model that incorporates both
discrete and distributed delays to comprehensively examine
their combined effects on stability, equilibrium transitions,
and bifurcation phenomena in social media addiction and
depression. By integrating real-world considerations, such as
employing a gamma distribution to represent treatment de-
lays, this work bridges the gap between theoretical modeling
and practical applications. This refined approach offers new
insights into the stability dynamics of addiction and depres-
sion, illuminating critical phenomena like stability switches
and delay-induced bifurcations, and identifying conditions
that promote more effective recovery. The novelty of this
model lies in its capacity to capture and analyze these intricate
dynamics, providing a more comprehensive framework than
previous models. Ultimately, this research paves the way
for more targeted and effective interventions, as a deeper
understanding of the role of delays can lead to improved
strategies for managing social media addiction and mitigat-
ing its adverse mental health consequences. This compelling
motivation underscores the significance of the present study
in addressing a timely and pressing issue.
The rest of this paper is organized as follows. Section II

presents the model. Section III analyzes the impact of discrete
delays, showing that increasing delays can destabilize and
potentially restabilize the system. It then incorporates dis-
tributed delays, demonstrating a stability switch from stability
to instability and back again. Section IV examines periodic
solutions using advanced mathematical techniques. Sections
V and VI outline numerical simulations to validate our ana-
lytical findings, and concluding remarks, respectively.
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TABLE 2: Parameters involved in system (1)

Parameter Description of the parameters
Λ Recruitment rate of susceptible individuals
ζ The proportion of individuals in the the recovered group who

are susceptible to SMAD
λ Individuals that leave recovered class
ϕ Rate of transmission of addiction among the susceptible pop-

ulation
β Individuals who are susceptible to avoiding and/or ceasing

their use of social media
τ Rate of natural deaths
χ Rate of contact between susceptible individuals and addicted

to population
ς People who exit exposed class
Φ The percentage of individuals exposed to addiction who later

develop dependencies
ψ The frequency at which individuals discontinue treatment
α The rate at which media influences depression
ω Probability that treatment is effective
υ Individuals suffering from depression can transition into indi-

viduals who have recovered through the process of treatment
ρ The frequency at which individuals take their own lives due

to depression

II. SYSTEM MODEL
This study builds upon the social media addiction and depres-
sion model developed by Ali et al. [26]. Their model divides
the population into six groups: susceptible individuals S, ex-
posed individuals E vulnerable to SMA but not yet addicted,
individuals with occasional social media use I1 who are at risk
of developing an addiction, addicted individuals I2 who are
heavily engrossed in social media, depressed individuals R
experiencing depression due to social media addiction, recov-
ered individuals Rwho have successfully overcome addiction
after treatment, and individuals who permanently quit social
media Q. The dynamics of their model are governed by the
following system of differential equations

Ṡ = Λ+ ζλR− ϕχI1S − (β + τ)S,

Ė = ϕχI1S − (ς + τ)E ,

İ1 = ΦςE − (τ + ψ + α)I1,

İ2 = αI1 + ψ(1− ω)I1 − (v+ ρ+ τ)I2,

Ṙ = (1− Φ)ςE + vI2 + ψωI1 − (τ + λ)R,

Q̇ = βS + (1− ζ)λR− τQ,

(1)

where Ṡ, Ė , İ1, İ2, Ṙ, Q̇ represent the rate of change of the
respective population groups over time. The parameter defi-
nitions are provided in Table 2, illustrating key transition rates
and their significance in addiction modeling.

To more accurately capture the dynamics of social media
addiction (SMA) and depression, we extend the previously
established system (1) by incorporating distributed delays.
Unlike traditional models that assume instantaneous transi-
tions between states, this approach accounts for variability
in the time individuals take to transition between different
stages of addiction and recovery, thus offering amore realistic
representation of SMA progression. The revised system is

formulated as follows

Ṡ = Λ+ ζλR− ϕχI1S − (β + τ)S,

Ė = ϕχI1S − (ς + τ)E ,

İ1 = ΦςE − (τ + ψ + α)I1,

İ2 = αI1 + ψ(1− ω)I1 − (ρ+ τ)I2

−v
∫ t

−∞
I2(r)g(t − r) dr ,

Ṙ = (1− Φ)ςE + v
∫ t

−∞
I2(r)g(t − r) dr

+ψωI1 − (τ + λ)R,

Q̇ = βS + (1− ζ)λR− τQ.

(2)

Here, the function g(t) serves as a distributed delay kernel,
ensuring that the effects of past states are properly integrated
into the model. The function satisfies the conditions

g(t) ≥ 0,

∫ ∞

0

g(t)dt = 1.

The inclusion of distributed delays transforms the system
into an integral-differential equation framework, which better
represents the inherent variability in addiction recovery, treat-
ment response times, and progression through different states
of SMA. To comprehensively analyze the role of time delays
in SMA and depression dynamics, we examine two types of
delays

• Discrete (fixed) delays, each individual experiences the
same time lag in addiction development and recovery.
For example, a uniform three-month delay might be con-
sidered for an individual to transition from mild SMA to
severe SMA.

• Distributed (variable) delays, different individuals expe-
rience different transition times. Some individuals may
take one month to develop SMA, while others may
take up to six months. This variability is captured by
probability distributions rather than a fixed delay.

Since the equilibrium points of (2) coincide with those of (1),
the system exhibits two primary equilibrium states [26]
1) disease-free equilibrium Eq0

Eq0 =

(
Λ

β + τ
, 0, 0, 0, 0,

βΛ

(β + τ) τ

)
,

2) endemic equilibrium Eq1

Eq1 =
(
S1,E1, I11 , I

1
2 ,R

1,Q1
)
.

III. LOCAL STABILITY AND HOPF BIFURCATION
ANALYSIS
Understanding the spread and impact of social media addic-
tion, and its relationship with depression, requires an analysis
of the system’s stability over time. In this context, stability
refers to the system’s ability to return to equilibrium after
a small disturbance. A stable system recovers from minor
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fluctuations, while an unstable system may experience esca-
lating cycles of addiction and depression. One critical factor
affecting stability is the presence of delays, which represent
the time lags in addiction progression, treatment onset, and
recovery. Incorporating these delays into our model provides
a more realistic framework for analyzing system dynamics
and identifying the conditions under which stability is lost.
These insights are essential for policymakers and healthcare
providers who design interventions to mitigate the effects of
addiction and depression.

A. CASE: DISCRETE DELAY (FIXED TIME LAG)
A system where all individuals experience an identical time
delay leads to three distinct behavioral regimes. With a short
delay, the system remains stable, naturally returning to equi-
librium after a perturbation. As the delay increases to a mod-
erate level, the system loses stability and oscillates rhyth-
mically between addiction and recovery phases, a transition
marked by a Hopf bifurcation. Surprisingly, a sufficiently
long delay can restore stability through a stability switch, set-
tling the system into a potentially new steady state. Therefore,
the discrete time delay fundamentally governs the system’s
behavior. To explore this phenomenon mathematically, con-
sider the case where the delay function g is modeled as a Dirac
delta function,

g(t) = δ(t − T ).

