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ABSTRACT This paper presents a mathematical model for worm propagation, where infectivity is in-
fluenced by latency within heterogeneous Internet of Things (IoT) systems. The model incorporates the
heterogeneity of susceptible-exposed-infected-recovered (SEIR) compartments and considers the varying
negative impacts of worms spread across these groups. Sufficient conditions for the persistence of worm
propagation are derived using the optimistic equilibrium point. By selecting latency as a bifurcation
parameter, the study reveals a specific latency value critical for maintaining worm propagation’s stability
in these systems. The normal form approach and central manifold theory are employed to analyze the
direction and stability of Hopf bifurcation. Furthermore, this study addresses strategies for mitigating the
spread of worms by employing best practices to minimize the number of devices exposed and infected across
systems. We analyze the effects of control measures, such as vaccination and treatment, which should be
applied promptly during a worm proliferation outbreak and gradually scaled down over time as the outbreak
decreases. Numerical findings expose that latency significantly impacts system stability, however, optimally
managing the latency below a deterministic threshold may maintain system stabilization.

INDEX TERMS Internet of Things, Time delay, Hopf bifurcation, Optimal control.

I. INTRODUCTION

A. MOTIVATIONS

The Heterogeneous Internet of Things (HIoT) is a network
of physical equipment, vehicles, and electronic devices, in-
cluding sensors, software, and connection. These objects can
connect, collect, and share data without the need for human
interaction. Human-to-human communication refers to the
exchange of information between two or more individuals.
In contrast, human-to-human interaction with the computer
involves the interaction between a person and a computer sys-
tem.Meanwhile, HIoT devices such as sensors, actuators, and
smart appliances are vulnerable to malware infiltration due to
their low cost and short time to market. Furthermore, most of
HIoT devices are not regularly maintained and are left to run
on customer property. However, most HIoT devices are set
up and operated by users with little security experience. Cus-
tomers may agree to install specific programs or processes on

their devices in exchange for rewards, without being aware
that doing so could lead to an attack. The subsequent points
of view are used in academic research on malware spread,
such as mathematical modeling and detection technology.
The proliferation of the Internet of Things (IoT) has raised
concerns about the increasing impact of malicious code due to
its limitations in computing and communication capabilities
[1], [2]. In particular, heterogeneous IoT (HIoT) systems are
susceptible to malicious code attacks due to their unique
characteristics, such as limited bandwidth and inadequate
protection. HIoTs typically consist of numerous heteroge-
neous nodes structured ad hoc to monitor their surroundings,
often placing them at physical risk. Thus, a comprehensive
examination of the propagation dynamics of malicious code
is crucial to enhance the security of HIoTs. Because of in-
fectious diseases and malware in heterogeneous IoT are so
similar, epidemiology-built models explaining the spread of
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infectious diseases can be used to investigate the dynamics
of malware propagation in heterogeneous IoT. These models
help us predict how and to what extent malware will spread
in the future across heterogeneous IoT. To help administrators
create malware countermeasures, they also help us illustrate
the effect elements determining whether the malware will
spread or dissipate in heterogeneous IoT.

Malware can be launched by one IoT device and spread
to another, and its hostile activities in the HIoT network
naturally extend to physical threats. Due to a lack of technical
implementation experience and vulnerabilities that arise in
various technologies, such as IPv6 or the Internet of Things,
malware can spread through propagation vectors such as ser-
vices or functions. Consequently, it is challenging to identify
and monitor the propagation process. Modeling techniques
are used to forecast propagation dynamics and investigate
influencing factors based on our knowledge of the technol-
ogy and experience with previous attacks. A key concern is
the development of accurate mathematical models to better
understand the dynamics of malicious code propagation [3]–
[7]. This is achieved by establishing compelling similarities
between malicious codes and their natural counterparts.

B. LITERATURE REVIEW
In recent years, researchers have developed and examined
various mathematical models to investigate the spread of
malicious code in HIoTs. Various strategies have been pro-
posed to extend the lifespan of HIoTs, focusing on reducing
power usage [8]–[10], optimizing device placement [11], and
managing the system topology [12]. Due to their limited
resources, the HIoT nodes have vulnerable defenses and are
susceptible to worm attacks.

Researchers have used epidemic models to analyze the
behavior of malicious entities on the Internet, providing valu-
able information on the management of worm propagation
within systems [13]–[18]. For example, the authors in [15]
presented a model for email viruses that considered user
behavior and examined the spread patterns of email viruses
in various system structures.

As harmful code propagates through a system, it incurs
multiple types of delay, such as immunity delay, propaga-
tion delay, and virus cleanup delay. Keshri and Mishra [19]
conducted a comprehensive analysis of a dynamic model
that examined the transmission of harmful signals in a HIoT.
Theirmodel incorporated both transient and immunity delays,
demonstrating that these delays could impact harmful attack
management. Zizhen et al. [20] investigated Hopf bifurcation
phenomena with time delay in a computer virus model, con-
sidering external computer influences and employing latency
as a branching parameter. Zhao et al. [21] studied an SEIR
computer virus model with delayed propagation and limited
antivirus capabilities, evaluating how virus cleanup delays
affect the model. Wang and Chai [22] explored the Hopf
bifurcation in a delayed SEIRSmodel, analyzing the interplay
of latency and transient immunity as branching parameters.
Khan et al. [23] introduced a social networking addiction

model incorporating saturation incidence and latency during
transient immunity, further investigating Hopf stability and
branching in this context.

C. PROBLEM STATEMENT
Different from the aforementioned works, this paper proposes
a delayed HSEIR model for worm propagation in HIoT sys-
tems. The system consists of four compartments: susceptible
(S), exposed (E), infected (I ), and recovered (R), at time
(t). We assume that the ratio of HIoT devices infected by
nodes with limited spreading skills is σ and the ratio of HIoT
devices infected by nodes with strong spreading capabilities
is 1 − σ. The susceptible devices transition to the exposed
state, with new exposures at time t are given by the expression
σβSI+(1−σ)λSI , where β and λ are the transmission coeffi-
cients for devices with weak and strong spreading capabilities
in the IoT system, respectively. Let δ denote the transition
rate from exposed devices to infected devices when the worm
becomes active in the IoT system. Let α, γ and θ represent the
proportions of susceptible, exposed, and infectious devices
that recover at time t, respectively. The worm-induced death
rate for IoT devices is η, and the natural death rates for devices
in the IoT system are µ1, µ2, µ3 and µ4.
Qing et al. [24] studied the stability of the system without

considering the delay

Ṡ = Π− σβSI − (1− σ)λSI − αS − µ1S,

Ė = σβSI + (1− σ)λSI − δE − γE − µ2E ,

İ = δE − θI − ηI − µ3I ,

Ṙ = αS + γE + θI − µ4R.

(1)

As demonstrated in [23], worm transmission in IoT sys-
tems typically involve delay. Due to worms’ internal latency,
a delay often occurs between the infection of exposed devices
and their capability to infect others. Lag differential equations
exhibit more intricate dynamics than ordinary differential
equations. This lag can induce Hopf bifurcation phenomena,
altering the behavior of the dynamical system and causing
a shift from stable focus to cyclical boundaries [24]–[29].
Therefore, this study investigates the complex dynamics of
system (1) and emphasizes the critical role of time delays,
particularly the Hopf branch, in controlling worm propaga-
tion in HIoT systems. The modified system with delay is as
follows

Ṡ = Π− σβSI − (1− σ)λSI − αS − µ1S,

Ė = σβSI + (1− σ)λSI − δE(t − τ)− γE − µ2E ,

İ = δE(t − τ)− θI − ηI − µ3I ,

Ṙ = αS + γE + θI − µ4R,

(2)

where τ is the worm incubation period in the IoT system.
The removal of worms from infected IoT systems by antivirus
software often requires significant time, necessitating consid-
eration of latency caused by antivirus eradication processes.
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By focusing on the first three equations of (1), we obtain the
simplified system

Ṡ = Π− σβSI − (1− σ)λSI − αS − µ1S,

Ė = σβSI + (1− σ)λSI − δE(t − τ)− γE − µ2E ,

İ = δE(t − τ)− θI − ηI − µ3I .

