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A B S T R A C T

Recently, the simultaneous transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS) has been
gaining attention as a key enabler for sixth-generation networks, providing additional links with reduction in
power consumption. This paper investigates the STAR-RIS’s potential in a cell-free (CF) massive multiple-
input multiple-output (mMIMO) network, where distributed APs serve user over the same time/frequency.
We propose a deep deterministic policy gradient framework satisfying system-specific and per-user spectral
efficiency constraints, exploiting a post-normalization and a penalized reward. From the simulations, it is
revealed the proposed algorithm provides better energy performance than benchmarks, highlighting the
benefits of STAR-RIS in the CF network.
1. Introduction

In the upcoming sixth-generation (6G) wireless networks, tradi-
tional cellular networks face significant challenges in providing uni-
form services due to inter-cell interference. Consequently, cell-free
(CF) massive multiple-input multiple-output (mMIMO) is an emerging
network technology expected to replace the cellular architecture, and
it has been widely studied as a promising technology for 6G commu-
nication [1–3]. In CF mMIMO, geographically distributed APs jointly
serve multiple users on the same time–frequency resource without cell
boundaries, similar to a coordinated multi-point system [1]. Compared
to cellular systems, providing service without cell boundaries results in
better throughput by reducing inter-cell interference for users far from
the APs. Nevertheless, high infrastructure costs and power consumption
problems remain due to the requirement for large-scale AP deployment
to achieve higher throughput.

On the other hand, reconfigurable intelligent surfaces (RIS) are
promising techniques to improve the propagation environment by con-
trolling the phase of incident signals [4]. RIS consists of low-cost
passive programmable elements, each of which can perform effective
passive beamforming [5]. This offers several advantages, such as low
power consumption, low deployment cost, and scalability. Thus, the
integration of CF mMIMO and RIS has been extensively researched
[6–10].
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However, most existing studies on RIS-aided CF mMIMO systems
focus on reflecting-only RISs, which require the transmitter and re-
ceiver to be located on one side of the RIS. This half-space topology
problem prevents taking full advantage of easy deployment and im-
poses additional topological constraints on the CF network. Recently,
simultaneous transmitting and reflecting (STAR) RIS techniques have
been developed to overcome the above limitations. This can realize om-
nidirectional signal coverage and improve the capacity and coverage of
wireless networks by establishing cascaded links between transmitters
and receivers, allowing the 6G network to meet its demands for high
SE and energy-efficient system design [11].

As illustrated in [9], a joint optimization design involving the
precoding at the APs and the phase control of the RIS elements is es-
sential to fully utilize above benefits. However, conventional numerical
optimization methods rely on complex algorithms or approximations,
which can lead to high computational costs and performance degra-
dation. These limitations underline the need for more efficient and
adaptive optimization techniques.

Recently, the integration of artificial intelligence in wireless net-
work is constantly being studied, among which deep reinforcement
learning (DRL) offers an efficient alternative to addressing the overhead
of system optimization [12]. For example, DRL can effectively solve
complex control problems through trial and error, reducing computa-
tional complexity even as the number of network elements grows [13].
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Moreover, DRL can adapt to dynamic environments where the state of
the network frequently changes [14].

1.1. Related work

The early study of the integration of RIS and CF mMIMO focuses
on approximation/heuristic approaches [15–22]. Qingqing et al. inves-
tigated the joint beamforming optimization for RIS-aided multi-user
MISO system [15]. To handle the nonconvexity of the power mini-
mization problem in the proposed system, a semidefinite relaxation
technique was proposed to obtain an approximate solution. The per-
formance of RIS-assisted CF mMIMO system over spatially correlated
channels was studied in [16]. The RIS cascaded channel estimation
method and optimizing RIS phase shifts control scheme are proposed
to minimize the sum of channel estimation errors. In [23], a closed-
form solution for the weighted sum rate maximization problem is
derived in RIS-aided CF mMIMO system. To realize cooperative hy-
brid beamforming, the alternating direction method of multipliers and
manifold optimization are proposed. Le et al. [18] proposed an inner-
approximation framework-based joint precoding algorithm to maximize
energy efficiency in the RIS-assisted CF mMIMO system under limited
backhaul capacity. Zhang et al. [19] proposed a hybrid beamform-
ing scheme that integrates digital beamforming in AP and analog
beamforming in RIS to improve the energy efficiency of RIS-aided
CF mMIMO systems. This study shows that the proposed RIS-assisted
CF mMIMO system achieves better energy efficiency than traditional
distributed antenna and CF mMIMO systems.