Under this assumption, system (2) simplifies to

Ṡ = Λ+ ζλR− ϕχI1S − (β + τ)S,

Ė = ϕχI1S − (ς + τ)E ,

İ1 = ΦςE − (τ + ψ + α)I1,

İ2 = αI1 + ψ(1− ω)I1 − (ρ+ τ)I2 − vI2(t − T ),

Ṙ = (1− Φ)ςE + vI2(t − T ) + ψωI1 − (τ + λ)R,

Q̇ = βS + (1− ζ)λR− τQ,

(3)

which incorporates a discrete time delay T ≥ 0 to simulate
the time lag involved in the progression from mild to severe
addiction. This system, expressed as delay differential equa-
tions, modifies the rate of progression to severe addiction and
recovery by introducing the term I2(t−T ), reflecting the state
of I2 at a previous time. Noticing that

Φ = v = 2ζ, ς = χ, Λ = 2χ, ω = 2λ, ρ = β,

by using the parameter substitutions

a1 = ϕχ, a2 = β + τ, a3 = ζλ, a4 = ς + τ, (4)

a5 = Φς, a6 = τ + ψ + α, a7 = α+ ψ(1− ω), (5)

a8 = ρ+ τ, a9 = ζ, a10 = (1− Φ)ς, (6)

a11 = ψω, a12 = τ + λ, (7)

the linearized system of (3) at the equilibrium

E∗ = (S∗,E∗, I∗1 , I
∗
2 ,R

∗,Q∗)

yields the characteristic equation

u0(ξ) ·

∣∣∣∣∣∣∣∣∣∣
u1(ξ) 0 −a1S∗ 0 a3
a1I∗1 u2(ξ) a1S∗ 0 0
0 a5 u3(ξ) 0 0
0 0 a7 u4(ξ) 0
0 a10 a11 u5(ξ) u6(ξ)

∣∣∣∣∣∣∣∣∣∣
= 0 (8)

where the functiosn uj(ξ) are defined as

u0(ξ) = ξ + τ, u1(ξ) = −a1I∗1 − a2 − ξ,

u2(ξ) = −a4 − ξ, u3(ξ) = −a6 − ξ,

u4(ξ) = −a8 − ξ − 2a9e−ξT ,

u5(ξ) = 2a9e−ξT , u6(ξ) = −a12 − ξ.

Without delay, it has been shown [26] that the equilibrium
E∗ = Eq0 remains stable if the basic reproduction number
R0 < 1,whereas the equilibriumE∗ = Eq1 is stable ifR0 > 1,
where

R0 =
ΛςϕχΦ

(τ + ψ + α)(β + τ)(ς + τ)
.

However, as the delay T increases, the stability of equilib-
rium points may change, particularly when the characteristic
equation (8) admits either a zero eigenvalue or a pair of
purely imaginary eigenvalues. This shift marks the onset of
instability and the potential for a Hopf bifurcation.

1) Stability and Hopf bifurcation of E∗ = Eq0

The characteristic equation (8) simplifies under the assump-
tion that I∗1 = 0, leading to

(ξ + τ) · (ξ + a2) · (ξ + a12) ·
(
ξ + a8 + 2a9e−ξT )

·
[
ξ2 + (a4 + a6) ξ + a4a6 − a1a5S∗

]
= 0, (9)

where
S∗ =

βΛ

(β + τ)τ
.

Let ξ = 0. Substituting this into (9) yields

a4a6 − a1a5S∗ = 0.

Hence, the characteristic equation (9) does not have a zero
eigenvalue. In fact, by the Routh-Hurwitz criterion, local
stability of Eq0 in the absence of delay requires that a4a6 −
a1a5S∗ > 0. Now, assume ξ = iθ, with θ > 0, is a root of
(9). By separating the real and imaginary parts, we obtain

θ = 2a9 sin (θT ) , a8 = −2a9 cos (θT ) , (10)

which imply
θ2 = 4a29 − a28.

Thus, we define

θ =
√
4a29 − a28 ≡ θ∗ > 0.

Note that θ∗ > 0 since 0.05 ≤ τ ≤ 0.25 and the condition
4a29−a28 > 0 holds if and only if τ2+2ρτ+ρ2−4ζ2 < 0, or
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equivalently τ2+0.02τ−0.4899 < 0, which is satisfiedwhen
−0.71 < τ < 0.69. From (10), as sin (θT ) > 0, we derive
that the positive value θ∗ is acquired at the critical value

T =
1

θ∗
cos−1

(
− a8
2a9

)
≡ T∗. (11)

Next, we analyze the direction of the stability switches. By
choosing T as the bifurcation parameter, we investigate how
variations in the delay length impact the real parts of the roots
of the characteristic equation. Differentiating both sides of (9)
with respect to T , and using

2a9e−ξT = −(ξ + a8),

we obtain
dξ
dT

= − (ξ + a8)ξ
1 + (ξ + a8)T

.

This leads to the transversality condition

sign

{
d (Reξ)
dT

∣∣∣∣
T=T∗

}
= sign

{
θ2∗

(θ∗T∗)
2
+ (1 + a8T∗)

2

}
.

Since the fraction on the right-hand side is positive, it follows
that, as T increases through T∗, all roots cross the imaginary
axis from left to right, indicating that the equilibrium loses
stability. According to the Hopf bifurcation theorem, we can
state the following result.
Theorem 1:LetR0 < 1 and T∗ be defined as in (11). Then, the
equilibrium point Eq0 of system (3) loses stability at T = T∗
and bifurcates to chaos as T increases.

Theorem 1 is crucial because it provides a clear and rigor-
ous condition under which the disease-free equilibrium Eq0 of
the system loses stability due to delays. Specifically, it states
that when the basic reproduction number R0 is less than one,
the equilibrium remains stable for small delays. However,
as the delay T increases and reaches a critical threshold T∗,
the equilibrium loses stability, and the system undergoes a
Hopf bifurcation transitioning to periodic oscillations or even
chaotic behavior. This result is significant because it connects
the abstract mathematical concept of delay induced bifurca-
tion to the real world dynamics of social media addiction
and depression. By identifying T∗, this Theorem provides a
key predictive tool that helps us understand when even minor
delays in behavior, treatment response, or recovery can trigger
substantial qualitative changes in the system’s dynamics. This
insight is essential for designing timely interventions and con-
trol strategies to prevent undesirable outcomes in the modeled
population.

2) Stability and Hopf bifurcation of E∗ = Eq1

The characteristic equation (8) becomes more complex, tak-
ing the form the form

ξ5 + m1ξ
4 + m2ξ

3 + m3ξ
2 + m4ξ + m5

+ e−ξT (n1ξ4 + n2ξ3 + n3ξ2 + n4ξ + n5
)
= 0, (12)

where

m1 = a1I∗1 + a2 + a4 + a6 + a8 + a12,

m2 = a2a4 + a2a6 + a2a8 + a4a6 + a4a8 + a6a8 + a2a12 +
a4a12+a6a12+a8a12+a1a4I∗1 +a1a6I

∗
1 +a1a8I

∗
1 +a1a12I

∗
1 ,

m3 = a2a4a6 + a2a4a8 + a2a6a8 + a4a6a8 + a2a4a12 +
a2a6a12 + a2a8a12 + a4a6a12 + a4a8a12 + a6a8a12 −
a1a2a5S∗−a1a5a8S∗−a1a5a12S∗+a1a4a6I∗1 +a1a4a8I∗1 +
a1a6a8I∗1 −a1a3a10I∗1 +a1a4a12I∗1 +a1a6a12I∗1 +a1a8a12I∗1 ,
m4 = a2a4a6a8 + a2a4a6a12 + a2a4a8a12 + a2a6a8a12 +
a4a6a8a12 − a1a2a5a8S∗ − a1a2a5a12S∗ − a1a5a8a12S∗ +
a1a4a6a8I∗1 − a1a3a5a11I∗1 − a1a3a6a10I∗1 − a1a3a8a10I∗1 +
a1a4a6a12I∗1 + a1a4a8a12I∗1 + a1a6a8a12I∗1 ,

m5 = a2a4a6a8a12 − a1a3a5a8a11I∗1 − a1a3a6a8a10I∗1 +
a1a4a6a8a12I∗1 − a1a2a5a8a12S∗,
and
n1 = 2a9, n2 = 2a9 (a1I∗1 + a2 + a4 + a6 + a12),

n3 = 2a2a4a9 + 2a2a6a9 + 2a4a6a9 + 2a2a9a12 +
2a4a9a12+2a6a9a12−2a1a5a9S∗+2a1a4a9I∗1+2a1a6a9I∗1+
2a1a9a12I∗1 ,

n4 = 2a2a4a6a9 + 2a2a4a9a12 + 2a2a6a9a12 +
2a4a6a9a12−2a1a2a5a9S∗−2a1a5a9a12S∗+2a1a4a6a9I∗1−
2a1a3a9a10I∗1 + 2a1a4a9a12I∗1 + 2a1a6a9a12I∗1 ,

n5 = 2a2a4a6a9a12 − 2a1a3a5a7a9I∗1 − 2a1a3a5a9a11I∗1 −
2a1a3a6a9a10I∗1 + 2a1a4a6a9a12I∗1 − 2a1a2a5a9a12S∗.