(3)

D. OUR CONTRIBUTIONS

The primary objective of our study is to examine the impact of
delay on system (3) and identify the optimal delay threshold,
where the system can maintain stability under a worm propa-
gation issue. The contributions in this paper are described as
follows.

• Necessary conditions for local stability and the occur-
rence of a local Hopf bifurcation are analyzed, with the
delay caused by the latent period of worm propagation
from an exposed device to an infected one within an
HIoT system used as the bifurcation parameter. The nor-
mal form technique and the center manifold theorem are
used to determine the direction of the Hopf bifurcation
and the stability of the bifurcating periodic solutions, see
Sections 2 and 3.

• Based on the above investigation, the optimal delay
period required to maintain stability in system (3) is
specified. In addition, we apply Pontryagin’s maximum
principle to characterize optimal control of worm propa-
gation within the IoT system. The theoretical analysis is
supported by numerical results obtained by an extensive
simulation, see Sections 4–6.

II. STABILITY AND HOPF BIFURCATION
This section mainly addresses the local stability of the pos-
itive equilibrium and the conditions for the presence of a
local Hopf bifurcation. The communication radius can be
determined by computing the matrices F and V , which are
defined as follows

F =

0 Π [σβ + (1− σ)λ]

α+ µ1

0 0

 ,

V =

[
δ + γ + µ2 0

−δ θ + µ3

]
.

The communication radius is defined as the dominant eigen-
value of FV−1, leading to the expression

R0 = ρ(FV−1) =
Πδ (σβ + (1− σ)λ)

(α+ µ1)(δ + γ + µ2)(θ + µ3 + ξ)
.

This formulation provides a measure of how the information
propagates within the system. Our system has a positive

equilibrium P∗ (S∗,E∗, I∗,R∗), where

S∗ =
Π

(σβ + λ− σλ)I∗ + (µ1 + α)
,

E∗ =
µ3 + θ + η

δ
I∗,

I∗ =
(R0 − 1) (µ1 + α)

σβ + λ− σλ
,

R∗ =
γE∗ + θI∗ + αS∗

µ4
.

The linearization of (3) at P∗ (S∗,E∗, I∗,R∗) is

Ṡ(t) = a1S(t) + a2I(t),

Ė(t) = a3S(t) + a4E(t) + a5E(t) + b1E(t − τ),

İ(t) = b2E(t − τ) + a6I(t),

(4)

where

a1 = − (σβI∗ + (1− σ)λI∗ + α+ µ1) ,

a2 = − (σβS∗ + (1− σ)λS∗) ,

a3 = (σβI∗ + (1− σ)λI∗) ,

a4 = −γ − µ2, a5 = σβS∗ + (1− σ)λS∗,

a6 = − (θ + η + µ3) , b1 = −δ, b2 = δ.

The characteristic equation of the linearized system (4) is

µ3 + c1µ2 + c2µ+ c3 + e−µτ
(
d1µ2 + d2µ+ d3

)
= 0, (5)

where

c1 = −(a1 + a4 + a5 + a6),

c2 = (a1a4 + a1a5 + a1a6 + a4a6 + a1a6),

c3 = −a1a6(a4 + a5),

d1 = −b1,

d2 = (a1 + a6)b1,

d3 = −(a1a6b1 + a2a3b2).

For τ = 0, equation (5) reduces to µ3+ρ1µ
2+ρ2µ+ρ3 = 0,

where ρ1 = c1 + d1, ρ2 = c2 + d2, ρ3 = c3 + d3. If the
condition

H1 : ρ1 > 0, ρ3 > 0 and ρ1ρ2 − ρ3 > 0

is satisfied, then system (3) is locally asymptotically stable
when τ = 0.
Next, we consider the time delay τ as a parameter to ana-

lyze the local stability of the equilibrium P∗ (S∗,E∗, I∗,R∗)
and explore the occurrence of a Hopf bifurcation in the system

VOLUME 13, 2025 3



described by (3). For τ > 0, suppose that µ = iω (ω > 0) is
a root of (5). Then

(iω)3 + c1(iω)2 + c2(iω) + c3

+ e−iωτ
[
d1(iω)2 + d2(iω) + d3

]
= 0. (6)

Separating the real and imaginary parts in (6), we get(
d3 − d1ω2

)
cosωτ + d2ω sinωτ = c1ω2 − c3, (7)

d2ω cosωτ −
(
d3 − d1ω2

)
sinωτ = ω3 − c2ω, (8)

which leads to

ω6 + κ1ω
4 + κ2ω

2 + κ3 = 0, (9)

where

κ1 = c21 − 2c2 − d21 ,

κ2 = c22 − 2c1c3 + 2d1d3 − d22 ,

κ3 = c23 − d23 .

Let ω2 = ς . Then equation (9) takes the form

ς3 + κ1ς
2 + κ2ς + κ3 = 0. (10)

Based on the above analysis, we introduce the following
assumption to establish the main results presented in this
paper.
H2 : If equation (10) has at least one positive root, then

there exists a positive root ζ0 of (10) such that equation (5)
possesses a pair of purely imaginary roots ±iζ0.
For ω2

0 = ζ0, the corresponding critical value τ0 is

τ0 =
1

ς0
cos−1

[
ω4
0 (d2 − d1c1)

(d3 − d1ω2
0)

2
+ d22ω

2
0

+
ω2
0 (d1c3 − d2c2 + d3c1)− d3c3

(d3 − d1ω2
0)

2
+ d22ω

2
0

]
.

In the following, we will show that the transversality condi-
tion of Hopf bifurcation is also satisfied. Differentiating (5)
on τ and applying the implicit function theorem, we obtain(

dλ
dτ

)−1

= − 3λ2 + 2λc1 + c2
λ (λ3 + c1λ2 + c2λ+ c3)

+
2λd1 + d2

λ (d1λ2 + d2λ+ d3)
− τ

λ
.

Hence, we get

Re
(
dλ
dτ

)−1

τ=τ0

=
y (ς0)

(d3 − d1ω2
0)

2
+ d22ω

2
0

,

where y (ς0) = ς3 + κ1ς
2 + κ2ς + κ3 = 0. It is evident that

if the condition
H3 : y (ς0) ̸= 0

holds, then Re [dλ/dτ ]−1
τ=τ0

̸= 0. According to the Hopf
bifurcation theorem in [29], we derive the following results
for the system (3).
Theorem 1: If conditionsH1-H3 are satisfied, then the positive
equilibrium P∗ (S∗,E∗, I∗) of system (3) is locally asymp-
totically stable for τ ∈ [0, τ0). Furthermore, system (3)
undergoes a Hopf bifurcation at P∗ (S∗,E∗, I∗)when τ = τ0,
leading to the emergence of a family of periodic solutions
bifurcating from the positive equilibrium P∗ (S∗,E∗, I∗) near
τ = τ0.