In [22], the cross-entropy-based probability learning method was
proposed to optimize phase shifts and 𝑡/𝑟 ratio in the STAR-RIS-assisted
multi-user system. The method incorporates joint parameterized sam-
pling distribution and updating rules for the tilting parameter. Anas-
tasios et al. [20] extended the above systems to a STAR-RIS-aided
CF mMIMO system and proposed a closed-form expression for down-
link achievable spectral efficiency using statistical CSI. Furthermore,
Song et al. [21] investigated the WSR maximization problem in mul-
tiple STAR-RISs-assisted mmWave CF mMIMO systems. To jointly op-
timize active beamforming of APs and passive beamforming in RISs,
a Lagrangian dual transformation and quadratic transformation were
proposed to break the highly coupled problem into manageable sub-
problems.

However, the above-mentioned convex relaxation or heuristic al-
gorithms often require huge computational resources to find the solu-
tion [24]. Recently, several DRL-based optimization frameworks have
been developed [12–14,25–27]. In [27], the energy consumption op-
timization problem for MEC offloading under task processing time
constraints was derived. To reduce computation costs and adapt the
time-varying channel, a game theory-based DRL framework is devel-
oped by combining DDQN and distributed LSTM. In [24], authors
aimed to optimize the transmit power strategies for anti-jamming game.
A novel approach integrating the Stackelberg game and DDPG is de-
veloped to solve the formulated problem while reducing the effect of
incomplete information. In [28], the AP-user association method was
proposed for energy efficiency maximization. To apply the DDPG for
the large discrete action space, the action space approximation and the
dimension-decreasing approach were proposed.

Huang et al. [14] proposed a DDPG-based sum-rate maximization
algorithm for the RIS-assisted multi-user MISO system. The beamform-
ing and phase shifts are jointly obtained while reducing the complexity
and computation time. In [25], to maximize the achievable data rates
while satisfying the QoS and latency constraints for STAR-RIS-assisted
V2X communications, spectrum allocation, 𝑡∕𝑟 ratio, phase shift, and
power allocation were optimized by using DDQN. In [12], an optimal
beamforming problem was formulated to maximize the sum-rate of
the CF mMIMO system. The DDPG-based centralized beamforming and
distributed deterministic policy gradient (D4PG) based beamforming
method were proposed to handle the continuous action space. In [13],
the dynamic clustering and beamforming for the CF mMIMO system
were obtained via hybrid DRL approach, which utilizes the DDPG to
find beamforming and DDQL to find dynamic clustering.
342
Fig. 1. STAR-RIS-assisted Cell-Free mMIMO system.

1.2. Contributions

Based on the above motivation, we propose the joint optimization
framework based on DDPG for the STAR-RIS-aided CF mMIMO system.
The contributions are summarized as follows:

• For a downlink CF network, we design the joint transmit precod-
ing, phase shifts, and 𝑡/𝑟 ratio optimization method by formulat-
ing the energy-efficiency maximization problem under a per-user
SE constraint and STAR-RIS system constraints.

• We transform the problem into a Markov decision processes
(MDP) framework and apply a reinforcement learning approach
to solve the non-convex optimization problem. Post-normalization
and a penalized reward function are proposed to satisfy the
constraints.

• Through system simulations, we demonstrate that the proposed
algorithm converges stably, and it outperforms the conventional
CF mMIMO in terms of energy efficiency as the number of net-
work elements increases.

Notation. Vectors are given in lowercase bold (e.g., 𝐚), and matrices
are given in uppercase bold (e.g., 𝐀). The superscripts T, and H denote
the transpose and Hermitian transpose, respectively. In addition, exp(𝑣)
represents a vector with the exponential function applied to each
element of 𝐯. The elementwise exponential of a matrix 𝐀, denoted as
exp(𝐀), applies the exponential function to each element of 𝐀. Further,
‖𝐀‖𝐹 denotes the Frobenius norm of matrix 𝐀, and 𝐚◦𝐛 represents the
elementwise multiplication of vectors 𝐚 and 𝐛. Finally, 𝐀◦𝐁 represents
the elementwise multiplication of 𝐀 and 𝐁.