If we set ξ = 0 in (12), we obtain m5 + n5 = 0, which is a
contradiction. In fact, when T = 0, (12) simplifies to

ξ5 + (m1 + n1) ξ4 + (m2 + n2) ξ3 + (m3 + n3) ξ2

+ (m4 + n4) ξ + m5 + n5 = 0.

Since Eq1 is locally stable, the Routh-Hurwitz criterion im-
plies that the coefficient m5 + n5 must be positive. Next,
suppose that ξ = iθ, with θ > 0, is an eigenvalue of (12).
Then, θ must satisfy

θ5 − m2θ
3 + m4θ =

(
n1θ4 − n3θ2 + n5

)
sin (θT )

+
(
n2θ3 − n4θ

)
cos (θT ) , (13)

m1θ
4 − m3θ

2 + m5 = −
(
n1θ4 − n3θ2 + n5

)
cos (θT )

+
(
n2θ3 − n4θ

)
sin (θT ) . (14)

Squaring and adding (13) and (14), we obtain

θ10 + p1θ8 + p2θ6 + p3θ4 + p4θ2 + p5 = 0, (15)

where

p1 = m2
1 − 2m2 − n21,

p2 = m2
2 + 2m4 − 2m1m3 + 2n1n3 − n22,

p3 = m2
3 − 2m2m4 − n23 + 2n2n4 + 2m1m5 − 2n1n5,

p4 = m2
4 − n24 − 2m3m5 + 2n3n5,

p5 = m2
5 − n25.
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Let u = θ2. Then, the tenth degree equation in θ can be
reduced to a quintic equation in u

h(u) = u5 + p1u4 + p2u3 + p3u2 + p4u+ p5 = 0. (16)

The subsequent steps will provide some theorems to deter-
mine the distribution of positive real roots of (16).
Theorem 2: If p5 < 0, then (16) has at least one positive root.
Proof 1: Since h(0) = p5 < 0 and h(+∞) = +∞, there
exists a value u0 such that h(u0) = 0.
On the other hand, when p5 ≥ 0, we consider

h′(u) = 5u4 + 4p1u3 + 3p2u2 + 2p3u+ p4 = 0. (17)

Letting u = y− P1/5, then (17) is transformed into

y4 + P1y2 + Q1y+ R1 = 0,

where

P1 = − 6

25
p21 +

3

5
p2,

Q1 =
8

125
p31 −

6

25
p1p2 +

2

5
p3,

R1 = − 3

625
p41 +

3

125
p21p2 −

2

25
p1p3 +

1

5
p4.

For convenience, we set

∆0 = P2
1 − 4R1,

P2 = −1

3
P2
1 − 4R1,

Q2 = − 2

27
P3
1 +

8

3
P1R1 − Q2

1,

∆1 =
1

27
P3
2 +

1

4
Q2

2,

S∗ =
3

√
−Q2

2
+
√
∆1 +

3

√
−Q2

2
−
√
∆1 +

1

3
P1,

∆2 = −S∗ − P1 +
2Q1√
S∗ − P1

,

∆3 = −S∗ − P1 −
2Q1√
S∗ − P1

.

Using similar reasoning as in [46], we reach the following
findings.
Theorem 3:
1) Equation (17) has at least one positive root if one of the

following conditions i)− iv) holds.
i) p5 < 0.
ii) p5 ≥ 0, Q1 = 0, ∆0 ≥ 0, and P1 < 0 or R1 ≤ 0 and

there exists u∗ ∈ {u1, u2, u3, u4} such that u∗ > 0 and
h (u∗) ≤ 0, where ui = yi − P1/5 (i = 1, 2, 3, 4), and

y1 =

√
−P1 +

√
∆0

2
, y2 = −

√
−P1 +

√
∆0

2
,

y3 =

√
−P1 −

√
∆0

2
, y4 = −

√
−P1 −

√
∆0

2
.

iii) p5 ≥ 0, Q1 ̸= 0, S∗ > P1, ∆2 ≥ 0, or ∆3 ≥ 0 and
there exists u∗ ∈ {u∗1, u∗2, u∗3, u∗4} such that u∗ > 0 and
h (u∗) ≤ 0, where ui = yi − P1/5 (i = 1, 2, 3, 4), and

y1 =
−
√
S∗ − P1 +

√
∆2

2
,

y2 =
−
√
S∗ − P1 −

√
∆2

2
,

y3 =

√
S∗ − P1 +

√
∆3

2
,

y4 =

√
S∗ − P1 −

√
∆3

2
.

iv) p5 ≥ 0, Q1 ̸= 0, S∗ < P1, Q2
1/4 (P1 − S∗)

2
+ S∗/2 =

0, ū > 0, and h(ū) ≤ 0, where

ū =
Q1

2 (P1 − S∗)
− P1

5
.

2) If conditions i)-iv) are all not satisfied, then (17) has no
positive real root.

Suppose that (16) has positive roots. Without loss of gen-
erality, assume that it has five positive roots, denoted by
u1, u2, u3, u4, u5, respectively. Then, equation (15) has five
positive roots given by

θk =
√
uk , k = 1, 2, 3, 4, 5.

From (13) and (14), we get the corresponding T j
k > 0 such

that the characteristic equation (12) has purely imaginary
roots. Specifically,

T j
k =

1

θk

[
cos−1

(
z1 − z2
z3

)
+ 2πj

]
,

for j = 0, 1, 2, ..., where

z1 =
(
θ5k − m2θ

3
k + m4θk

) (
n2θ3k − n4θk

)
,

z2 =
(
m1θ

4
k − m3θ

2
k + m5

) (
n1θ4k − n3θ2k + n5

)
,

z3 =
(
n2θ3k − n4θk

)2
+
(
n1θ4k − n3θ2k + n5

)2
.

Thus, ±iθk forms a pair of purely imaginary roots of (12)
when T = T j

k . Define

T∗ = T 0
k0 = min

k∈{1,2,3,4,5}

{
T 0
k

}
, θ∗ = θk0 . (18)

Let ξ(T ) = α(T ) + iθ(T ) be the root of (12) satisfying
ξ (T∗) = 0 and θ (T∗) = θ∗. Differentiating (12) with respect
to T yields(

dξ
dT

)−1

= − 5ξ4 + 4m1ξ
3 + 3m2ξ

2 + 2m3ξ + m4

ξ6 + m1ξ5 + m2ξ4 + m3ξ3 + m4ξ2 + m5ξ

+
4n1ξ3 + 3n2ξ2 + 2n3ξ + n4

n1ξ5 + n2ξ4 + n3ξ3 + n4ξ2 + n5ξ
− T
ξ
.
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A direct calculation shows that[
d(Reξ)
dT

]−1

T=T∗

= −
(
5θ4∗ − 3m2θ

2
∗ + m4

) (
−θ6∗ + m2θ

4
∗ − m4θ

2
∗
)

(−θ6∗ + m2θ4∗ − m4θ2∗)
2
+ (m1θ5∗ − m3θ3∗ + m5θ∗)

2

+

(
4m1θ

3
∗ − 2m3θ∗

) (
m1θ

5
∗ − m3θ

3
∗ + m5θ∗

)
(−θ6∗ + m2θ4∗ − m4θ2∗)

2
+ (m1θ5∗ − m3θ3∗ + m5θ∗)

2

+

(
−3n2θ2∗ + n4

) (
n2θ4∗ − n4θ2∗

)
(n2θ4∗ − n4θ2∗)

2
+ (n1θ5∗ − n3θ3∗ + n5θ∗)

2

+

(
−4n1θ3∗ + 2n3θ∗

) (
n1θ5∗ − n3θ3∗ + n5θ∗

)
(n2θ4∗ − n4θ2∗)

2
+ (n1θ5∗ − n3θ3∗ + n5θ∗)

2 .