III. DIRECTION AND STABILITY OF HOPF BIFURCATION
In the preceding section, we demonstrated that system (3)
displays a set of periodic solutions emerging from the positive
equilibrium P∗ (S∗,E∗, I∗). By applying the normal form
theory and the center manifold theorem introduced by Has-
sard et al. [30], we will now derive a precise formula for
determining the direction and stability of the Hopf bifurcation
at these critical values. Define

u1 = S(t)− S∗, u2 = E(t)− E∗, u3 = I(t)− I∗,

and rescale the delay t → t/τ . Let τ = τ0 + µ, where µ = 0
represents the Hopf bifurcation value of (3). Then, system (3)
can be reformulated as a functional differential equation in
C = C

(
[−1, 0],R3

)
as follows

u̇t = Lµ (ut) + F (µ, ut) , (11)

where u(t) = (u1, u2, u3)
T ∈ C = C

(
[−1, 0],R3

)
, and the

functions Lµ : C → R3, F : R× C → R3 given by

Lµ(ψ) = (τ0 + µ) [Nmaxψ(0) + Zmaxψ(−1)] , (12)

F(µ,Φ) = (τ0 + µ)

·


−Φ1(0)Φ3(0)(σβ + (1− σ)λ)

Φ1(0)Φ3(0)(σβ + (1− σ)λ)

0

 , (13)

where

N =

 a1 0 a2
a3 a4 a5
0 0 a6

 , Z =

 0 0 0
0 b1 0
0 b2 0

 .
By the Riesz-Representation theorem, we can find a function
ω(ς, µ) of bounded variation such that

Lµ(ϑ) =
∫ 0

−1

dω(ς, µ)ϑ(ς), for ϑ ∈ C , (14)

We may take

ω(ς, µ) = (τ0 + µ) [Nmaxχ(θ) + Zmax · χ(θ + 1)] , (15)

where χ(θ) is the Dirac-Delta function.
For ϑ ∈ C1

(
[−1, 0],R3

)
, let

M(µ)ϑ(ω) =


dϑ
dθ
, −1 ≤ ς < 0,∫ 0

−1

dω(s, µ)ϑ(s, ζ) = 0 ς = 0,
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and

∆(µ)ϑ(ς) =

0, −1 ≤ ς < 0,

F(µ, ϑ), ς = 0.

Then, system (11) is equivalent to

u̇t = M(µ)ut +∆(µ)ut , (16)

where ut = u(t + ς) for ς ∈ [−1, 0].

For ψ ∈ C1
(
[0, 1],

(
R3

)∗)
, define

M∗(µ)ψ(s) =


−dψ(s)

ds
, 0 < s ≤ 1,∫ 0

−1

dωT (t, 0)ψ(−t), s = 0,

and a bilinear inner product

< ψ(s), ϑ(ς) >= ψ̄(0)ϑ(0)

−
∫ 0

ζ=−1

∫ ς

ξ=0

ψ̄(ξ − ζ)dω(ζ)ϑ(ξ)dξ, (17)

where ω(ς) = ω(ς, 0). Let I(t) = (1, I2, J3)
T eiω0τ0ς

and J∗(s) = Q (1, J∗2, J3)
T eiω0τ0s be the eigenvectors of

M(0) andM∗(0) respectively, which correspond to iω0τ0 and
−iω0τ0. One has

I2 =
iω0 − a1

a2
, J3 =

a3 + a5I2
iω0 − a4 − b1e−iω0τ0

,

J∗2 = −a1 + iω0

a3
, J∗3 = −a2 + a5I∗2

a6 + iω0
.

According to equation (17), we have the following.

Q̄ =
[
1 + I2J̄

∗
2 + I3J̄

∗
3 + τe−iτ0ω∗

0 (b1I2 + b2I3)
]−1

,

such that ⟨J∗, J⟩ = 1 and
〈
J∗, J̄

〉
= 0. Next, we derive

expressions for A20,A11,A02 and A21 using the algorithms
presented in [31] and the computational process described in
[32]. Throughout the rest of this section, we adopt the same
notions as those used by Rezapour [33] andWei [34]. Initially,
we compute the coordinates necessary to describe the center
manifold c0 at µ = 0. Let ut be the solution of (16) when
µ = 0. Define

Γ(t) = ⟨ζ∗, ut⟩ , K (t, θ) = ut(θ)− 2Re{Γ(t)Ω(ς)}.

On the center manifold c0,

K (t, θ)= K (Γ(t), Γ̄(t), ζ)K (Γ, Γ̄) (18)

= K02
Γ2

2
+ K11ΓΓ̄ + K02

Γ̄2

2
+ · · · ,

where Γ and Γ̄ are local coordinates for center manifold c0 in
the direction of ζ∗ and ζ̄∗. Now,

Γ̇(t)= ⟨ζ∗, ut⟩

= ⟨Z∗(0)ζ∗, ut⟩+ ζ̄∗(0)∆(0)ut

−
∫ 0

−1

∫ ζ

0

ζ̄∗(ξ − ζ)dω(ζ)Z(0)∆(0)ut(ξ)dξ

= iω0τ0Γ(t) + ζ̄∗(0)f (0, ut(θ))

= iω0τ0Γ(t) + ζ̄∗(0)f0(Γ(t), Γ̂(t)),

which can be reformulated as

Γ̇ = iω0τ0Γ(t) + A(Γ, Γ̂), (19)

where

A(Γ, Γ̄) = A20
Γ2

2
+A11ΓΓ̄+A02

Γ̄2

2
+A21

Γ2Γ̄

2
+· · · . (20)

As a result, we get

A(Γ, Γ̄)= ζ̄∗(0) · f0(Γ, Γ̄)

= B
(
1, J̄∗2, J̄

∗
3

)
(f1 (0, ut) , f2 (0, ut) , 0)

T
, (21)

where

f1 (0, ut) = −(σβ + (1− σ)λ)τ0Φ1(0)Φ3(0),

f2 (0, ut) = (σβ + (1− σ)λ)τ0Φ1(0)Φ3(0).
(22)

Since

ut = u(t + θ) = K (Γ, Γ̄, ζ) + ΓΩ(ζ) + Γ̄Ω(ζ),

Ω(ζ) = (1, I2, I3)
T eiω0τζζ ,

(23)

we have

ut =

 u1(t + θ)
u2(t + θ)

0

+

 K (1)(t + θ)
K (2)(t + θ)

0



+ Γ

 1
Ω2

Ω3

 eiω0τ0ζ + Γ̄

 1
Ω̄2

Ω̄3

 e−iω0τ0ζ , (24)

and

Φ1(0)= Γ + Γ̄ + K (1)
20 (0) · Γ

2

2
+ K (1)

11 (0) · ΓΓ̄

+K (1)
02 (0) · Γ̄

2

2
+ · · · ,

Φ2(0)= ΓΩ2 + Γ̄Ω̄2 + K (2)
20 (0) · Γ

2

2
+ K (2)

11 (0) · ΓΓ̄

+K (1)
02 (0) · Γ̄

2

2
+ · · · ,

Φ3(0)= ΓΩ3 + Γ̄Ω̄3 + K (3)
20 (0) · Γ

2

2
+ K (3)

11 (0) · ΓΓ̄

+K (3)
02 (0) · Γ̄

2

2
+ · · · .

VOLUME 13, 2025 5



From (20) and (21), it follows

A(Γ, Γ̄) = B
(
1, Ω̄∗

2, Ω̄
∗
3

)
·

 P11Γ
2 + P12ΓΓ̄ + P13Γ̄

2 + P14Γ
2Γ̄

P21Γ
2 + P22ΓΓ̄ + P23Γ̄

2 + P24Γ
2Γ̄

0

+ · · · , (25)

where

P11 = −[σβ + (1− σ)λ]τ0 (Ω2 +Ω3) ,

P12 = −[σβ + (1− σ)λ]τ0
(
Ω2 + Ω̄2 +Ω3 + Ω̄3

)
,

P13 = −[σβ + (1− σ)λ]τ0
(
Ω̄2 + Ω̄3

)
,

P14 = −[σβ + (1− σ)λ]τ0,

P21 = [σβ + (1− σ)λ]τ0 (Ω2 +Ω3) ,

P22 = [σβ + (1− σ)λ]τ0
(
Ω2 + Ω̄2 +Ω3 + Ω̄3

)
,

P23 = [σβ + (1− σ)λ]τ0
(
Ω̄2 + Ω̄3

)
,

P24 = [σβ + (1− σ)λ]τ0.