2. System model and problem formulation

We consider a CF mMIMO system supported by STAR-RIS, where
𝑀 APs equipped with 𝑁 antennas and 𝐾 single antenna UEs are
distributed in a coverage area, as illustrated in Fig. 1. With 𝑈 RIS
elements, STAR-RIS is at the center of the area, taking advantage of
its full-space coverage. The coverage region can be divided into a front
region (𝑓 ) and a back region (𝑏) depending on the angle of STAR-
RIS. Furthermore, UE can be distinguished into front and back users
depending on divided regions. That is, 𝑓 UE is located in the front
region and 𝑏 UE is located in the back region where 𝑓 +𝑏 = 𝐾.

The APs are assumed to serve UE jointly over the same time and
frequency resource blocks. Furthermore, all APs are connected to a CPU
via error-free backhaul links to enable channel information exchanges.
Assuming the CPU is in the same position as STAR-RIS, it can be
directly connected and controls the coordination of the phase shift and
the transmission and reflection (𝑡/𝑟) ratio without additional dedicated
links. The 𝑡/𝑟 ratio and phase control can be individually performed on
each element. When a signal incidents on the 𝑢th STAR-RIS element,
it is divided into transmitted and reflected signals through the 𝑡/𝑟
ratio, 𝛽𝑓𝑢 and 𝛽𝑏𝑢 . The magnitude of the 𝑡/𝑟 ratio is constrained to satisfy
the law of energy conservation as follows:
𝑓 2 𝑏 2
|𝛽𝑢 | + |𝛽𝑢 | = 1, ∀𝑢. (1)
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Furthermore, the divided signals are reconstructed using the phase
shift control of the front region 𝜙𝑓𝑢 and back region 𝜙𝑏𝑢 to satisfy the
unit-modulus constraint:

|𝜙𝑓𝑢 | = |𝜙𝑏𝑢| = 1, ∀𝑢, (2)

where 𝜙𝑓𝑢 , 𝜙𝑏𝑢 ∈ C. The combined matrix representation of the STAR-RIS
/𝑟 ratio and the phase shift for 𝑓 and 𝑏 is Φ𝑓 = diag(𝛽𝑓1 𝜙

𝑓
1 ,… , 𝛽𝑓𝑈𝜙

𝑓
𝑈 )

nd Φ𝑏 = diag(𝛽𝑏1𝜙𝑏1,… , 𝛽𝑏𝑈𝜙𝑏𝑈 ). For simplicity, the region indicator for
E 𝑘 is defined as 𝐠𝑘 ∈ {𝑓 , 𝑏}. Thus, the STAR-RIS control parameter for
E 𝑘 at region (𝐠𝑘) is represented as Φ𝐠𝑘 . Then, the STAR-RIS control
arameter 𝛷𝐠 can be defined as 𝛷𝐠 = {𝛷𝐠1 ,… , 𝛷𝐠𝐾 }.

2.1. Channel model

For a given system model, 𝐇𝑚 ∈ C𝑁×𝑈 , 𝐪𝑘 ∈ C𝑈×1, and 𝐝𝑚,𝑘 ∈ C𝑁×1

represent the AP-RIS channel matrix, RIS-user 𝑘 channel vector, and
AP-user 𝑘 channel vector, respectively. The channel vector between AP
𝑚 and UE 𝑘 is represented as follows:

𝐡𝑚,𝑘 = 𝐇𝑚Φ
𝐠𝑘𝐪𝑘 + 𝐝𝑚,𝑘, (3)

where

𝐇𝑚 = {√𝜅𝑚𝐇𝑚,1,… ,
√

𝜅𝑚𝐇𝑚,𝑈 }, (4)

𝑘 =
√

𝜅𝑘𝐡𝑘, (5)

𝑚,𝑘 =
√

𝜅𝑚,𝑘𝐡𝑚,𝑘, (6)

where 𝜅𝑚, 𝜅𝑘, and 𝜅𝑚,𝑘 represent the large-scale fading of the AP-RIS,
P-UE 𝑘, and RIS-UE 𝑘 links, respectively. Additionally, 𝐇𝑚,𝑢 ∈ C𝑁×1,

𝐡𝑚,𝑘 ∈ C𝑈×1, and 𝐡𝑘 ∈ C𝑁×1 represent the small-scale fading vector
corresponding components of the system.