From (12), we find(
θ5 − m2θ

3 + m4θ
)2

+
(
m1θ

4 − m3θ
2 + m5

)2
=
(
n2θ3 − n4θ

)2
+
(
n1θ4 − n3θ2 + n5

)2
.

Consequently,[
d(Reξ)
dT

]−1

T=T∗

=
5u4∗ + 4p1u3∗ + 3p2u2∗ + 2p3u∗ + p4

(n1θ4∗ − n3θ2∗ + n5)
2
+ (n2θ2∗ − n4)

2
θ2∗

=
h′ (u∗)

(n1θ4∗ − n3θ2∗ + n5)
2
+ (n2θ2∗ − n4)

2
θ2∗
,

which implies

sign
[
d(Reξ)
dT

]
T=T∗

= sign
[
d(Reξ)
dT

]−1

T=T∗

= sign [h′ (u∗)] .

Based on this analysis, the following results are obtained.
Theorem 4: Let R0 > 1 and T∗, θ∗ defined as in (18).
1) If the conditions i)-iv) of the previous Theorem are not

satisfied, then the equilibrium pointEq1 of system (3) is
locally asymptotically stable for all time delay T ≥ 0.

2) If one of the conditions i)-iv) is satisfied, then the
equilibrium pointEq1 of system (3) is locally asymptot-
ically stable for T ∈ [0,T∗), and unstable for T > T∗.

3) If all conditions i)-iv) hold and h′
(
θ2∗
)

̸= 0, then
system (3) undergoes a Hopf bifurcation at Eq1 when
T = T∗.

Theorem 4 is of critical importance because it rigorously
characterizes the behavior of the endemic equilibrium in
the presence of delays. Specifically, the theorem establishes
conditions under which the equilibrium remains stable or
becomes unstable as the delay increases, ultimately leading
to a Hopf bifurcation. In essence, when the delay is below a
critical threshold T∗, the system maintains a stable endemic
state. However, once the delay exceeds T∗, the equilibrium
loses stability, giving rise to periodic oscillations. These os-
cillations may manifest as relapses or fluctuations in the
levels of addiction and depression, which are of significant
practical concern. Moreover, by pinpointing the critical delay

threshold, Theorem 4 offers valuable insights for designing
intervention strategies, as it identifies a crucial time window
during which timely actions can help prevent or mitigate
destabilizing dynamics. Overall, this theorem not only deep-
ens our theoretical understanding of how delays affect com-
plex systems but also bridges mathematical modeling with
practical approaches to managing social media addiction and
depression.

B. CASE: DISTRIBUTED DELAY (VARIABLE TIME LAG)
In reality, individuals experience delays that vary from per-
son to person. This variability can be modeled using delay
distributions like the gamma distribution obtained for

g(t) =
cptp−1e−ct

(p− 1)!
,

where the parameters p and c determine the shape of the
distribution. Notably, when both p and c approach infinity,
this distribution converges to the Dirac delta distribution, rep-
resenting a fixed delay. Including gamma distributed delays in
the model results in a more complex characteristic equation,
for which deriving general stability conditions becomes chal-
lenging. To simplify the analysis, researchers use a technique
known as the linear chain trick to convert the distributed
delay differential equations into a set of ordinary differential
equations. In our study, following Cushing’s approach [45],
we focus on the weak kernel case, where p = 1, a scenario
commonly referenced in the literature. By introducing a new
variable

X(t) =
∫ t

−∞
I2(r)ce−c(t−r)dr ,

we transform system (2) into an equivalent augmented system
that is more amenable to analysis. Specifically, we have that
the original distributed-delay system can now be expressed as
a set of ordinary differential equations, with X(t) capturing
the history of the I2 compartment in a weighted manner. This
reformulated system allows us to apply standard techniques
in stability and bifurcation analysis, thereby simplifying the
investigation of the system’s dynamics. Specifically, we have

Ṡ = Λ+ ζλR− ϕχI1S − (β + τ)S,

Ė = ϕχI1S − (ς + τ)E ,

İ1 = ΦςE − (τ + ψ + α)I1,

İ2 = αI1 + ψ(1− ω)I1 − (ρ+ τ)I2 − vX ,

Ṙ = (1− Φ)ςE + vX + ψωI1 − (τ + λ)R,

Q̇ = βS + (1− ζ)λR− τQ,

Ẋ = c(I2 − X).

(19)

The equilibrium of system (19) is (E∗,X∗), where

E∗ = (S∗,E∗, I∗1 , I
∗
2 ,R

∗,Q∗),
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with E∗ = Eq0 or E∗ = Eq1 defined earlier, and X∗ = I∗2 . The
characteristic equation corresponding to the linearized system
oaround the equilibrium (E∗,X∗) is

v0(ξ) · C(ξ) = 0, (20)

where

C(ξ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1(ξ) 0 −a1S∗ 0 a3 0

a1I∗1 v2(ξ) a1S∗ 0 0 0

0 a5 v3(ξ) 0 0 0

0 0 a7 v4(ξ) 0 −2a9

0 a10 a11 0 v5(ξ) 2a9

0 0 0 c 0 v6(ξ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

with

v0(ξ) = ξ + τ, v1(ξ) = −a1I∗1 − a2 − ξ,

v2(ξ) = −a4 − ξ, v3(ξ) = −a6 − ξ,

v4(ξ) = −a8 − ξ, v5(ξ) = −a12 − ξ, v6(ξ) = −c− ξ,

and a1, a2, ..., a12 as in (4)-(7). Expanding equation (20), we
get

(ξ + τ) · Ω(ξ, c) = 0, (21)

where

Ω(ξ, c) = ξ6 + b1ξ5 + b2ξ4 + b3ξ3 + b4ξ2 + b5ξ + b6,

and
b1 = b1(c) = c+ a2 + a4 + a6 + a8 + a12 + a1I∗1 ,

b2 = b2(c) = ca2+ ca4+ ca6+ ca8+2ca9+ ca12+a2a4+
a2a6+a2a8+a4a6+a4a8+a6a8+a2a12+a4a12+a6a12+
a8a12+a1a4I∗1+a1a6I

∗
1+a1a8I

∗
1+a1a12I

∗
1+ca1I

∗
1−a1a5S∗,

b3 = b3(c) = a2a4 + a2a6 + a2a8 + a4a6 +2a2a9 + a4a8 +
2a4a9 + a6a8 + 2a6a9 + a2a12 + a4a12 + a6a12 + a8a12 +
2a9a12 + a1a4I∗1 + a1a6I∗1 + a1a8I∗1 +2a1a9I∗1 + a1a12I∗1 +
a2a4a6+ a2a4a8+ a2a6a8+ a4a6a8+ a2a4a12+ a2a6a12+
a2a8a12 + a4a6a12 + a4a8a12 + a6a8a12 − a1a2a5S∗ −
a1a5a8S∗−a1a5a12S∗+a1a4a6I∗1 +a1a4a8I∗1 +a1a6a8I∗1 −
a1a3a10I∗1 +a1a4a12I∗1 +a1a6a12I∗1 +a1a8a12I∗1 −ca1a5S∗,

b4 = b4(c) = 2a2a4a6 − a1a2a5 − a21a5I
∗
1 + 2a2a4a8 +

4a2a4a9 + 2a2a6a8 + 4a2a6a9 + a4a6a8 + 2a4a6a9 +
2a2a4a12 + 2a2a6a12 + 2a2a8a12 + a4a6a12 + 4a2a9a12 +
a4a8a12 + 2a4a9a12 + a6a8a12 + 2a6a9a12 − a1a5a8S∗ −
2a1a5a9S∗ − a1a5a12S∗ + 2a1a4a6I∗1 + 2a1a4a8I∗1 +
4a1a4a9I∗1 + 2a1a6a8I∗1 + 4a1a6a9I∗1 − a1a3a10I∗1 +
2a1a4a12I∗1 + 2a1a6a12I∗1 + 2a1a8a12I∗1 + 4a1a9a12I∗1 +
ca21a5I