Thus,

A(Γ, Γ̄) = B
[(
P11 + Ω̄∗

2P21

)
+
(
P12 + Ω̄∗

2P22

)
ΓΓ̄

+
(
P13 + Ω̄∗

2P23

)
Γ̄2 +

(
P14 + Ω̄∗

2P24

)
Γ2Γ̄

]
+ · · · . (26)

Comparing the coefficients in (25) with those in (20), we can
get,

A20 = 2 B
(
P11 + Ω̄∗

2P21

)
, A11 = B

(
P12 + Ω̄∗

2P22

)
,

A02 = 2 B
(
P13 + Ω̄∗

2P23

)
, A21 = 2 B

(
P14 + Ω̄∗

2P24

)
.

To derive the expression for A21, we first need to calculate
K11(ς) and K20(ς). Using (11) and (18), we find

K̇ =

{
ZK − 2Re{Ω̄(0) · fΩ{ζ}}, −1 ≤ ζ < 0,

ZK − 2Re{Ω̄(0) · fΩ{ζ}}+ f , ζ = 0.
(27)

Define (26) as

K̇ = ZK + H(Γ, Γ̄, ζ), (28)

where

H(Γ, Γ̄, ζ) = H20(ζ)
Γ2

2
+ H11(ζ)

ΓΓ̄

2

+ H02(ζ)
Γ̄2

2
+ · · · . (29)

From (18),(19),(28) and (29), we obtain the following rela-
tions

(2iω0τ0 − Z)K20(ζ) = H20(ζ), (30)

ZK11(ζ) = −H11(ζ). (31)

Additionally, (20) and (27) give

H(Γ, Γ̄, ζ) = −2Re
{
Ω̄∗(0)f0Ω(ζ)

}
= −2Re{A(Γ, Γ̄)Ω(ζ)}

= −(Γ, Γ̄)Ω(ζ)− A(Γ, Γ̄)Ω̄(ζ)

= −
[
A02

Γ2

2
+ A11ΓΓ̄ + A02

Γ̄2

2
+ A21

Γ2Γ̄

2

]
Ω(ζ)

−
[
A02

Γ̄2

2
+ A11ΓΓ̄ + A02

Γ̄2

2
+ A21

ΓΓ̄2

2

]
Ω̄(ζ). (32)

By comparing the coefficients in (29) and (32), we arrive at

H20(ζ) = −A20Ω(ζ)− A02Ω̄(ζ), (33)

H11(ζ) = −A11Ω(ζ)− A11Ω̄(ζ), (34)

where ζ ∈ [−1, 0). From (30),(33) and the definition of Z(0),
we have

K20(ζ) = 2iω0τ0K20(ζ) + A20Ω(ζ) + A02Ω̄(ζ). (35)

According to Ω(ζ) = Ω(0)eiω0τ0 , we get

K20(ζ) =
iA20

ω0τ0
Ω(0)eiω0τ0 +

ı̄A02

3ω0τ0
Ω̄(0)e−iω0τ0

+Θ1e2iω0τ0 , (36)

and, similarly,

K11(ζ) = − iA11

ω0τ0
Ω(0)eiω0τ0 +

ı̄A11

ω0τ0
Ω̄(0)e−iω0τ0

+Θ2, (37)

whereΘ1 andΘ2 are both constant vectors. In the subsequent
analysis, we will determine Θ1 and Θ2. From the definition
of Z(0), along with (33) and (34), it follows∫ 0

−1

dω(ζ)K20(ζ) = 2iω0τ0 K20(ζ)− H20(ζ), (38)

∫ 0

−1

dω(ζ)K11(ζ) = −H11(0). (39)

From (30) and (31)

H20(0) = −A20Ω(ζ)− A02Ω̄(ζ) + (P11,P21, 0)
T
, (40)

H11(ζ) = −A11Ω(ζ)− A11Ω̄(ζ) + (P12,P22, 0)
T
. (41)

Notice that[
iω0τ0I −

∫ 0

−1
dω(ζ)eiω0τ0

]
Ω(0) = 0,[

−iω0τ0I −
∫ 0

−1
dω(ζ)e−iω0τ0

]
Ω̄(0) = 0.

(42)

Substituting (36) and (40) into (38), we obtain[
2iω0τ0I −

∫ 0

−1

dω(ζ)e2iω0τ0

]
Θ1 =

 P11

P21

0

 , (43)
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i.e. [
2iω0τ0I − N − Ze−2iω0τ0

]
Θ1 =

 P11

P21

0

 . (44)

Thus, we have

Θ1 =
2

τ0

 a11 0 a12
−a13 a14 −a15

0 0 a16

−1  P11

P21

0

 ,
where

a11 = 2iω0 − a1, a12 = 2iω0 − a2,

a13 = 2iω0 − a3, a14 = −a4 − b1e−2iω0τ0 ,

a15 = 2iω0 − a5, a16 = 2iω0 − a6.

Similarly, we have∫ 0

−1

dω(ζ)Θ2 =

 P12

P22

0

 . (45)

On the other hand,

(N + Z)F2 =

 p12
p22
0

 , (46)

so that

F2 =
1

τ0

 a1 0 a2
a3 b11 a5
0 b12 a6

×

 p12
p22
0

 , (47)

where
b11 = a4 + b1, b12 = b1. (48)

In conclusion, we can compute the following values

Ω1(0) =
i

2ω0τ0

[
A11A20 − 2 |A11|2 −

|A02|2

2

]
,

µ2 = − Re {Ω1(0)}
Re {µ′ (τ0)}

,

β2 = 2Re {Ω1(0)} ,

T2 =
−Im {Ω1(0)}+ µ2Im {µ′ (τ0)}

ω0τ0
,

which are fundamental for understanding the dynamics of the
system near the bifurcation point. Now, the main results of
this section are summarized as follows.
Theorem 2:
1) µ2 determines the direction of the Hopf bifurcation. If

µ2 > 0, the Hopf bifurcation is supercritical, whereas if
µ2 < 0 it is subcritical.

2) β2 determines the stability of the bifurcating periodic
solutions. If β2 < 0, the solutions are stable, while if
β2 > 0 they are unstable.

3) T2 determines the change in the period of the bifurcating
periodic solutions. If T2 > 0, the period increases, while
if T2 < 0, the period decreases.

IV. ESTIMATION OF DELAY DURATION
In this section, we analyze the stability of periodic bifurca-
tion oscillations and determine the necessary delay duration
required to maintain the stability of the periodic limit cycle.
The system (3) is defined by continuous real-valued functions
over [−τ,+∞), with initial conditions specified for the inter-
val [−τ, 0). By linearizing (3) at the coexisting equilibrium
point associated with the propagation of the worm, we derive

Ṡ = [σβ + (1− σ)λ] (SI∗ + S∗I)− αS − µ1S,

Ė = [σβ + (1− σ)λ] (SI∗ + S∗I)− δE(t − τ)

−γE − µ2E ,

İ = δE(t − τ)− θI − ηI − µ3I .