2.2. Downlink data transmission

The transmit signal vector of AP 𝑚 is given as follows:

𝐱𝑚 =
𝐾
∑

𝑘=1
𝐰𝑚,𝑘𝑠𝑚,𝑘, (7)

where 𝑠𝑚,𝑘 ∼   (0, 1) represents the data symbol transmitted from AP
to UE 𝑘, and 𝐰𝑚,𝑘 ∈ C𝑁×1 is the precoding vector for UE 𝑘 from AP 𝑚.

he transmitted signal power for each AP 𝑃 𝑡𝑚 should satisfy following
onstraint:

𝑃 𝑡𝑚 =
𝐾
∑

𝑘=1
|𝐰𝑚,𝑘|2 ≤ 𝑃max. (8)

where 𝑃max is the maximum transmit power. The received signal at the
𝑘th UE is given by

𝑦𝑘 =
𝑀
∑

𝑚=1
𝐡𝐻𝑚,𝑘𝐱𝑚 + 𝑛𝑘 (9)

where 𝑛𝑘 ∼   (0, 𝜎2) represents the complex Gaussian noise at UE 𝑘.
Given that, the signal-to-interference-and-noise ratio of UE 𝑘 is defined
as follows:

𝛾𝑘 =
|

∑𝑀
𝑚=1 𝐡

𝐻
𝑚,𝑘𝐰𝑚,𝑘|

2

∑

𝑘′≠𝑘 |
∑𝑀
𝑚=1 𝐡

𝐻
𝑚,𝑘𝐰𝑚,𝑘′ |

2
+ 𝜎2

. (10)

Then, the downlink SE of the 𝑘th UE is denoted as:

𝑅𝑘 = log2
(

1 + 𝛾𝑘
)

. (11)
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2.3. Problem formulation

Based on the system model, we propose an energy-efficiency maxi-
ization problem to optimize the precoding, phase shift, and 𝑡/𝑟 ratio.
hen, the energy-efficiency maximization problem can be expressed as

follows:

(𝐏𝟏) max
𝒘,𝜱,𝜷

𝐸 𝐸 =
BW∑𝐾

𝑘=1 𝑅𝑘
𝑃total

(12a)

s.t. 𝑅𝑘 ≥ 𝑅th, ∀𝑘 (12b)

𝛽𝑡𝑢 ≥ 0, 𝛽𝑟𝑢 ≥ 0, ∀𝑢 (12c)

(1), (2), (8), (12d)

where 𝒘 = {𝐰𝑚,𝑘|𝑚 ∈ , 𝑘 ∈ }, 𝜱 = {𝜙𝑓 , 𝜙𝑏}, 𝜷 = {𝛽𝑓 , 𝛽𝑏}, BW
enotes the system bandwidth, and 𝑅th indicates the guaranteed per-
ser SE. The total power consumption of the system 𝑃total is modeled
s in [29,30]:

𝑃total =
1
𝛼𝑚

𝑀
∑

𝑚
𝑃 𝑡𝑚 +

𝑀
∑

𝑚=1
𝑃bh,𝑚

+ 𝑀 ⋅ 𝑃ap +𝐾 ⋅ 𝑃ue + 𝑈 ⋅ 𝑃ris, (13)

where 𝛼𝑚 denotes the power amplifier efficiency, and 𝑃ap and 𝑃ue
represent the circuit static power of the AP and UE, respectively.
Moreover, 𝑃ris indicates the power consumed by each RIS element. The
backhaul power consumption is denoted as:

𝑃bh,𝑚 = 𝑃0,𝑚 + BW ⋅
𝐾
∑

𝑘=1
𝑅𝑘 ⋅ 𝑃bt,𝑚, (14)

where 𝑃0,𝑚 denotes the fixed power consumption of each backhaul, and
𝑃bt,𝑚 represents the traffic-dependent backhaul power consumption. In
addition, (12b) represents the per-user SE constraints. Moreover, (12c)
guarantees that the energy of the divided signals has a positive range.

The precoding vectors 𝒘, the passive beamforming in the STAR-IRS
𝜱, and the 𝑡/𝑟 ratio 𝜷 should be jointly optimized to maximize the
total energy efficiency of the system. However, (P1) is a non-convex
problem with highly coupled variables and constraints. Although op-
timization methods using convex relaxation or heuristic approaches
can be applied, they cannot guarantee a global optimum solution, and
the computation cost can be extensive. Therefore, we propose a post-
normalization layer and penalized DDPG framework for designing the
energy-efficient transmission control.