∗
1 S

∗,

b5 = b5(c) = 2a4a6a9 + a4a6a12 + a4a8a12 + 2a4a9a12 +
a6a8a12+2a6a9a12+a2a4a6a8+a4a6a8a12+2a4a6a9a12−
a1a5a8S∗ − 2a1a5a9S∗ − a1a5a12S∗ + a21a5a8I

∗
1 S

∗ +
2a21a5a9I

∗
1 S

∗+a21a5a12I
∗
1 S

∗+a2a4a6a8a12−a1a5a8a12S∗−
2a1a5a9a12S∗−a1a3a6a8a10I∗1+a1a4a6a8I∗1−ca1a3a6a10I∗1
− 2ca1a3a9a10I∗1 − a1a2a5a8a12S∗ − ca1a3a5a11I∗1 −
ca1a3a8a10I∗1 − a1a3a5a8a11I∗1 + a1a4a6a8a12I∗1 ,

b6 = b6(c) = a2a4a6a8a12 + 2a2a4a6a9a12 −
2a1a3a5a7a9I∗1 − a1a3a5a8a11I∗1 − a1a3a6a8a10I∗1 −
2a1a3a5a9a11I∗1 − 2a1a3a6a9a10I∗1 + a1a4a6a8a12I∗1 +
2a1a4a6a9a12I∗1 − a21a5a8a12I

∗
1 S

∗ − 2a21a5a9a12I
∗
1 S

∗ −
a1a2a5a8a12S∗ − 2a1a2a5a9a12S∗ + ca21a5a8a12I

∗
1 S

∗ +
2ca21a5a9a12I

∗
1 S

∗.

The local asymptotic stability of (19) is established when
all characteristic roots of equation (21) have negative real
parts. The Routh-Hurwitz criteria provide the necessary and
sufficient condtions for this, which are

D1(c) = b1 > 0,

D2(c) = b1b2 − b3 > 0,

D3(c) = −b4b21 + b2b1b3 + b5b1 − b23 > 0,

D4(c) = b6b21b2 − b21b
2
4 − b1b22b5 + b1b2b3b4 − b6b1b3

−b6b1b3 + 2b1b4b5 + b2b3b5 − b23b4 − b25 > 0,

D5(c) = −b31b26 + 2b21b2b5b6 + b21b3b4b6 − b21b
2
4b5

−b1b22b25 − b1b2b23b6 + b1b2b3b4b5 − 3b1b3b5b6

+2b1b4b25 + b2b3b25 + b33b6 − b23b4b5 − b35 > 0,

D6(c) = b6 > 0.

Theorem 5: If c > 0 takes value such that Dj(c) > 0 (j =
1, ..., 6), then system (19) is locally asymptotically stable.
By setting ξ = iθ, θ > 0, we derive two key equations

b1θ4 − b3θ2 + b5 = 0, (22)

−θ6 + b2θ4 − b4θ2 + b6 = 0. (23)

Equation (22) is a biquadratic equation whose positive solu-
tion is

θ2 =
b3 +

√
b23 − 4b1b5
2b1

≡ θ2∗.

Plugging this value in (23), we have

−

(
b3 +

√
b23 − 4b1b5
2b1

)3

+b2

(
b3 +

√
b23 − 4b1b5
2b1

)2

− b4

(
b3 +

√
b23 − 4b1b5
2b1

)
+ b6 = 0.

After some calculations, we obtain the condition

D5(c) = 0.

Accordingly, we have the following conclusion.
Theorem 6: If there exists c = c∗ > 0 satisfying D5(c) =
0, then the characteristic equation (21) has a pair of purely
imaginary roots ξ = ±iθ∗.
Next, we select c as the bifurcation parameter and examine the
sign of the derivative of Reξ at the points where ξ is purely
imaginary. Noting that

dΩ
dc

=
dΩ
dξ

· dξ
dc
,
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we derive[
d(Reξ)
dc

]
ξ=iθ∗

=Re
(
dξ
dc

)
ξ=iθ∗

=Re
(
dΩ
dξ

)−1

ξ=iθ∗

·
[
d(ReΩ)
dc

]
ξ=iθ∗

(24)

From(
dΩ
dξ

)
ξ=iθ∗

= 6θ5∗i+5b∗1θ
4
∗−4b∗2θ

3
∗i−3b∗3θ

2
∗+2b∗4θ∗i+b

∗
5,

where b∗j = bj(c∗), j = 1, ..., 5, one has

Re
(
dΩ
dξ

)−1

ξ=iθ∗

= Re
[

1

5b∗1θ4∗ − 3b∗3θ2∗ + b∗5 + (6θ5∗ − 4b∗2θ3∗ + 2b∗4θ∗) i

]

=
5b∗1θ

4
∗ − 3b∗3θ

2
∗ + b∗5

(5b∗1θ4∗ − 3b∗3θ2∗ + b∗5)
2
+ (6θ5∗ − 4b∗2θ3∗ + 2b∗4θ∗)

2

=
b∗3
(
b∗3 +

√
b∗23 − 4b∗1b

∗
5

)
− 4b∗1b

∗
5

b∗1M(θ∗)
,

with

M(θ∗) =
(
5b∗1θ

4
∗ − 3b∗3θ

2
∗ + b∗5

)2
+
(
6θ5∗ − 4b∗2θ

3
∗ + 2b∗4θ∗

)2
.

On the other hand, from

Ω(iθ, c) = −θ6+ b1θ5i+ b2θ4− b3θ3i− b4θ2+ b5θi5+ b6,

we get

Re [Ω(ξ, c)] = −θ6 + b2θ4 − b4θ2 + b6

=
1

2b31

[
2b31b6 + 3b1b3b5 − 2b21b2b5 − b33 + b1b2b23

−b21b3b4 −
(
b23 − b1b2b3 + b21b4 − b1b5

)√
b23 − 4b1b5]

=
1

2b31

−4b31D5(c)
N (θ)

= −2D5(c)
N (θ)

,

with

N (θ) = 2b31b6+3b1b3b5−2b21b2b5−b33+b1b2b23−b21b3b4

+
(
b23 − b1b2b3 + b21b4 − b1b5

)√
b23 − 4b1b5.

Then,

[
d(ReΩ)
dc

]
ξ=iθ∗

=−2 ·

dD5(c∗)
dc

N (θ∗)− D5(c∗)
dN (θ∗)

dc
[N (θ∗)]

2

=− 2

N (θ∗)
· dD5(c∗)

dc
.

Hence, (24) becomes

[
d(Reξ)
dc

]
ξ=iθ∗

= −

[
2b∗3

(
b∗3 +

√
b∗23 − 4b∗1b

∗
5

)
− 8b∗1b

∗
5

]
b∗1M(θ∗)N (θ∗)

· dD5(c∗)
dc

.

The previous analysis leads to the following conclusions.
Theorem 7: If there exists c = c∗ > 0 such that D5(c) = 0,
and dD5(c∗)/dc ̸= 0, then a Hopf bifurcation occurs at the
steady state of system (19) as c passes through c∗.
The importance of this theorem lies in its ability to pre-

cisely determine when a Hopf bifurcation occurs in the sys-
temwith distributed delays. This is significant because a Hopf
bifurcation indicates a transition from a stable equilibrium
to periodic oscillations, which in the context of our model
may correspond to recurring cycles of social media addiction
and depression. By providing a clear, rigorous condition for
this transition, the theorem not only deepens our theoretical
understanding of how delays affect system dynamics but also
offers practical insights. For instance, identifying the critical
parameter c∗ can help inform intervention strategies by pin-
pointing when the system is likely to experience destabilizing
oscillations, thereby allowing for timely and targeted actions
to mitigate adverse outcomes.