(49)

Applying the Laplace transform to (49) results in

Ls(ρ) {ρ+ α+ µ1 + [σβ + (1− σ)λ] I∗}

= −[σβ + (1− σ)λ]S∗LI (ρ) + S(0),

LE(ρ) [ρ+ γ + µ2] = [σβ + (1− σ)λ]I∗Ls(ρ)

+ [σβ + (1− σ)λ]S∗LI (ρ)

− δe−ρτ [LI (ρ) + KE(ρ)] + E(0),

LI (ρ) [ρ+ (θ + η + µ3)] = δe−ρτ [LE(ρ) + KE(ρ)] + I(0),

where

KE(ρ) =
∫ 0

−τ

e−ρτE(t)dt, KI (ρ) =
∫ 0

−τ

e−ρτ I(t)dt,

with LS(ρ),LE(e), and LI (ρ) being the Laplace transforms of
S(t),E(t), and I(t), respectively.
Based on the results of Freedman et al. [35] and the Nyquist

criteria [36], the conditions for local asymptotic stability of
P∗ are

Im [M (iρ0)] > 0, (50)

Re [M (iρ0)] > 0, (51)

M(ρ) =
(
ρ3 + c1ρ2 + c2ρ+ c3

)
+ e−ρτ

(
d1ρ2 + d2ρ+ d3

)
= 0, (52)

where ρ0 is the smallest non-negative root of (51). We have
determined thatP∗ remains stable in the absence of time delay
(τ = 0). Equations (50) and (51) can be written explicitly as

− ρ30 + c2ρ0 >
(
d3 − d1ρ20

)
sin (ρ0τ)

− d2ρ0 cos (ρ0τ) , (53)

− c1ρ20 + c3 = −d2ρ0 sin (ρ0τ)

−
(
d3 − d1ρ20

)
cos (ρ0τ) . (54)
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These conditions allow us to estimate the duration of the
time delay τ sufficient for the stability of the steady state
P∗. Our goal is to identify the maximum limit ρ+ for ρ0 that
remains unaffected by the time delay τ+, and to calculate
the corresponding duration of τ . Consequently, equation (53)
remains valid for all values of ρ within the range 0 ≤ e ≤ e+
at e = e0. We rewrite (54) as

a1ρ20 = a3 + d3 cos (ρ0τ) + d2ρ0 sin (ρ0τ)

− d1ρ20 cos (ρ0τ) . (55)

Maximizing the right side of (55) leads to

d3 cos (ρ0τ) + d2ρ0 sin (ρ0τ)− d1ρ20 cos (ρ0τ) , (56)

subject to

|cos (ρ0τ)| ≤ 1, |sin (ρ0τ)| ≤ 1.

Therefore, it follows from (56) that

|a1| ρ20 ≤ |a3|+ |d3|+ |d2| ρ0 + |d1| ρ20,

which can be expressed as

(|a1| − |d1|) e20 − |d2| e0 − (|a3| − |d3|) ≤ 0.

From this inequality, we get

ρ+ ≤ 1

2 (|a1| − |d1|)

· [|d2|+
√
|d2|2 + 4 (|a1| − |d1|) (|a3| − |d3|)]. (57)

It is obvious from (57) that ρ0 ≤ ρ+. Also, from the inequality
(53), we have

ρ20 < a2 + d2 cos (ρ0τ) + d1ρ0 sin (ρ0τ)
−d3 sin (ρ0τ)

ρ0
.

Since P∗ is asymptotically stable without time lag for suffi-
ciently small τ > 0, the inequality (57) is satisfied. Substitut-
ing (55) into (57) and rearranging terms leads to(

d3 − d1ρ20 − a1d2
)
[cos (ρ0τ)− 1]

+

[
(d2 − a1d1) ρ0 +

a1d3
e0

]
sin (ρ0τ)

< a1a2 − a3 − d3 + d1ρ20 + a1d2. (58)

Using bounds, we find(
d3 − d1ρ20 − a1d2

)
[cos (ρ0τ)− 1]

= 2
[
d1ρ20 + a1d2 − d3

]
sin2

(ρ0τ
2

)
≤ 1

2

∣∣(d1ρ2+ + a1d2 − d3
)∣∣ ρ2+τ2

and[
(d2 − a1d1) ρ0 +

a1d3
ρ0

]
sin (ρ0τ)

≤
(
|d2 − a1d1| ρ2+ + |a1| |d3|

)
τ.

By simplifying (58), we arrive at

Π1τ
2
1 +Π2τ

2
2 +Π3τ

2
3 ,

where

Π1 =
1

2

∣∣(d1ρ2+ + a1d2 − d3
)∣∣ ρ2+,

Π2 =
∣∣(d2 − a1d1) ρ2+ + |a1|

∣∣ d3||,
Π3 =

∣∣(d2 − a1d1) ρ2+ + |a1|
∣∣ d3||.

Finally, solving for τ, we have

τ+ =
1

2Π1

[
−Π2 +

√
Π2

2 + 4Π1Π3

]
,

for 0 ≤ τ ≤ τ+, This guarantees that the Nyquist conditions
are met and provides an estimate τ+ for the maximum allow-
able delay needed to maintain the stability of the limit cycle.

V. OPTIMAL CONTROL OF WORM PROPAGATION
We now implement optimal control strategies through vac-
cination and treatment to minimize the number of infected
individuals in the HIoT system while ensuring minimal in-
vestment in resources to control the spread of worms [37]–
[39]. This issue is modeled as an optimization problem for
a vaccination and treatment strategy involving two control
variables Vc,Tc. Presently, we employ two doses to represent
the proportion of exposed and infected individuals who are
vaccinated and treated, respectively, at a given time. Conse-
quently, (2) evolves as follows

Ṡ = Π− (1− Vc)σβSI − (1− Tc) (1− σ)λSI

−αS − µ1S,

Ė = (1− Vc)σβSI + (1− Tc) (1− σ)λSI

−δE(t − τ)− γE − µ2E − VcE ,

İ = δE(t − τ)− θI − ηI − µ3I − TcI ,

Ṙ = αS + γE + θI − µ4R+ VcE + TcI ,

(59)

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0. (60)

It can be shown that for the system (59) there is a unique so-
lution (S(t),E(t), I(t),R(t))with initial data (S0,E0, I0,R0).
The objective is to minimize the cost associated with provid-
ing functional control measures

J (Vc,Tc) =
∫ tf

0

[
Z1E(t) + Z2I(t) +

1

2
A1V 2

c (t)

+
1

2
A2T 2

c (t)
]
dt. (61)

In other words, the control variables (Vc,Tc) ∈ VTad rep-
resent the percentage of exposed and infected individuals
being vaccinated and treated respectively, per unit of time,
andVTad is the admissible control set. In the differential equa-
tion system (59), the cost function is designed to minimize
the impact of the exposed population E(t) and the infected
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population I(t), as represented by the first two terms. The
parameters Z1 and Z2 are positive constants that maintain
equilibrium in sizes of E(t) and I(t), respectively. Addition-
ally, the second term in the cost function introduces quadratic
terms A1V 2

c (t)/2 and A2T 2
c (t)/2, where A1, A2 are positive

weighting parameters associated with the controls Vc and Tc.
These quadratic terms reflect the severity of the side effects
caused by vaccination and treatment. The objective is to
minimize the administrative costs defined in (61) by reducing
the number of exposed and infected nodes while employing
minimally probable control variables (Vc,Tc). Here, the con-
trol variables (Vc,Tc) ∈ VTad represent the proportion of
exposed and infected individuals vaccinated and treated at any
given time. The admissible control set is defined as

VTad = {VT = (Vc,Tc) : Vc,Tcmeasurable,

0 ≤ Vc,Tc ≤ VTmax ≤ 1, t ∈ [0, tf ]} ,

where Vmax and Tmax are the maximum achievable values
for Vc and Tc, respectively. The Lagrangian function for this
optimal control problem (59-61) is defined by

L (E , I ,Vc,Tc) = Z1E(t) + Z2I(t)

+
1

2
A1V 2

c (t) +
1

2
A2T 2

c (t). (62)

The Hamiltonian H for the control problem is given by

H (S,E , I ,R,Vc,Tc, λi, t) = L (E , I ,Vc,Tc)+
4∑
j=1

λjgj, (63)

where λj, j = 1, 2, 3, 4, are adjoint functions that must be de-
termined appropriately. By applying Pontryagin’s Maximum
Principle (incorporating delays into the Hamiltonian), we
derive the following theorem, which provides the necessary
conditions for optimality.
Theorem 3: Given the optimal controls V ∗

c (t) and
T ∗
c (t), along with the corresponding state solutions
S∗(t),E∗(t), I∗(t) andR∗(t) of the state system (59) and (61),
there exist adjoint variables λ1(t), λ2(t), λ3(t) and λ4(t) that
satisfy the following adjoint system

λ̇1 = −λ1 [− (1− Vc)σβI∗ − (1− Tc) (1− σ)λI∗

−α− µ1]

−λ2 [(1− Vc)σβI∗ + (1− Tc) (1− σ)λI∗]− λ4α,

λ̇2 = −Z1 − λ2 (−γ − µ− V ∗
c )− λ4 (γ + T ∗

c )

−χ[0,tf−τ ] [−λ2(t + τ)δ + λ3(t + τ)δ] ,

λ̇3 = −Z2 − λ1(t) [− (1− Vc)σβS∗ (64)

− (1− Tc) (1− σ)λS∗]

−λ2 [− (1− Vc)σβS∗ + (1− Tc) (1− σ)λS∗]

−λ3 (−θ − η − µ3)− λ4(θ)

−χ[0,t−−τ ] [λ2(t + τ)δ − λ3(t + τ)δ] ,

λ̇4 = −λ4 (−µ4) .