3. Proposed approach

We first transform the optimization problem into a task for an RL
agent to determine the transmit precoding, phase shift, and 𝑡/𝑟 ratio for
the AP. The agent, which uses the computational capacity of the CPU,
observes the environment to determine the appropriate actions and
receives a reward at each time step 𝑡. The CPU receives environment
information through the backhaul, and the agent’s decisions are sent
to each AP. These learning scenarios are modeled as a Markov decision
process (MDP). Based on MDP, the proposed DRL agent collects state,
action, reward, and transition pairs to learn the optimal policy.

3.1. Markov decision process

The state space, action space, and reward function are defined as
follows:

(1) State space: The state of the system observed by the agent is
efined as the CSI of the AP-RIS-user and AP-user paths, which is
ransmitted to the CPU via the backhaul links.

𝑠[𝑡] = [{𝐇𝑚[𝑡]|𝑚 ∈ }, {𝑞𝑘[𝑡]|𝑘 ∈ },

{𝑑𝑚,𝑘[𝑡]|𝑚 ∈ , 𝑘 ∈ }] (15)
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Fig. 2. The proposed post-normalization and penalized DRL framework.
(2) Action space: According to the given state, the agent determines
the phase shift, 𝑡/𝑟 ratio, and AP precoding vector. The action space
combines all possible continuous values of these variables.

𝑎[𝑡] = {𝒘,𝜱, 𝜷}. (16)

(3) Reward function: During the training session, the agent aims to
determine the optimal action to maximize the reward and the energy
efficiency is used to assess it. Accordingly, the following definition is
used for the instantaneous reward function 𝑟[𝑡]

𝑟[𝑡] = BW
∑𝐾
𝑘=1 𝑅𝑘[𝑡]
𝑃total

. (17)

3.2. Post-normalization layer and penalized reward

The neural network outputs may not satisfy the constraints de-
scribed in Eqs. (1), (2), (12b), and (12c) because of the added noise
and the limited output range of the activation functions. Therefore,
we propose a post-normalization layer and penalized reward to sat-
isfy the constraints. The network output is divided into the following
components to address the constraints on the optimization variables.

• Precoding phase: For each AP 𝑚, the precoding direction is
represented by the block matrix 𝐕 = {𝐕1,… ,𝐕𝑀}. Each element
of the matrix 𝐕𝑚 ∈ R𝑁×𝐾 indicates the signal phase in the
complex space between the corresponding antenna and UE.

• Precoding amplitude: For each AP 𝑚, the amplitude of precoding
is 𝐀 = {𝐀1,… ,𝐀𝑀}, where each element of 𝐀𝑚 ∈ R𝑁×𝐾 indicates
the magnitude of the signal between the corresponding antenna
and UE.

• AP power budget: The power budget for each AP 𝑚 represents
the proportion of maximum power each AP uses and is indicated
by the vector 𝜂 = {𝜂1,… , 𝜂𝑚}.

• Passive beamforming phase: The STAR-RIS phase shift is di-
vided into two vectors: 𝛹𝑓 = {𝜓𝑓1 ,… , 𝜓𝑓𝑈 } and 𝛹 𝑏 = {𝜓𝑏1 ,… , 𝜓𝑏𝑈 }.

• t/r proportion: The 𝑡/𝑟 proportions are described by the vectors
𝐩𝐟 = {𝑝𝑓1 ,… , 𝑝𝑓𝑈 } and 𝐩𝐛 = {𝑝𝑏1,… , 𝑝𝑏𝑈 }.

Due to the nature of the activation function, these outputs have values
between 0 and 1. Thus, the precoding vector 𝐰 reformulated as
344

𝑚,𝑘
follows:

𝐰𝑚,𝑘 =
√

𝑃max𝜂𝑚
𝐚𝑚,𝑘◦ exp(𝑗2𝜋𝐯𝑚,𝑘)
‖𝐀𝑚◦ exp(𝑗2𝜋𝐕𝑚)‖𝐹

, (18)

where 𝐚𝑚,𝑘 and 𝐯𝑚,𝑘 are the 𝑘th column of 𝐀𝑚 and 𝐕𝑚, respectively.
The above normalized precoding vector is easily proved to satisfy the
constraint (8). The STAR-RIS phase shifts, 𝜃𝑓𝑢 and 𝜃𝑏𝑢 are as follows:

𝜙𝑓𝑢 = exp (𝑗2𝜋 𝜓𝑓𝑢
)

, 𝜙𝑏𝑢 = exp (𝑗2𝜋 𝜓𝑏𝑢
)

(19)

which satisfy the unit-modulus constraint (2). The 𝑡/𝑟 ratio of each RIS
element 𝛽𝑡𝑢 and 𝛽𝑟𝑢 are rewritten as follows:

𝛽𝑓𝑢 =
𝑝𝑓𝑢

√

𝑝𝑓𝑢
2
+ 𝑝𝑏𝑢

2
, 𝛽𝑏𝑢 =

𝑝𝑏𝑢
√

𝑝𝑓𝑢
2
+ 𝑝𝑏𝑢

2
, (20)

satisfying constraints (1) and (12c).
Although system-specific constraints can be addressed post-

normalization, resolving the per-user SE (12b) via these approaches is
challenging. Therefore, we propose a penalized reward, expressed as
follows:

𝑟penalty[𝑡] = BW
∑𝐾
𝑘=1 𝑅𝑘[𝑡]
𝑃total[𝑡]

+ 𝜆
𝐾
∑

𝑘=1

(

min(𝑅𝑘[𝑡] − 𝑅th, 0)
)

(21)

where 𝜆 is the amplitude of the penalty term that is a positive constant.
Setting an appropriate value for 𝜆 decreases the reward if the constraint
(12b) is not satisfied during training, ensuring maximization of energy
efficiency while meeting constraints.

3.3. Proposed DDPG framework

Due to the continuous action space in the MDP framework, we
propose an DDPG algorithm that can manage this continuous space
[31]. Two types of neural networks exist: an actor network 𝜇(𝑠|𝜃𝜇) and
a critic network 𝑄(𝑠, 𝑎|𝜃𝑄), where 𝜃𝜇 and 𝜃𝑄 represent the parameters
of the network of the actor and critic networks in DDPG. For off-
policy learning, the agent maintains two sets of actor–critic networks:
the target and behavior networks. The target networks are denoted by
𝑄′ and 𝜇′, while the behavior networks are written as 𝑄 and 𝜇. The
behavior network selects actions based on the current policy to explore
the environment. Noise is added to the output of the behavior network
to improve exploration as follows:
𝑎[𝑡] = 𝜇(𝑠[𝑡]|𝜃𝜇) + [𝑡], (22)
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Algorithm 1 Proposed DDPG algorithm

1: Initialize 𝑄(𝑠, 𝑎|𝜃𝑄), 𝑄′(𝑠, 𝑎|𝜃𝑄′ ), 𝜇(𝑠|𝜃𝜇), and 𝜇′(𝑠|𝜃𝜇′ )
2: for episode 1, ..., 𝐸 do
3: Initialize noise process  for exploration
4: Observe system state 𝑠[𝑡]
5: for 𝑡 = 1, ..., 𝑆 do
6: Receive network outputs: 𝜇(𝑠[𝑡]|𝜃𝜇) + [𝑡]
7: Calculate action a[t] through normalization layer according

to (18), (19), and (20)
8: Execute 𝑎[𝑡], observe 𝑟penalty[𝑡], and state transition 𝑠[𝑡 + 1]
9: Store transition (𝑠[𝑡],𝑎[𝑡],𝑟penalty[𝑡],𝑠[𝑡 + 1]) in the replay

buffer
10: Select a random batch of 𝐵 samples (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from the

replay buffer
11: Update each target network parameter according to (24),

(25), (26), (27), and (28)
12: end for
13: end for
14: Output: actor network 𝜇∗

where  [𝑡] represents Ornstein–Uhlenbeck noise. Additionally, the
target network is a copy of the behavior network used to stabilize the
raining.