IV. DIRECTION OF HOPF BIFURCATION AND STABILITY
OF PERIODIC SOLUTIONS
When delays cause the system to lose stability, it often begins
to oscillate, resulting in cyclical fluctuations in the number of
addicted and depressed individuals. This behavior is charac-
teristic of a Hopf bifurcation, a critical point where a stable
equilibrium loses stability and periodic oscillations emerge,
much like calm water forming waves once a threshold is
surpassed. At this bifurcation, the system’s equilibrium is dis-
rupted, and the resulting cycles may either grow or eventually
settle into regular, predictable patterns. To analyze these dy-
namics, we employ advanced techniques such as center man-
ifold theory and normal form theory, as proposed by Hassard
et al. [32]. These methods enable us to determine the stability
of the oscillations and the evolution of their amplitudes over
time. Such analysis is crucial for public health strategies. If
the system settles into stable oscillations, interventions can
be optimally timed, whereas unstable oscillations necessitate
immediate action. We now present a comprehensive mathe-
matical analysis that elucidates the conditions under which
the system (3) with delay undergoes Hopf bifurcation, and
we detail the behavior of the system post-bifurcation. Let

Υ = Υ0 + ξ (ξ ∈ R), Ω1(t) = S(t)− S∗,

Ω2(t) = E(t)− E∗, Ω3(t) = I1(t)− I∗1 ,

Ω4(t) = I2(t)− I∗2 , Ω5(t) = R(t)− R∗,

Ω6(t) = Q(t)− Q∗, Ωi(t) = Ωi(tT ),
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for i = 1, 2, 3, 4, 5, 6. Then, system (3) can be rewritten as
a functional differential equation in the Banach space C =
C([−1, 0],R6)

Ω′(t) = DξΩt +M (ξ,Ωt) . (25)

where

Ω(t) = (Ω1(t),Ω2(t),Ω3(t),Ω4(t),Ω5(t),Ω6(t))
T ∈ R6,

Ωt(θ) = Ω(t + θ), θ ∈ [−1, 0],

Dξ : C → R, F : R× C → R

are defined by

Dξ(γ) = (T∗ + ξ) [M1γ(0) + N1γ(−1)] (26)

and
M(ξ, γ) = (T∗ + ξ) (Π1,Π2, 0, 0, 0, 0)

T
,

with

M1 =



m11 0 m13 0 m15 0

m21 m22 m23 0 0 0

0 m32 m33 0 0 0

0 0 m43 m44 0 0

0 m52 m53 0 m55 0

m61 0 0 0 m65 m66


,

N1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 n44 0 0

0 0 0 n54 0 0

0 0 0 0 0 0


,

where

m11 = −ϕχI∗1 − (β + τ), m13 = −ϕχS∗, m15 = ςλ,

m21 = ϕχI∗1 , m22 = −(ς + λ), m23 = ϕχS∗, m32 = ϕς,

m33 = −(τ + φ+ α), m43 = α+ ψ(1− ω),

m44 = −(ρ+ τ), m52 = (1− ϕ)ς, m53 = φω,

m55 = −(τ + λ), m61 = β, m65 = (1− ς)λ,

m66 = τ, n44 = −ϑ, n55 = ϑ,

Π1 = −ϕχγ1(0)γ3(0), Π2 = ϕχγ1(0)γ3(0).

By the Riesz representation theorem, there exists a function
of bounded variation components L(θ, ξ) such that

Dξ(γ) =

∫ 0

−1

γ(θ)dL(θ, ξ), for γ ∈ C .

Based on (26), we set

L(θ, ξ) = (T∗ + ξ) [M1γ(θ) + N1γ(θ + 1)] .

Define P(ξ) and a(ξ) by

P(ξ)γ =


dγ(θ)
dθ

, −1 ≤ θ < 0,∫ 0

−1

dL(t,W )γ(θ), θ = 0,

(27)

and

a(ξ)η =

0, −1 ≤ θ < 0,

K (θ, ξ), θ = 0.

Then, system (25) can be further represented as the following
ordinary differential equation

Ω′(t) = P(ξ)Ωt + α(ξ)Ωt .

For Γ ∈ C1
(
[0, 1],R5

)
, the adjoint operator P∗ of P(0) is

expressed as

P∗(Γ) =


−dΓ(κ)

dκ
, 0 < κ ≤ 1,∫ 0

−1

dLT (κ, 0)λ(−κ), κ = 0.

(28)

Next, we define the following bilinear inner product of P and
P∗

< Γ(κ), γ(θ) >= Γ̄(0)γ(0)

−
∫ 0

θ=−1

∫ θ

ω=0

Γ̄(ω̄ − θ)dL(θ)γ(ω)dω (29)

with θ(t) = θ(t, 0). Let

y(t) = (1, y2, y3, y4, y5, y6)
T e−iω0T∗θ

be the eigenvector of P(θ) associated with the eigenvalue
iω0I4, and

y∗(v) = Z (1, y∗2, y
∗
3, y

∗
4, y

∗
5, y

∗
6)
T eiω0T∗v

the eigenvector of P∗(0) associated with the eigenvalue
−iω0T∗. According to (27) and (28), a direct calculation
yields

y2 =
m21 (iω0ξ0 − m33)

m22m33 − m32m23 − ω2
0ξ

2
0 − iω0ξ0 (m22 + m33)

,

y3 =
m32y2

iω0ξ0 − m33
, y4 =

m43y3
iω0ξ0 − m44 − n44e−iω0ξ0T∗

,

y5 =
iω0ξ0 − m11 − m13y3

m15
, y6 =

m61 + m65y4
iω0ξ0 − m66

,

y∗2 = − m21

m11 + iω0ξ0
, y∗3 =

m22 + iω0ξ0
m32 (m11 + iω0ξ0)

,

y∗4 = − n54eiω0ξ0T∗y∗5
m44 + n44eiω0ξ0T∗ + iω0ξ0

, y∗5 = −m15 + m65y∗6
m55 + iω0ξ0

,

y∗6 = −m11 + iω0ξ0 + m21y∗2
m61

.
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From (29), it follows

Ā = [1 + y2ȳ∗2 + y3ȳ∗3 + y4ȳ∗4 + y5ȳ∗5 + y6ȳ∗6

+T∗e−iω0T∗y4 (1− ȳ∗5)
]−1

,

so that< y∗, y >= 1 and< y∗, ȳ >= 0. Now, using the algo-
rithms [33], [34] and a similar computation process to that in
[32], [35], we can obtain the expressions of y20, y11, y02 and
y21 and get

y20 = 2T∗Āϕχy3 (ȳ∗3 − 1) ,

y11 = 2T∗Āϕχ (y3 + ȳ∗3) (ȳ
∗
3 − 1) ,

y02 = 2ϕχT∗Āȳ3 (ȳ∗3 − 1) ,

y21 = 2T∗Ā (ȳ∗3 − 1)

[
ϕχ

(
Φ

(1)
11 (0)y2 +

1

2
Φ

(1)
20 (0)ȳ2

+Φ
(2)
11 (0) +

1

2
Φ

(1)
20 (0)

)]
where

Φ20(θ) = − iy20y(0)
T∗ω0

+
iȳ02ȳ(0)
3T∗ω0

+ H1e2iT∗ω0θ,

Φ11(θ) = − iy11
T∗ω0

y(0) +
iȳ11
T∗ω0

ȳ(0) + H2,

and

H1 =
(
H (1)

1 ,H (2)
1 ,H (3)

1 ,H (4)
1 ,H (5)

1 ,H (6)
1

)
∈ R6,

H2 =
(
H (1)

2 ,H (2)
2 ,H (3)

2 ,H (4)
2 ,H (5)

2 ,H (6)
2

)
∈ R6

given by

H (1)
1 = l1


r8 0 −m13 0 −m15 0
−r8 r2 −m23 0 0 0
0 −m32 r3 0 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (2)
1 = l1


r1 r8 −m13 0 −m15 0

−m21 −r8 −m23 0 0 0
0 −m32 r3 0 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (3)
1 = l1


r1 0 r8 0 −m15 0

−m21 r2 −r8 0 0 0
0 −m32 r3 0 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (4)
1 = l1


r1 0 −m13 r8 −m15 0

−m21 r2 m23 −r8 0 0
0 −m32 r3 −m34 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (5)
1 = l1


r1 0 −m13 0 r8 0

−m21 r2 −m23 0 −r8 0
0 −m32 r3 −m34 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6