The transversality conditions are given by λj (tf ) = 0 for
j = 1, 2, 3, 4. Moreover, the optimal control pair (V ∗

c ,T
∗
c )

is expressed by

V ∗
c =

(λ2 − λ1)σβS∗I∗ + (λ2 − λ4)E∗

A1
,

T ∗
c =

(λ2 − λ1) (1− σ)λS∗I∗ + (λ3 − λ4) I∗

A2
.

(65)

Proof : Using Pontryagin’s Maximum Principle with delay
conditions, we derive the following adjoint equations and
transversality conditions

λ̇1 = −∂H(t)
∂S

− χ[0,tf−τ ]
∂H(t + τ)

∂Sτ
, λ1 (tf ) = 0,

λ̇2 = −∂H(t)
∂E

− χ[0,tf−τ ]
∂H(t + τ)

∂Eτ
, λ2 (tf ) = 0,

λ̇3 = −∂H(t)
∂I

− χ[0,tf−τ ]
∂H(t + τ)

∂Iτ
, λ3 (tf ) = 0,

λ̇4 = −∂H(t)
∂R

− χ[0,tf−τ ]
∂H(t + τ)

∂Rτ
, λ4 (tf ) = 0.

(66)

By the optimality conditions, the derivatives of the Hamilto-
nian with respect to the controls yield

∂H
∂Vc

= A1V ∗
c + σβS∗I∗λ1 − λ2σβS∗I∗

+λ4E∗ − λ2E∗ = 0 at Vc = V ∗
c ,

∂H
∂Tc

= A2T ∗
c + λ1(1− σ)λS∗I∗ − λ2(1− σ)λS∗I∗

−λ3I∗ + λ4I∗ = 0 at Tc = T ∗
c .

From these equations, we find that the optimal controls are
expressed as

V ∗
c =

(λ2 − λ1)σβS∗I∗ + (λ2 − λ4)E∗

A1
,

T ∗
c =

(λ2 − λ1) (1− σ)λS∗I∗ + (λ3 − λ4) I∗

A2
.

Using the properties of the control space, we obtain the
following

V ∗
c (t) =


0, if W (t) ≤ 0,

W (t), if 0 < W (t) < V ∗max
c ,

V ∗max
c , if W (t) ≥ V ∗max

c ,

and

T ∗
c (t) =


0, if F(t) ≤ 0,

F(t), if 0 < F(t) < T ∗max
c ,

T ∗max
c , if F(t) ≥ T ∗max

c ,

where

F(t) =
[λ2(t)− λ1(t)] (1− σ)λS∗(t)I∗(t) + [λ3(t)− λ4(t)] I∗(t)

A2
.
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and

W (t) =
[λ2(t)− λ1(t)]σβS∗(t)I∗(t) + [λ2(t)− λ4(t)]E∗(t)

A1
.

Thus, the optimal control pair (V ∗
c ,T

∗
c ) is as described in (64).

The optimal control pair and corresponding state is found by
ensuring the following optimality procedures, which include
state order (59), connected system (66), boundary conditions
(60) and (64),

Ṡ∗ = Π− (1− V ∗
c )σβS

∗I∗ − (1− T ∗
c ) (1− σ)λS∗I∗

−αS∗ − µ1S∗,

Ė∗ = (1− V ∗
c )σβS

∗I∗ + (1− T ∗
c ) (1− σ)λS∗I∗

−δE∗(t − τ)− γE∗ − µ2E∗ − mE∗,

İ∗ = δE∗(t − τ)− θI∗ − ηI∗ − µ3I∗ − nI∗,

Ṙ∗ = αS∗ + γE∗ + θI∗ − µ4R∗ + mE∗ + nI∗,

where
m = max {M , 0} , n = max {N , 0} ,

with

M = min

(
(λ2 − λ1)σβS∗I∗ + (λ2 − λ4)E∗

A1
,Vmax

c

)
,

N = min

(
(λ2 − λ1) (1− σ)λS∗I∗ + (λ3 − λ4) I∗

A2
,Tmax

c

)
and

λ̇1 = −λ1 [− (1− V ∗
c )σβI

∗ − (1− T ∗
c ) (1− σ)λI∗ − α− µ1]

−λ2 [(1− V ∗
c )σβI

∗ + (1− T ∗
c ) (1− σ)λI∗]− λ4 (α) ,

λ̇2 = −Z1 − λ2 (−γ − µ2 − V ∗
c )− λ4 (γ + V ∗

c )

−χ[0,t,−τ ] [−λ2(t + τ)δ + λ3(t + τ)δ] ,

λ̇3 = −Z2 − λ1 [− (1− V ∗
c )σβS

∗ − (1− T ∗
c ) (1− σ)λS∗]

−λ2 [(1− V ∗
c )σβS

∗ + (1− T ∗
c ) (1− σ)λS∗]

−λ3 [−θ − η − µ3 − T ∗
c ]− λ4 (θ + T ∗

c )

−χ[0,t−−τ ] [λ2(t + τ)δ − λ3(t + τ)δ] ,

λ̇4 = −λ4(t) (−µ4) ,

with λ1 (tf ) = λ2 (tf ) = λ3 (tf ) = λ4 (tf ) = 0.

VI. NUMERICAL SIMULATIONS
In this section, we perform numerical simulations to validate
the analytical results by carefully selecting parameter values
that align with the conditions derived in earlier sections.
By varying the delay values, we explore various scenarios
associated with the inner equilibrium point. The parameters
are chosen to satisfy the conditions established analytically

in the previous sections. Specifically, we consider the system
defined by

Ṡ = 0.65− (0.4)(0.00001)SI − (1− 0.4)(0.0001)SI

− (0.0004)S − (0.00001)S,

Ė = (0.4)(0.00001)SI + (1− 0.4)(0.0001)SI

− (0.005)E(t − τ)− (0.004)E − (0.0001)E ,

İ = (0.005)E(t − τ)− (0.006)I − (0.001)I

− (0.001)I .

(67)

FIGURE 1. A time series plot of the node classes S(t), E(t) and I(t),
derived from system (67), with τ = 0.

FIGURE 2. Time series projection of susceptible (S) nodes under varying
worm spreading capabilities weak (β) within the IoT system modeled by
system (67), with delay τ = 0.

FIGURE 1 illustrates a time series analysis conducted to
explore the dynamics of the system in the absence of delay.
When there is no delay, the dynamics of the system remain
stable for the values of the parameters chosen specified in
the system (67). Meanwhile, FIGURE 1 displays time series
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plots of susceptible, exposed, and infected nodes, showing
their dynamics as managed by the system (67). This forms the
baseline for understanding variations in worm propagation.

FIGURE 3. Time series projection of exposed (E) nodes under varying
worm spreading capabilities weak (β), within the IoT system modeled by
system (67), with delay τ = 0.