The fundamental objective of the proposed DDPG framework is to
earn an optimal policy that maximizes cumulative reward. The optimal
olicy 𝜋∗ satisfies the following Bellman optimality equation for all

states:

𝜇∗(𝑠|𝜃𝜇) = ar g max
𝑎

(

𝑄(𝑠, 𝑎, |𝜃𝑄)) (23)

In order to achieve it, the proposed DDPG framework updates the
behavior network through the policy gradient:

∇𝜃𝜇𝐽 = 1
𝐵

𝐵
∑

𝑖=1

(

∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖 ,𝑎=𝜇(𝑠𝑖|𝜃𝜇)∇𝜃𝜇𝜇
(

𝑠𝑖|𝜃
𝜇)
)

, (24)

where 𝐵 denotes the size of the sample batch, and 𝑠𝑖 denotes the state in
atch 𝑖. At the same time, the behavior critic function 𝑄(𝑠, 𝑎) is updated
y minimizing the following MSE loss between the behavior and target
ritic values:

𝐿 = 1
𝐵

𝐵
∑

𝑖=1

(

𝑄
(

𝑠𝑖, 𝑎𝑖|𝜃𝑄
)

− 𝑦𝑖
)2 , (25)

where 𝑦𝑖 represents the target critic value, and 𝑎𝑖 indicates the action
in batch 𝑖. The target critic value is defined as follows:

𝑦𝑖 = 𝑟𝑖 + 𝛾 𝑄′
(

𝑠′𝑖 , 𝜇′
(

𝑠′𝑖|𝜃
𝜇′
)

|𝜃𝑄
′
)

, (26)

where 𝛾 denotes the discount factor, 𝑟𝑖 and 𝑠′𝑖 represent the reward and
ext state in batch 𝑖, respectively.

On the other hand, the target network gradually changes by slowly
tracking the behavior network using the soft update mechanism, mak-
ng learning more stable. The two target networks can be updated via
olyak averaging, as follows:

𝜃𝑄
′
← 𝜏 𝜃𝑄 + (1 − 𝜏)𝜃𝑄′ (27)

𝜃𝜇
′
← 𝜏 𝜃𝜇 + (1 − 𝜏)𝜃𝜇′ , (28)

where 𝜏 ∈ (0, 1) indicates the soft update coefficient. Each network
hyperparameters are described in Table 1, and the learning process is
summarized in Algorithm 1 and Fig. 2.

4. Simulation results

The performance was evaluated in various scenarios by comparing
nergy efficiency to verify the performance of the proposed algorithm
nd the STAR-RIS-aided CF system. In the simulation of the proposed
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Table 1
Hyperparameter values.
Parameters Value

Learning rate 0.001
Discount factor 0.99
Soft update rate 𝜆 0.001
Steps 500
Episodes 10 000
Batch size 128
Critic - Hidden layer 256, Sigmoid
Actor - Hidden layer 256, Sigmoid

Table 2
System parameters.

System parameter Value

Power amplifier efficiency, 𝛼𝑚 0.40
Fixed power consumption of the backhaul, 𝑃0,𝑚 0.825 W
Traffic-dependent backhaul power, 𝑃bt,𝑚 0.25 W(Gbits/s)
Fixed power consumption, 𝑃ap , 𝑃ue , 𝑃ris 0.2, 0.01, 0.01 mW
Bandwidth, BW 20 MHz
Carrier frequency 1.9 GHz
Noise figure 9 dB
Std of shadow fading, 𝜎sh 8 dB
Antenna height 15 m
User antenna height 1.65 m
RIS height 30 m
𝐷, 𝑑1, 𝑑0 200, 50, 10 m

system, the 𝑀 APs and 𝐾 UEs are uniformly distributed in a region of 𝐷
× 𝐷 m2. The system environment is modeled from previous work [2].
The large-scale fading coefficients 𝜅𝑚,𝑘, 𝜅𝑚, and 𝜅𝑘 represent the path
loss and shadow fading effects of the respective elements, defined as
follows:

𝜅𝑚,𝑘 = PL𝑚,𝑘10
𝜎sh𝑧𝑚,𝑘

10 , (29)

𝜅𝑚 = PL𝑚10
𝜎sh𝑧𝑚
10 , (30)

𝜅𝑘 = PL𝑘10
𝜎sh𝑧𝑘
10 , (31)

where PL indicates the path loss, and the exponential component
indicates the log-normal shadow fading with a standard deviation 𝜎sh,
and 𝑧 ∼  (0, 1). The path loss model is given by following three slope
fading model:

PL𝑚,𝑘 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−𝐿 − 35 log10(𝑑𝑚,𝑘),
𝑑𝑚,𝑘 > 𝑑1

−𝐿 − 15 log10(𝑑1) − 20 log10(𝑑𝑚,𝑘),
𝑑0 < 𝑑𝑚,𝑘 ≤ 𝑑1

−𝐿 − 15 log10(𝑑1) − 20 log10(𝑑0),
𝑑𝑚,𝑘 ≤ 𝑑0

(32)

The small-scale fading is modeled using the Rayleigh distribution.
Noise power is determined by multiplying the bandwidth, Boltzmann
constant, noise temperature, and noise figure. Table 2 outlines the
ystem parameters employed in the simulations.