H (6)
1 = l1


r1 0 −m13 0 0 r8

−m21 r2 −m23 0 0 −r8
0 −m32 r3 −m34 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6


having set

l1 =
2

Φ20
, r1 = 2iω0 − m11, r2 = 2iω0 − m22,

r3 = 2iω0 − m33, r4 = 2iω0 − m44 − n44e−2iω0I4 ,

r5 = 2iω0 − m55, r6 = 2iω0 − m66,

r7 = −n54e−2iω0T4 , r8 = −ϕχy3

and

H (1)
2 = l2


h 0 m13 0 m15 0
−h m22 m23 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 + n44 0 0
0 0 m53 n54 m55 0
m61 0 0 0 m65 m66



H (2)
2 = l2


m11 h m13 0 m15 0
m21 −h m23 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66



H (3)
2 = l2


m11 0 h 0 m15 0
m21 m22 −h 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66


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H (4)
2 = l2


m11 0 m13 h m15 0
m21 m22 m23 −h 0 0
0 m32 m33 m34 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66



H (5)
2 = l2


m11 0 m13 0 h 0
m21 m22 m23 0 −h 0
0 m32 m33 m34 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66



H (6)
2 = l2


m11 0 m13 0 0 h
m21 m22 m23 0 0 −h
0 m32 m33 m34 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66


with

l2 = − 2

Φ11
, h = −ϕχ (y3 + ȳ3) ,

and

Φ20 =

∣∣∣∣∣∣∣∣∣∣∣∣

r1 0 −m13 0 −m15 0
m21 r2 −m23 0 0 0
0 −m32 r3 0 0 0
0 0 −m43 r4 0 0
0 −m52 −m53 r7 r5 0

−m61 0 0 0 −m65 r6

∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ11 =

∣∣∣∣∣∣∣∣∣∣∣∣

m11 0 m13 0 m15 0
m21 m22 m23 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 + n44 0 0
0 m52 m53 n54 m55 0
m61 0 0 0 m65 m66

∣∣∣∣∣∣∣∣∣∣∣∣
.

In conclusion, we can calculate all of the following quan-
tities which are required for the analysis of Hopf bifurcation

£1(0) =
i

2T∗ω0

[
y11y20 − 2 |y11|2 −

|y02|2

3

]
+
y21
2
,

ℑ = − Re [£1(0)]

Re [λ′ (T∗)]
, ℵ = 2Re [£1(0)] ,

℘ =
−Im [£1(0)] + ℑIm [λ′ (T∗)]

T∗ω0
.

Theorem 8:
i) If ℑ > 0, the Hopf bifurcation is supercritical. Con-

versely, if ℑ < 0, the bifurcation is subcritical.
ii) If ℵ < 0, the bifurcation periodic solutions are stable. If

ℵ > 0, they are unstable.

iii) If ℘ > 0, the amplitude of the bifurcating periodic
solutions increases as the bifurcation parameter moves
away from the critical value. If ℘ < 0, the amplitude
decreases.

Theorem 8 establishes conditions under which the system,
despite undergoing a Hopf bifurcation, will ultimately return
to a stable state after its initial transition to oscillations. It
demonstrates that, beyond the onset of periodic oscillations,
the system can recover stability under specific parameter
adjustments. This insight is crucial for understanding not only
the dynamics during periods of instability but also the po-
tential for eventual stabilization, especially in systems where
addiction and depression cycles may persist over time. The
result underscores the practical relevance of the model, as it
provides a clearer understanding of how delayed treatment
responses and recovery periods might affect the long-term
dynamics of social media addiction and depression. Conse-
quently, the findings of Theorem 8 guide the development of
intervention strategies aimed at mitigating not only the imme-
diate oscillations but also ensuring the long-term stability of
the system.

V. NUMERICAL SIMULATIONS

To validate our analytical results, we conduct numerical sim-
ulations using MATLAB, investigating how different delay
types influence system stability and the transition to oscilla-
tory behavior. Our primary focus is on the effects of discrete
and distributed delays in the social media addiction and de-
pression model. The selected parameters were obtained from
[26] and chosen to satisfy the necessary conditions for the
occurrence of a Hopf bifurcation. We begin with a baseline
model that excludes time delays



Ṡ = 0.5 + (0.35)(0.4)R− (0.7)(0.0027)I1S

−(0.01 + 0.15)S,

Ė = (0.7)(0.0027)I1S − (0.35 + 0.15)E ,

İ1 = (0.3)(0.35)E − (0.2 + 0.25 + 0.4)I1,

İ2 = (0.41)I1 + 0.25(1− 0.8)I1

−(0.7 + 0.25 + 0.4)I2,

Ṙ = (1− 0.3)(0.35)E + 0.7I2 + (0.8)(0.25)I1

−(0.2 + 0.4)R,

Q̇ = (0.01)S + (1− 0.35)(0.4)R− (0.2)Q.

(30)

The parameters within these equations represent various rates
of movement between these compartments. Utilizing initial
conditions of S(0) = 2.0, E(0) = 1.5, I1(0) = 1,
I2(0) = 1.5, R(0) = 1.5, Q(0) = 0.75, and a calculated
basic reproduction number R0 = 0.4761, we explore the
stability of the disease free Eq0 and endemic Eq1 equilibria.
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(a) Time series of system (3) without delay. (b) Time series of system (3) with delay T = 2.285 < T∗

(c) Time series of system (3) with delay T = 2.385 = T∗ (d) Time series of system (3) with delay T = 2.485 > T∗

FIGURE 1: Time series of system (3) with various delays.

Subsequently, we introduce a discrete time delay T



Ṡ = 0.5 + (0.35)(0.4)R− (0.7)(0.0027)I1S

−(0.01 + 0.15)S,

Ė = (0.7)(0.0027)I1S − (0.35 + 0.15)E ,

İ1 = 0.3)(0.35)E − (0.2 + 0.25 + 0.4)I1,

İ2 = (0.41)I1 + 0.25(1− 0.8)I1

−(0.7)I2(t − T )− (0.25 + 0.4)I2,

Ṙ = ((1− 0.3)(0.35)E + 0.7I2(t − T )

+(0.8)(0.25)I1 − (0.2 + 0.4)R,

Q̇ = (0.01)S + (1− 0.35)(0.4)R− (0.2)Q.

(31)

Using the same initial conditions as (30) and maintaining
R0 = 0.4761, we investigate the impact of this fixed time
delay. Finally, we consider a distributed time delay, where
the transition from mild to severe addiction and recovery is

influenced by a weighted average of past states.

Ṡ = 0.5 + (0.35)(0.4)R− (0.7)(0.0027)I1S

−(0.01 + 0.15)S,

Ė = (0.7)(0.0027)I1S − (0.35 + 0.15)E ,

İ1 = (0.3)(0.35)E − (0.2 + 0.25 + 0.4)I1,

İ2 = (0.41)I1 + 0.25(1− 0.8)I1

−(0.7)

∫ t

−∞
I2(t)g(t − r)dr − (0.25 + 0.4)I2,

Ṙ = (1− 0.3)(0.35)E + (0.7)

∫ t

−∞
I2(t)g(t − r)dr

+(0.8)(0.25)I1 − (0.2 + 0.4)R,

Q̇ = (0.01)S + (1− 0.35)(0.4)R− (0.2)Q,

(32)

Applying the same initial conditions as in the previous sys-
tems, and same R0 value, we examine how averaging delays
over a time interval affects the system’s dynamics. We begin
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TABLE 3:Convergence time and final I2 values whenR0 <
1

System Delay type R0 Con. time Final I2
(30) None 0.4761 9.2167 0
(31) Discrete 0.4761 6.3934 0
(32) Distributed 0.6437 4.6932 0

by examining the influence of discrete delay T on the tempo-
ral evolution of the infected individuals I2 in system (31).
Figure 1 presents the time series of I2 for different delay

values (the corresponding figures are presented at the end of
the section). Specifically, it compares the undelayed system
(30)) with scenarios where T is below (T = 2.285 < T∗), at
(T = T∗ = 2.385), and above T = 2.485 > T∗ the critical
delay threshold T∗ = 2.385, highlighting the transition from
stability to potential instability.