FIGURE 4. Time series projection of infected (I) nodes under varying
worm spreading capabilities weak (β), within the IoT system modeled by
system (67), with delay τ = 0.

FIGURES 2-4 depict the time series plots of susceptible,
exposed, and infected nodes respectively for varying values
of β, along with other parameters defined within the system
(67). FIGURE 2 illustrates the time series variations of sus-
ceptible nodes for different values of β. As the transmission
coefficient β, which represents the rate of transition from
exposed to infected nodes, increases, the susceptible node
population initially exhibits a slight upward trend, followed
by a more noticeable increase over time. This rise is attributed
to the growing number of infected nodes, which indirectly
leads to an increase in the susceptible population. FIGURE 3
shows the time series variations of exposed nodes for different
values of the transmission coefficient β, which manages the
transition from exposed to infected nodes. As β increases,

FIGURE 5. Time series projections of susceptible (S) nodes under varying
worm spreading capabilities strong (λ), within the IoT system modeled by
system (67), with delay τ = 0.

FIGURE 6. Time series projections of exposed (E) nodes under varying
worm spreading capabilities strong (λ), within the IoT system modeled by
system (67), with delay τ = 0.

FIGURE 7. Time series projections of infected (I) nodes under varying
worm spreading capabilities strong (λ), within the IoT system modeled by
system (67), with delay τ = 0.
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the exposed node population demonstrates a decreasing trend.
This decline occurs because a higher β accelerates the transi-
tion of exposed nodes into the infected stage, reducing the
exposed node class. FIGURE 4 illustrates the time series
variations of infected nodes for different values of β. As
β increases, the population of infected nodes shows a clear
upward trend, becoming increasingly prominent with higher
values of β, which reflects the accelerated spread of infection
within the system.

FIGURES 5-7 present the time series plots of susceptible,
exposed, and infected nodes for various values of λ, along
with the other attributes framed in the system (67). FIGURE
5 shows the time series variations of susceptible nodes for
different values of λ. As the transmission coefficient λ, which
represents the spreading capabilities of devices in the IoT
system, increases, the susceptible node population exhibits a
growing trend, reflecting the increasing impact of infection
spread within the system (67). FIGURE 6 illustrates the time
series variations of the exposed nodes for different values of
λ. With increasing λ, the exposed node population shows a
rapid upward trend, indicating that stronger spreading capa-
bilities accelerate the transition to the exposed state within
the IoT system as modeled by the system (67). FIGURE
7 presents the time series variations of infected nodes for
various values of λ. As λ increases, the population of infected
nodes shows a significant and consistent upward trend. This
highlights the strong influence of high transmission coeffi-
cients in driving the growth of infection within the system
(67).

These numerical studies reveal a decline in the percentage
of HIoT devices infected by worms with weak spreading ca-
pabilities, while the percentage of devices infected by worms
with strong spreading capabilities shows a marked increase.
Furthermore, the propagation rate of malware has exceeded
previous levels, significantly expanding the scope of infec-
tion, as illustrated in FIGURES 2 to 7.

The time series plots in FIGURES 2-4 indicate that the
number of vulnerable (susceptible) nodes gradually increases,
the number of exposed nodes steadily decreases, and the
number of infected nodes shows a consistent upward trend
within the system (67). An increase in the transmission co-
efficient of devices with limited spreading capacities in the
IoT system drives this behavior. Furthermore, fluctuations are
observed in the system’s susceptible, exposed, and infected
components (67) when the transmission coefficient for de-
vices with strong spreading capabilities increases within the
IoT system. These dynamics underscore the increased impact
of strongly spreading worms on the system’s overall stability
and infection patterns.

Our empirical analysis demonstrates that the spread of
worms within HIoT systems can be effectively controlled,
provided that latent delays remain below a critical threshold.
However, when latent delays exceed this threshold, worm
proliferation becomes unmanageable. Thus, maintaining con-
trol over latent delays is crucial, particularly to ensure the
direction and stability of the Hopf bifurcation when τ >

FIGURE 8. The time series plot of the node classes S-E-I , in an IoT
system, based on the system (67), with τ = 4.5 < τ0.

FIGURE 9. The phase portrait projections of the node classes S-E-I , in an
IoT system, as described by the system (67), with τ = 4.5 < τ0.

0. Numerical simulations reveal the following results for
Ω1(0) = −0.000132 − i(0.00935), µ2 = 23.412238 > 0,
β2 = −0.000231 < 0, and T2 = −0.003736 < 0,
when τ = 10.5 ∈ [0, τ+]. According to Theorem 2, we
can conclude that the Hopf bifurcation is supercritical, with
the resulting periodic solutions exhibiting stable behavior
characterized by a decreasing period.
Given the stability of these bifurcating periodic solutions,

all classes of HIoT nodes within the Internet of Things (IoT)
system managed by the system (67) can coexist in an os-
cillatory state. However, in HIoT systems, such oscillatory
behavior is undesirable. Our numerical simulations further
indicate that the onset of the Hopf bifurcation and the ac-
companying oscillations can be delayed by appropriately ad-
justing the constant recruitment rate of vulnerable nodes and
the recovery rate of infected nodes. Since Hopf bifurcation
and oscillation tend to co-occur, we recommend that HIoT
system administrators adopt effective strategies to regulate
the recruitment of vulnerable nodes and ensure timely updates
of antivirus software. These measures can significantly help
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manage the propagation of the worm within the system.

FIGURE 10. The time series plots of the node classes S-E-I , in an IoT
system, based on system (67), with τ = 10.5 = τ0.

FIGURE 11. The phase portrait projections of the node classes S-E-I , in
an IoT system, as modeled by the system (67), with τ = 10.5 = τ0.

Additionally, our simulations suggest that increasing cer-
tain parameter values can delay the onset of the Hopf bifur-
cation. Enhancing the immunity of HIoT systems connected
to the IoT presents a promising approach to achieve this.
Therefore, system administrators must prioritize improving
the vaccination rates of HIoT systems within IoT systems.
This proactive strategy is essential for accurately predicting
and limiting worm propagation in HIoT systems associated
with the IoT. Details are illustrated in FIGURES 8-13, respec-
tively.

FIGURES 14-17 show the time series plots of susceptible,
exposed infected, and recovered nodes under optimal control
values Vc = 0, Tc = 0 and Vc = 0.003, Tc = 0.005, along
with the other attributes defined in the system (67).

FIGURE 14 illustrates that the susceptible node class S
increases in the absence of control parameters (i.e. Vc = 0
and Tc = 0), but decreases when control measures (i.e.

FIGURE 12. The time series plots of the node classes S-E-I , in an IoT
system, as modeled by the system (67), with τ = 25.5 > τ0.

FIGURE 13. The phase portrait projections of the node classes S-E-I , in
an IoT system, as described by the system (67), with τ = 25.5 > τ0.

FIGURE 14. The time series plots of the node class S in an IoT system, as
described by the system (67), with Vc = 0, Tc = 0 and Vc = 0.003,
Tc = 0.005.

Vc = 0.003 and Tc = 0.005) are implemented. This demon-
strates the effectiveness of control parameters in mitigating
infections.
FIGURES 15 and 16 show that the exposed E and infected

I node classes increase in the absence of control parameters
(i.e. Vc = 0 and Tc = 0), but decrease in the presence
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FIGURE 15. The time series plots of the node class E in an IoT system, as
described by the system (67), with Vc = 0, Tc = 0 and Vc = 0.003,
Tc = 0.005.

FIGURE 16. The time series plots of the node class I in an IoT system, as
described by the system (67), with Vc = 0, Tc = 0 and Vc = 0.003,
Tc = 0.005.