The STAR-RIS-aided CF system was compared with the following
enchmarks.

• S-CF/MRE : This scheme employs MR precoding, random phase
shifts, and an equal 𝑡/𝑟 ratio in the STAR-RIS-aided CF mMIMO
system.

• C-CF : This scheme employs the proposed DDPG algorithm in the
conventional CF mMIMO system.

• C-CF/MRE: This scheme employs MR precoding, random phase
shifts, and an equal 𝑡/𝑟 ratio in the conventional CF mMIMO
system.
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Fig. 3. Average rewards versus episodes under various learning rate settings in the
STAR-RIS-aided CF mMIMO system, where 𝑀 = 10, 𝐾 = 4, 𝑁 = 4, 𝑈 = 16, and
𝑅th = 0.5.

Fig. 4. Cumulative distribution of the average total energy efficiency for the STAR-RIS
CF mMIMO system for the proposed algorithm and benchmark schemes, where 𝑀 = 10,
𝐾 = 4, 𝑁 = 4, 𝑈 = 16, and 𝑅th = 0.5.

Fig. 5. Average total energy efficiency versus the number of antennas, 𝑁 , where
𝑀 = 10, 𝐾 = 4, 𝑈 = 16, and 𝑅th = 0.5.

First, we evaluated the average reward of the proposed DDPG with
various learning rates, which is depicted in Fig. 3. The shaded area rep-
resents the 95% confidence interval. Each parameter converges within
5000 episodes. A learning rate of 1e−3 performs the best, whereas the
convergence speed is similar between rates. A lower learning rate tends
to make the model more susceptible to becoming trapped in the local
optima. A high level of variance exists in the cases of 1e−4 and 5e−4.

Fig. 4 presents the cumulative distribution of the energy efficiency
for the DDPG and benchmark schemes, indicating that the STAR-
RIS-aided CF mMIMO significantly outperformed the conventional CF
mMIMO in the median value. Furthermore, the proposed algorithm
performs 79.3% and 83.3% better than the MRE method in the cases
of the S-CF and C–CF systems in terms of median value, respectively.
However, for the 95% likely, the S-CF and S-CF/MRE have nearly
identical values. This result suggests that the proposed algorithm is
relatively unstable in poor channel conditions.

Fig. 5 evaluates the influence of the number of AP antennas. The
energy efficiency increases with the number of antennas in all cases
346
Fig. 6. Average total energy efficiency versus the number of RIS elements, 𝑈 , where
𝑀 = 10, 𝐾 = 4, 𝑁 = 4, and 𝑅th = 0.5.

except for C–CF/MRE because more precise precoding becomes pos-
sible as the number of antennas at the AP increases. However, for
C–CF/MRE, the precoding gain is initially observed to increase but satu-
rates due to the fixed power consumption of the antennas. Furthermore,
the proposed algorithm demonstrates an improvement of 67% in the
STAR-RIS CF and 62% in the CF compared to the benchmarks.

Next, Fig. 6 represents the influence of the RIS elements. When
STAR-RIS was deployed, the proposed algorithm achieved an average
increase of 46.1% compared to S-CF, demonstrating the potential of
STAR-RIS. Moreover, for S-CF/MRE, the energy efficiency did not
increase significantly and even decreased as the number of elements
increased. This indicates that when joint precoding optimization is not
performed, the static power consumption per element outweighs the
gains from RIS.

5. Conclusion

This work demonstrates how STAR-RIS can improve energy effi-
ciency in CF mMIMO networks under diverse system configurations. We
propose a novel DDPG approach that addresses the energy-efficiency
maximization problem. The proposed post-normalization layer and
penalized reward ensure compliance with system-specific and per-user
SE constraints. The simulation results demonstrate that the proposed
DDPG-based algorithm learns efficiently from the environment and
provides better energy efficiency than the conventional benchmark
scheme in CF mMIMO networks.
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