• Figure 1a: No delay (T = 0)
In the absence of delay, the rapid convergence of I2 to
zero indicates a stable disease free equilibrium Eq0 when
R0 < 1. This suggests that without delays, the system
effectively controls the spread of social media induced
depression, given the parameters set.

• Figure 1b: Delay below the critical threshold (T < T∗)
I2 still converges to zero, but the extended convergence
time implies that the delay slows down the system’s abil-
ity to return to the disease free state. This suggests that
even small delays can temporarily hinder the recovery
process.

• Figure 1c: At the critical delay (T∗ = 2.385)
A significant slowing of convergence is observed. This
pivotal point signifies a transition where the system’s
stability is critically challenged. Biologically, this sug-
gests that at this specific delay, the time lag in the
system’s response is enough to substantially impede its
ability to stabilize.

• Figure 1d: Delay exceeding the threshold (T > T∗)
The system exhibits oscillatory behavior before settling,
indicating a potential shift towards instability. This sug-
gests that excessive delays can destabilize the system,
leading to fluctuations in the number of infected indi-
viduals. This oscillation can be interpreted as a repeating
cycle of over and under correction within the system.

These time series results underscore the system’s sensitivity
to discrete delays, particularly around the critical delay T∗,
highlighting how delays can alter the system’s stability and
convergence dynamics. Table 3 summarizes the convergence
time and final density of I2 for systems (30), (31), and (32)
when R0 < 1.
From Table 3, we observe that system (30) exhibits the
slowest convergence time, indicating that without delays, the
return to equilibrium is gradual. In system (31), the presence
of discrete delay reduces convergence time, suggesting that
a fixed time lag accelerates stabilization. In system (32), the
distributed delay leads to the fastest convergence, implying
that averaging delays over a time interval enhances the sys-

TABLE 4: Congregate time and final I2 values when R0 >
1

System Type of delay R0 Con. time Final I2
(30) No 1.6463 8.3598 0.5502
(31) Discrete 1.6463 5.3972 0.5502
(32) Distributed 1.9233 3.5298 0.6739

tem’s ability to stabilize quickly. This can be interpreted as
the system being more robust when it accounts for a range of
past influences rather than a single delayed influence. These
results suggest that incorporating delay, especially in a dis-
tributed manner, significantly enhances the system’s ability
to return to the disease-free equilibrium when R0 < 1.
As illustrated in Figures 2-13 at the end of this section, the

impact of varying time delays on system dynamics is evident.
When the delay T < T∗ (Figures 2, 5, 8, and 11), trajectories
converge smoothly to stable equilibria, demonstrating system
robustness. At the critical delay T = T∗ (Figures 3, 6, 9, and
12), convergence slows, revealing a critical transition and a
bottleneck in return to equilibrium. Beyond the critical delay,
T > T∗ (Figures 4, 7, 10, and 13), oscillatory behavior
emerges, indicating increased complexity and potential insta-
bility. These phase portraits complement the time series anal-
ysis, providing a visual confirmation of the system’s behavior
under varying delay conditions and highlighting the transition
from stability to potential instability. Table 4 presents the
convergence time and final density of I2 for systems (30),
(31), and (32) when R0 > 1.
From Table 4, system (30) converges to a stable endemic
equilibrium Eq1 with a specific I2 density, indicating a per-
sistent level of infection. In system (31), the discrete delay
reduces the convergence time while maintaining the same
I2 density, suggesting that the delay accelerates the system’s
approach to the endemic state. In system (32), the distributed
delay further reduces the convergence time and results in a
higher final density of I2. This implies that a distributed delay
not only speeds up convergence but also sustains a higher
level of persistent infection. Biologically, this could be in-
terpreted as the system more efficiently maintaining a higher
infection level when accounting for a range of past influences.
These results highlight that even when R0 > 1, the type
of delay significantly influences the system’s convergence
dynamics and the final endemic equilibrium.
Comparing the results from Tables 3 and 4, we can draw

the following conclusions.

• When R0 < 1, all systems converge to the disease free
equilibrium, with distributed delay leading to the fastest
convergence, indicating enhanced stability.

• When R0 > 1, all systems converge to the endemic equi-
librium, with distributed delay again resulting in faster
convergence but also a higher final infected density,
showing that distributed delay can increase the overall
infection level.

Discrete delays consistently reduce the convergence time
compared to the no delay scenario, highlighting the influence
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FIGURE 2: Phase portrait for the I1− I2−R system (3) with
T = 2.285 < T∗

FIGURE 3: Phase portrait for the I1− I2−R system (3) with
T = 2.385 = T∗

of time lags on system dynamics. These findings underscore
the significant impact of delays on the stability and conver-
gence dynamics of the social media addiction and depression
models. They suggest that incorporating appropriate delay
mechanisms, particularly distributed delays, can significantly
alter the system’s behavior, affecting both the rate of con-
vergence and the final equilibrium state. The type of delay,
therefore, plays a crucial role in understanding and potentially
mitigating the spread of social media-induced depression.

VI. CONCLUSION
This study has explored the complex dynamics of social me-
dia addiction and depression through a mathematical model
incorporating both discrete and distributed delays. Bymoving
beyond the limitations of purely deterministic models and
considering the more realistic scenario of variable delays, this
research provides a deeper understanding of the interplay be-
tween these factors. Our analysis yielded several key findings:
the significant impact of both discrete and distributed delays

FIGURE 4: Phase portrait for the I1− I2−R system (3) with
T = 2.485 > T∗

FIGURE 5: Phase portrait for the I2 −Q−R system (3) with
T = 2.285 < T∗

FIGURE 6: Phase portrait for the I2 −Q−R system (3) with
T = 2.385 = T∗
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FIGURE 7: Phase portrait for the I2 −Q−R system (3) with
T = 2.485 > T∗

FIGURE 8: Phase portrait for the I1− I2−Q system (3) with
T = 2.285 < T∗

FIGURE 9: Phase portrait for the I1− I2−Q system (3) with
T = 2.385 = T∗

FIGURE 10: Phase portrait for the I1 − I2 − Q system (3)
with T = 2.485 > T∗

FIGURE 11: Phase portrait for the S− I1−E system (3)with
T = 2.285 < T∗

FIGURE 12: Phase portrait for the S− I1−E system (3)with
T = 2.385 = T∗
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FIGURE 13: Phase portrait for the S− I1−E system (3)with
T = 2.485 > T∗

on the stability of equilibrium points, the identification of
Hopf bifurcations and stability switches (particularly with the
gamma distribution), and the crucial role of delay distribution
in shaping system dynamics. These theoretical findings were
rigorously validated through numerical simulations, reinforc-
ing the reliability of our conclusions. The insights gained
from this study have important implications for addressing
the growing public health concern of social media addiction
and its associated mental health challenges. By identifying
critical delay thresholds and observing stability switches, this
research informs the development of targeted interventions
and treatment strategies. Understanding how delays in treat-
ment response or recovery influence the overall dynamics of
addiction and depression can lead to more effective public
health campaigns and personalized interventions. This work
establishes a strong foundation for future research. Exploring
different distributed delay kernels, incorporating additional
factors such as social influence and environmental context,
and extending the model to include control mechanisms are
promising directions. Additionally, investigating time vary-
ing delays could further enhance the realism of the model.
Beyond mathematical modeling, future studies should con-
sider behavioral, psychological, and socio-economic factors
that influence addiction dynamics. Incorporating stochastic
elements, validating results with real world data, and refining
delay distributions could further improve predictive accuracy.
Furthermore, analyzing the role of external influences, such
as social media algorithms, peer pressure, and digital detox
programs, could provide deeper insights into addiction pre-
vention and management. By continuously advancing our
understanding of social media addiction and its connection to
mental health, we can developmore effective, evidence-based
strategies to promote digital well-being in an increasingly
connected world.
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