FIGURE 17. The time series plots of the node class R in an IoT system, as
described by the system (67), with Vc = 0, Tc = 0 and Vc = 0.003,
Tc = 0.005.

of control parameters (i.e. Vc = 0.003 and Tc = 0.005).
The control parameters effectively regulate the spread and
infectious potential, highlighting the significant impact of the
optimal control strategy on the proposed model.

FIGURE 17 illustrates that recovered node class R exhibits
an increasing trend in the presence of control parameters (i.e.
Vc = 0.003 and Tc = 0.005), and a decreasing trend in the

FIGURE 18. The time series plots of the node class S in an IoT system, as
described by the system (67), with Vc = 0, Tc = 0.005 and Vc = 0.003,
Tc = 0.

FIGURE 19. The time series plots of the node class E in an IoT system, as
described by the system (67), with Vc = 0, Tc = 0.005 and Vc = 0.003,
Tc = 0.

FIGURE 20. The time series plots of the node class I in an IoT system, as
described by the system (67), with Vc = 0, Tc = 0.005 and Vc = 0.003,
Tc = 0.

absence of control parameters (i.e. Vc = 0 and Tc = 0). The
control parameters can work effectively in the recovery stage
and are also one of the notable effects of the proposed model.

FIGURES 18-21 present the time series plots of suscepti-
ble, exposed, infected, and recovered nodes under different
control parameter combinations (Vc = 0, Tc = 0.005 and
Vc = 0.003, Tc = 0), along with the other attributes framed
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FIGURE 21. The time series plots of the node class R in an IoT system, as
described by the system (67), with Vc = 0, Tc = 0.005 and Vc = 0.003,
Tc = 0.

in the system (67). The results indicate that the susceptible
and exposed node classes increase in the absence of vac-
cination control Vc = 0, even when treatment measures
Tc = 0.005 are in place. This suggests that treatment alone
is insufficient to control infection spread without preventive
measures such as firewalls, antivirus software, or security
filters. Vaccination control strategies play a crucial role in
minimizing the destructive effects of malware. Implementing
preventive security measures alongside treatment strategies
is essential to effectively control worm propagation in HIoT
systems

VII. COMPARATIVE STUDY
In this section, we compare the numerical results of the
Caputo–Fabrizio fractional-order derivatives with those of
the integer-order derivative by the motivation of [41] − [49].
The proposed model with Caputo-Fabrizio fractional order
derivatives as follows:

CFDξ
t S = Πξ −σξβξSI − (1−σξ)λξSI −αξS−µξ

1S. (68)

CFDξ
t E = σξβξSI+(1−σξ)λξSI−δξE(t−τ)−γξE−µξ

2E .
(69)

CFDξ
t I = δξE(t − τ)− θξI − ηξI − µξ

3I . (70)

FIGURE 22. The time series plots of the node class S framed in the
system (68-70), with the variation of ξ as 0.55,0.65,0.75,0.85.

FIGURE 23. The time series plots of the node class E framed in the
system (68-70), with the variation of ξ as 0.55,0.65,0.75,0.85.

FIGURE 24. The time series plots of the node class I framed in the system
(68-70), with the variation of ξ as 0.55,0.65,0.75,0.85.

As the approximate solutions tend to the classic integer so-
lution with ξ = 1, FIGURES 22-24 demonstrate that the
dynamics of the system (68-70) are significantly impacted
by different fractional orders and indicate that as fractional
order tends to one. Additionally, FIGURES 22-24 demon-
strate that while each function behaves the same for a range
of values, the results obtained for these values vary. Tables
1–3 also provide a comparison between the integer order and
the non-integer-order model. The results of the integer and
fractional order for the three state nodes S, E, and I functions
in Tables 1-3 show that they behave similarly in Caputo-
Fabrizio derivatives, but their values differ, and this difference
is not consistent. At certain points, the fractional-order Ca-
puto derivative’s value is closer to the integer order result, and
at other points, the fractional-order Caputo–Fabrizio deriva-
tive’s result is closer to the integer order result.

TABLE 1. Comparison between ordinary derivative and Caputo-Fabrizio
fractional derivative for susceptible node

Time (t) 0 1 2 3 4
Dξ 1.5 1.50018 1.52846 1.53895 1.54001

CFDξ 1.50011 1.50093 1.52879 1.53991 1.54621

Figures show the asymptotic behavior of the worm propaga-
tion in heterogeneous IoT network system without treatment,
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TABLE 2. Comparison between ordinary derivative and Caputo-Fabrizio
fractional derivative for exposed node

Time (t) 0 1 2 3 4
Dξ 1 1.13854 1.19587 1.28491 1.30057

CFDξ 1.0017 1.15467 1.21482 1.29447 1.34548

TABLE 3. Comparison between ordinary derivative and Caputo-Fabrizio
fractional derivative for infected node

Time (t) 0 1 2 3 4
Dξ 1 1.10074 1.15648 1.21861 1.26843

CFDξ 1.0004 1.00954 1.11681 1.19586 1.22418

for different values of in the Caputo-Fabrizio operator. In
addition, the responses within the Caputo-Fabrizio fractional
model tend to the integer response as goes to 1. However,
as is known, fractional differentiation introduces additional
complexity in the modeling of real-world dynamics. In con-
trast, the main advantage of this approach is to describe the
complex behavior of such systems more accurately than the
pre-existing classical models with integer-order derivatives.

FIGURES 22,23,24 show that time series plots for various
fractional order values which are quite interesting and inspir-
ing lead to future studies on fractional order modeled systems.
Particularly, the simulation results favor towards the accurate
model and optimal control strategies. The current proposed
model (3) is designed to study the delay dynamics and optimal
control strategies for an IOT system. The next study will be
on Caputo-Frabrizio fractional order modeling with optimal
control strategies. As the simulation results i.e. FIGURES(
22-24 ) achieved the aim of the fractional model with optimal
control. FIGURE 22 says for a lower fractional order value
S(t) is more. FIGURE 24 says that the lower fractional order
value I(t) is less and follows the decreasing trend. So at lower
values of fractional order, we can achieve the aim to minimize
the infection and provide better solutions to control the mal-
ware spread. The literature [41]-[50] motivates and guides us
to study the Caputo- Fabrizio model dynamics with different
mathematical tools and techniques. The effective workflow
and simulation in [50] inspire us for this comparative study to
make this analysis more informative.

VIII. CONCLUDING REMARKS
This study investigated the propagation of worms in HIoT
systems across various threshold values to determine the
optimal parameter for managing the delay duration required
for system stabilization. The study aimed to identify latency-
infected parameters that efficiently control delay time, ensure
system stabilization, and mitigate the negative consequences
of worm outbreaks by systematically assessing these thresh-
olds. The findings underscore the importance of regulating
oscillatory behavior in the propagation of worms and high-
light the need for targeted interventions to prevent long-
term instability in HIoT contexts. In particular, this paper
presents an optimal policy implementation to effectively re-
duce the propagation of worms and minimize the number

of devices exposed and infected. Optimal vaccination and
treatment strategies were analyzed using Pontryagin’s maxi-
mum principle for both weak and strong spreading outbreaks,
applying time-limited treatment within a delayed HSEIR
model. Building on these findings, further investigation into
worm propagation in large-scale networks with various sys-
tem configurations should broaden the scope of the study.
A more comprehensive understanding of worm infestations
in complex real-world IoT environments can be achieved by
incorporating additional factors such as computational power
and device mobility. Including these parameters would en-
hance the applicability of themodel and providemore reliable
mitigation techniques to protect next-generation IoT infras-
tructures. Future work should extend the findings to various
systems, considering additional parameters like computing
capacity and mobility in large-scale networks. Furthermore,
secure environments, such as blockchain-enabled networks,
should be incorporated into future studies. Future research
by the author collective will focus on developing a suitable
architecture for studying complex phenomena. Two particu-
larly promising areas of research, fractional-order modeling,
and comparative analysis, are expected to play a pivotal role
in advancing Industry 4.0 and 5.0.
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